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Abstract— Least-Squares Support Vector Machines (LS-
SVM) represent a promising approach to identify nonlinear
systems via nonparametric estimation of the nonlinearities in
a computationally and stochastically attractive way. All the
methods dedicated to the solution of this problem rely on the
minimization of a squared-error criterion. In the identification
literature, an instrumental variable based optimization criterion
was introduced in order to cope with estimation bias in case of a
noise modeling error. This principle has never been used in the
LS-SVM context so far. Consequently, an instrumental variable
scheme is introduced into the LS-SVM regression structure,
which not only preserves the computationally attractive feature
of the original approach, but also provides unbiased estimates
under general noise model structures. The effectiveness of the
proposed scheme is demonstrated by a representative example.

I. I NTRODUCTION

Support Vector Machines(SVMs) have been originally
developed as a class ofsupervised learningmethods aiming
at data analysis and pattern recognition in classification
problems and regression analysis [1], [2]. SVMs have had
a paramount impact on themachine learningfield since
their extension as a theoretical framework in that setting [3].
These methods also offer an attractive approach tosystem
identification, especially in the nonlinear context. In non-
linear system identification, most of the research interesthas
been dedicated tononlinear block modelsusing variousLeast
Square-SVM(LS-SVM) approaches [4]–[6]. In general, LS-
SVMs are particular variations of the original support vector
machine approach using anℓ2 loss function. Their main
advantage is the uniqueness of the solution, which is obtained
by solving a set of linear equations.

Given the convexity of the estimation problem and
the large number of parameters typically involved in LS-
SVMs, these approaches can be regarded as so-calledover-
parametrization approachesin the nonlinear framework [7],
[8]. However, due to the existence of powerful regularization
methods for SVMs [1], [2], the variance of the estimated
nonlinear functions is significantly lower than in the classical
over-parametrization methods. On the other hand, SVMs also
offer the possibility of incorporating a model structure and
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prior knowledge on the nonlinearities unlike other nonpara-
metric methods (e.g., [9]).

Variants of linear regression based methods in identifi-
cation have been developed in order to cope with realistic
assumptions on the noise [10]–[12]. To introduce the same
generality of noise structures, some recurrent LS-SVM have
been developed in [13], while in [14], a particular linear
parametric noise model has been introduced in the LS-
SVM framework. However, the chosen noise model plays
an important role in the consistency of the estimates. In
the parametric identification framework, the strength of IV
methods is to deliver consistent estimates independently on
the chosen noise model assumption in a computationally
attractive way. Consequently, the use of an instrumental
variable based criterion in the LS-SVM framework can
lead to a performance improvement of the current LS-SVM
approaches. Nonetheless, such a method would require the
dual solution of the IV optimization problem [10], [15],
which has not been developed so far. To overcome this
gap, this paper aims to derive a dual solution to the reg-
ularized IV optimization problem and to introduce the use
of the Instrumental Variable(IV) scheme into the LS-SVM
regression structure. This contribution not only preserves the
computationally attractive feature of the original approach,
but also provides unbiased estimates for general noise model
structures/conditions.

The rest of the paper is organized as follows: after defining
the problem setting considered in Section II, both the primal
and the dual solution of the usual optimization problem
used in LS-SVM methods are presented in Section III. In
Section IV, the IV optimization problem is introduced both
in the primal form and in the newly introduced dual form.
In Section V, the use of the dual IV solution to the LS-
SVM framework is developed, resulting in an IV-LS-SVM
method. The statistical performance of the proposed IV-LS-
SVM method is compared in Section VI to the traditional LS-
SVM approach via a Monte Carlo study of the identification
of a nonlinear system with anOutput Error (OE) noise
structure. Finally, conclusions and some future directions of
the research are given in Section VII.

II. PROBLEM DESCRIPTION

Consider the general description of an affine,Single-Input
Single-Output(SISO), nonlinear, discrete-time andAutoRe-
gressive with eXogeneous input(ARX) systemSo given by

y(k) =

na∑

i=1

fo
i (y(k − i)) +

nb∑

j=0

go
j (u(k − j)) + eo(k), (1)



whereu andy are the input and output signals respectively,
k denotes the discrete time,fo

i , go
j : R → R are a set

of possibly nonlinear functions andeo(k) is a zero-mean
white noise sequence witheo(k) ∈ N (0, σ2

eo
). Note that

representation (1) is general enough to describe usual block
structures such asHammersteinor Wienersystems. Formu-
lation of (1) in theMulti-Input Multi-Output (MIMO) case
is also available as shown in [5]. It is important to note that
the considered system class is more restrictive than the non-
linear NARX class presented in [16]. This simplification is
used to present the underlying idea behind this contribution
in a clear fashion.

The nonlinearities involved in (1) are supposed to bea
priori unknown. In the LS-SVM context, the assumption
is made that each nonlinearityfi can be modeled using an
nH dimensional feature mapφi : R → R

nH (wherenH is
potentially infinite). A feature map in this setting represents
nonlinear mappings from the extended input-output space to
the output space (feature space). Nevertheless, before prop-
erly addressing the LS-SVM problem and in order to clearly
develop the motivations for the proposed approach, it is is
assumed that each nonlinearity has an explicit description:

fi(y(k − i)) =

nH∑

j=0

ρi,jφi,j(y(k − i)). (2)

gj(u(k − i)) =

nH∑

l=0

ρj̃,lφj̃,l(u(k − i)). (3)

with j̃ = na + 1 + j. This assumption leads to the
parametrized modelMρ

y(k) = ϕ(k)
⊤

ρ + e(k), (4)

where e(k) is the equation error and the regressorϕ is defined
as

ϕ(k) =
[

φ⊤
1 (y(k − 1)) . . . φ⊤

na
(y(k − na))

φ⊤
na+1(u(k)) . . . φ⊤

na+nb+1(u(k − nb))
]⊤

(5)

with φi : R → R
nH being nH dimensional basis functions,

ρ = [ ρ⊤1 . . . ρ⊤na+nb+1 ]⊤ ∈ R
nρ is the parameter

vector,ρi ∈ R
nH andnρ = (na + nb + 1)nH.

Let M = {Mρ | ρ ∈ R
nρ} be the collection of all models

in the form of (4).M represents the set of models in which
we are searching for the “best”Mρ that describesSo given
a data setDN = {y(k), u(k)}N

k=1 generated bySo.
In the considered problem setting it is assumed that the

system belongs to the model set defined and therefore there
exists aρo ∈ R

nρ such that

y(k) = ϕ(k)
⊤

ρo + eo(k). (6)

III. O PTIMIZATION CRITERION

The quality of the model fit is formulated in terms of a
cost functionJ (ρ, e), wheree is given by (4). Minimization
of J (ρ, e) corresponds to the estimation of the parameter
vector ρ. In the LS-SVM framework, the used minimiza-
tion criterion is the LS error criterion one. However, the
dimensionnH of the regressorφ involved is usually large

(and potentially infinite). Hence, a regularization term onρ

is applied, leading to the minimization of the cost function

J (ρ, e)=
1

2
ρ⊤ρ +

γ

2

N∑

k=1

e2(k)=
1

2
‖ρ‖2

ℓ2
+

γ

2
‖e(k)‖2

ℓ2
, (7)

where the scalarγ ∈ R
+
0 is the regularization parameter.

Note that (7) is a so-calledsum-of-normscriterion as it con-
tains both the equation error terme(k) and a regularization
term: theℓ2 cost ofρ scaled byγ.

The solution of this optimization problem both in the
primal and dual forms are presented in the next subsections.

A. Solution in primal form

The primal solution to minimize the criterion (7) is ob-
tained by simply deriving the analytical solution of

∂J (ρ, e)

∂ρ
= 0. (8)

This leads to the minimum at:

ρ̂P =

[

γ−1Inρ
+

N∑

k=1

ϕ(k)ϕ(k)⊤

]−1

·

[
N∑

k=1

ϕ(k)y(k)

]

. (9)

It can be further noticed that by using the notation

Y = [ y(1) . . . y(N) ]⊤ ∈ R
N , (10a)

Φ = [ ϕ(1) . . . ϕ(N) ]⊤ ∈ R
N×nρ , (10b)

the primal solution can be written as:

ρ̂P =
[
Φ⊤Φ + γ−1Inρ

]

︸ ︷︷ ︸

RP(γ,N)

−1
Φ⊤Y. (11)

B. Solution in the dual form

The optimization problem (7) w.r.t. the constraints (4) can
also be solved by constructing theLagrangian:

L(ρ, e, α)=J (ρ, e)−
N∑

k=1

αk

(
ϕ(k)⊤ρ + e(k)−y(k)

)
(12)

with αk ∈ R being the Lagrangian multipliers. The global
optimum is obtained when

∂L

∂e
= 0 → αk = γe(k), (13a)

∂L

∂αk

= 0 → y(k) = ρ⊤ϕ(k) + e(k), (13b)

∂L

∂ρ
= 0 → ρ =

N∑

k=1

αkϕ(k). (13c)

Substituting (13a) and (13c) into (13b) leads to

y(k) = ϕ(k)⊤

(
N∑

k=1

αkϕ(k)

)

︸ ︷︷ ︸

ρ

+ γ−1αk
︸ ︷︷ ︸

e(k)

(14)

for k ∈ {1, . . . , N}. This set of equations is equivalent to:

Y =
[
ΦΦ⊤ + γ−1IN

]
α, (15)

whereα = [α1 . . . αN ]⊤∈ R
N . This linear problem admits

the solution:
α =

[
ΦΦ⊤ + γ−1IN

]−1
Y. (16)



According to (13c),ρ = Φ⊤α and therefore

ρ̂D = Φ⊤
[
ΦΦ⊤ + γ−1IN

]

︸ ︷︷ ︸

RD(γ,N)

−1
Y. (17)

C. Equivalence and bias of the solutions

It is important to notice that, under the condition that
both RD(γ,N) ∈ R

N×N in (17) andRP(γ,N) ∈ R
nρ×nρ

in (11) are non-singular, then the dual and primal solutions
are equivalent. Assuming that bothRD(γ,N) andRP(γ,N)
are non-singular, then it can be proven using the well-
known properties of the primal solution that the estimate
is consistent (E{ρ} = ρo) under the conditions:
C1 γ → ∞.
C2 E{ϕ(k)eo(k)} = 0, ∀k ∈ Z.
This implies that both C1 and C2 must also hold for the dual
estimate to be consistent. For the system class considered,C2
only holds ifeo is white asϕ(k) is constructed using past sig-
nals values ofy and the input signalu which is uncorrelated
to the noise. Nonetheless the ARX structure as described in
Section II is unrealistic in most practical applications asit
implies that the noise on the output has the same dynamics
and nonlinearities as the system itself. Consequently, in most
practical applications, the minimization of criterion (7)will
lead to a biased estimate. The next section introduces an IV
method in order to cope with this issue.

IV. I NSTRUMENTAL VARIABLE APPROACH

Among the available identification approaches used in
the regression framework, theInstrumental Variable(IV)
approach has been successfully applied to resolve in a simple
and highly efficient fashion the inconsistency problem of
LS regression under a noise-modeling [10], [11], [15], [17].
The most restrictive condition guaranteeing consistency is
condition C2. In most problems, including the LS-SVM
case, the regressor is correlated (implicitly or explicitly) to
the noise and C2 does not hold. Thus, in the parametric
context, a IV identification criterion has been introduced
which relaxes C2 to a less restrictive condition and prevents
the deterioration of the estimation performance [15]. The
idea is to introduce aso-called instrumentζ(k) ∈ nρ such
that the consistency conditions become:
X1 γ → ∞.
X2 E{ζ(k)eo(k)} = 0, ∀k ∈ Z.
While the condition C2 depends onϕ(k) and therefore on the
model assumed, X2 depends onζ(k) which can be chosen
by the user. There is a wide range of possible solutions to
pick an instrument uncorrelated to the noise. To respect the
consistency conditions, the IV estimate corresponds to the
solution of the criterion

ρ̂IV = sol

{

1

N

N∑

k=1

ρ + γζ(k)
[
y(k) − ϕ⊤ρ

]
= 0

}

. (18)

Similarly to (7), a regularization term onρ weighted byγ is
also involved in this estimation scheme.

The motivation to pursue an IV-scheme based solution for
bias elimination are the following:

• In general, the recent IV approaches offer a similar
performance as the optimal (minimum variance and
unbiased estimates) prediction error methods in case of
correct assumptions on the system and noise models.

• As it will be shown later, the IV-based LS-SVM
problem can be solved in a very similar way to the
LS-SVM problem, implying approximately the same
computational load as well as the same complexity.

• Most importantly, the IV-schemes provide consistent
estimates in case of incorrect noise assumptions. This
feature is really important in practical situations as
usually no physical models of the noise are available.

Nonetheless, while the IV methods are now widely used
under the primal form of the optimization problem, they
have never been introduced in a dual setting to the best of
the authors’ knowledge. Thus, the question arises: Can the
parallelism between the primal and dual solutions, explored
in Section II, be used to introduce an IV scheme for the dual
form without any performance degradation?

A. IV in the primal form

The primal solution of (18) is straightforwardly given as

ρ̂IV
P =

[

γ−1Inρ
+

N∑

k=1

ζ(k)ϕ(k)⊤

]−1

·

[
N∑

k=1

ζ(k)y(k)

]

. (19)

By using the notation (10b) and by declaring

Z = [ ζ(1) . . . ζ(N) ]⊤ ∈ R
N×nρ , (20)

the primal IV estimate can be expressed as:

ρ̂IV
P =

[
Z⊤Φ + γ−1Inρ

]

︸ ︷︷ ︸

RIV

P
(γ,N)

−1
Z⊤Y. (21)

Many instruments can be chosen in order to fulfill X2.
Nonetheless, the existence of the estimate is now constrained
by the non-singularity ofRIV

P (γ,N) in (21). The discussion
about the choice of a suitable instrument guaranteeing this
property is too technical. Hence, due to the space restriction,
the authors refer to [15] for a discussion about this issue.

B. IV in the dual form

The main contribution of this paper is to introduce the
solution of the instrumental variable optimization (21) inthe
dual form. Introduceαk andζ(k) satisfying:

αk = γe(k), (22a)

y(k) = ϕ(k)⊤ρ + e(k), (22b)

ρ =

N∑

k=1

αkζ(k). (22c)

We will prove that the choice of (22c) is necessary to
obtain the dual solution of the optimization criterion (18).
Substituting (22a) and (22c) into (22b) yields the following
set of linear equations:

y(k) = ϕ(k)⊤

(
N∑

k=1

αkζ(k)

)

︸ ︷︷ ︸

ρ

+ γ−1αk
︸ ︷︷ ︸

e(k)

, (23)



for k ∈ {1, . . . , N}, which leads to the solution

α =
[
ΦZ⊤ + γ−1IN

]−1
Y, (24)

whereα = [α1 . . . αN ]⊤ ∈ R
N . According to (22c),ρ =

Z⊤α and therefore

ρ̂a = Z⊤
[
ΦZ⊤ + γ−1IN

]

︸ ︷︷ ︸

RIV

D
(γ,N)

−1
Y, (25)

which is equivalent tôρIV
P (see (21)) if bothRIV

D (γ,N) and
RIV

P (γ,N) are non-singular. Consequently,ρ̂a is the dual
solution of the IV optimization problem (18),̂ρa = ρ̂IV

D and
this estimate is consistent, independently of the noise model
assumed under the conditions X1 and X2. In conclusion the
IV optimization solution has been introduced in the dual
representation and the next section describes its application
to the LS-SVM framework.

V. I NSTRUMENTAL VARIABLE IN THE LS-SVM CONTEXT

So far in this paper, the studied system was considered to
lie in the model set defined byM and could be described
using a finite dimensional parameter vector. It allowed to
derive the statistical properties for both the primal and dual
solutions of different optimization criteria (LS based and
IV based). Nonetheless, in a nonlinear context, finding an
appropriate model set can be a tedious task. In most linear
regression methods, explicit feature maps are defined (for
example polynomial) along with their dimension. Nonethe-
less, this implies the quality of the model will highly depend
on the structure chosen and in most cases, will lead to a
structural bias. A possible way to avoid this structural bias is
to increase the dimension of the feature maps :nH → ∞ and
thereforenρ → ∞. In this case,nρ ≫ N , and the use of the
dual solution becomes necessary. It must be pointed out that
defining explicitly an infinite dimensional feature map and
therefore an infinite dimensional regressor is not feasiblein
practice. Hence, the main advantage of the LS-SVM method
is to be able to handle infinite dimensional feature maps with
a low computational load via a dual solution.

A. LS-SVM method

In the LS-SVM context,ϕ(k) is composed of possibly
infinite dimensional feature mapsnH → ∞: thereforenρ →
∞ and ρ cannot be explicitly computed. The main feature
of the LS-SVM method is that the vectorα can be explicitly
computed without the proper knowledge of the feature maps
Φ. Introduce the so-calledGrammian matrixas G = ΦΦ⊤

in (16), which can be defined without the explicit knowledge
of Φ. Notice that

[G]j,k =

nρ∑

i=1

[Gi]j,k (26)

with

[Gi]j,k = 〈φi(xi(j)), φi(xi(k))〉 = Ki(xi(j), xi(k)), (27)

whereKi is a positive definitekernel functionand

xi(k) = y(k − i), i = 1, . . . , na, (28a)

xna+1+j(k) = u(k − j), j = 0, . . . , nb. (28b)

Consequently, given a set of kernel functionsKi definesG
and hence characterizesΦ. This is called thekernel trick[1],
[2], which allows the identification of the nonlinear functions
fi, gj without explicitly defining the feature maps involved.
A typical type of kernel is, for example, theRadial Basis
Function (RBF) kernel:

Ki
j,k = Ki(xi(j), xi(k)) = exp

(
−‖xi(j)−xi(k)‖2

ℓ2

σ2

i

)

, (29)

but other kernels, likepolynomialkernels, can also be used.
Another remark is that the parameter vectorρ̂D is never
accessible in the LS-SVM framework, and only the combined
estimationρi

⊤φi(¦) = fi(¦) is computable using the kernel
functions defined. Nonetheless, even if the estimate ofρ is
not accessible, the consistency properties C1 and C2 hold.

B. Instrumental variable for the LS-SVM framework

The final aim of this paper is to introduce the IV solu-
tion in the the LS-SVM framework. The conditions on the
instrument in order to obtain a consistent estimate have been
derived in the previous section. It must be emphasized that
in a nonlinear context, the choice of an optimal instrument
depends highly on the system structure and the noise model
assumed, and is mostly an open problem. Consequently, the
instrument chosen to address the IV-LS-SVM solution is
inspired by the instrument proposed in [10] which leads to
the IV4 solution in the primal form:

ζ(k) =
[

φ⊤
1 (yLS(k − 1)) . . . φ⊤

na
yLS(k − na)

φ⊤
na+1(u(k)) . . . φ⊤

na+nb+1(u(k − nb))
]⊤

, (30)

where yLS is the simulated output of the model given by
the LS-SVM method andφi are the same as in (5). This
instrument always guarantees X2 in the considered case and
it has been successfully used in the primal context.

In the same fashion as in (26), the IVGrammian matrix
J = ΦZ⊤ is defined as

[J ]j,k =

nρ∑

i=1

[J i]j,k (31)

with

[J i]j,k = 〈φi(xi(j)), φi(ξi(k))〉 = Ki(xi(j), ξi(k)), (32)

ξi(k) = yLS(k − i), i = 1, . . . , na, (33a)

ξna+1+j(k) = u(k − j), j = 0, . . . , nb. (33b)

It is possible to derive the conditions on the instrument
for applying the kernel trick. Nonetheless, this issue is not
discussed here due to space restrictions. The definition of
the kernel functionsKi allows an explicit expression of
α. Consequently, it can be concluded from (22c) that the
resulting IV4-LS-SVM estimate is given by

fi(¦) = φ⊤
i (¦)ρi =

N∑

k=1

αkKi(ξi(k), ¦), (34a)

gj(¦) = φ⊤
j̃

(¦)ρj̃ =

N∑

k=1

αkK j̃(ξj̃(k), ¦), (34b)

wherej̃ = na +1+ j. The IV4-LS-SVM algorithm w.r.t. the
instrument (30) is summarized as Algorithm 1.



Algorithm 1 IV4-LS-SVM
1: use the LS-SVM method to obtain a modelMLS−SVM

2: useMLS−SVM to generateyLS by simulation
3: computeξ andJ via (33a-b) and (32)
4: computeα by solving (24)

VI. SIMULATION EXAMPLE

A. Data generating system

The main advantage of the IV methods is their robustness
when facing modeling errors in the noise structure. Conse-
quently, in order to compare the LS-SVM and the IV4-LS-
SVM methods under realistic noise conditions, a nonlinear
Output Error (OE) systemSo is considered :

χ(k) = −0.7χ(k − 1) + f(χ(k − 2)) + g(u(k)), (35a)

y(k) = χ(k) + eo(k), (35b)

where

f(x) =

{

−0.2x2 if x > 0

0 else
(35c)

g(x) = −x + 2x2 + cos(10x). (35d)

In the sequel, the inputu(k) is taken as a zero-mean white
noise process with a uniform distributionU(−0.5, 0.5) and
with length N = 1200 to generate data setsDN of So.
eo(k) is taken as a zero-mean white noise sequence with
eo(k) ∈ N (0, σ2

eo
).

B. Model structures

Both the conventional LS-SVM approach and the proposed
IV4-LS-SVM approach use the same ARX model structure
Mρ given as:

y(k) = ρ1y(k − 1)+φ⊤
2 (y(k − 2))ρ2 +φ⊤

3 (u(k))ρ3 + e(k).

Note that the equation errore(k) is not white. The robustness
of the proposed IV4-LS-SVM and the existing LS-SVM
algorithms are analyzed under asignal-to-noise ratioSNR =
10 log

Pχo

Peo

= 7dB, where Pχo
and Peo

are the average
power of the signalsχo and eo respectively. To provide
representative results, a Monte Carlo simulation ofNMC =
100 runs with new noise realization in each run is applied.

One of the advantage of the LS-SVM algorithm is to be
able to use somea priori knowledge which, in this case,
means the explicit definition ofφ1(y(k−1)) = y(k−1). To
characterize the nonlinearities, RBF kernels are used forK2

and K3. It is important to note that the main contribution
of this paper is the introduction of the IV optimization
criterion (18) and its solution in the LS-SVM framework
(24). Therefore, in order to evaluate the impact of this
criterion only, it is important that the model structure is the
same for both the LS-SVM method and the IV4-LS-SVM
methods. In the present context, where the feature maps
are implicitly defined, the model structure is defined by the
kernels used and therefore by theσ parameters. The model
structure is chosen such that it maximizes theBest Fit Rate
(BFR) on the estimation data set for the LS-SVM method
(using an exhaustive search) where:

TABLE I

MEAN AND STANDARD DEVIATION OF THE ESTIMATED PARAMETERρ1

AND THE BFR COMPUTED ON VALIDATION DATA .

Mean ρ̂1 std ρ̂1 Mean BFR std BFR
True value −0.7 – – –
LS-SVM −0.528 0.0142 82.61 1.29

IV4-LS-SVM −0.699 0.0202 91.99 1.86

BFR = 100% · max

(

1 −
‖χ(k) − χ̂(k)‖ℓ2

‖χ(k) − χ̄‖ℓ2

, 0

)

, (36)

with χ̄ being the mean ofχ. This search has resulted in
σ2 = 3, σ3 = 0.5. The γ parameters have been however
optimized separately (by exhaustive search too) as they
are directly linked to the different optimization problems
considered. This leads toγLS = 3500 andγIV = 500.

C. Simulation results

Table I displays the mean and standard deviation of the
estimated parameterρ1. It can be seen that, in line with the
theory, the LS-SVM algorithm is biased while the proposed
IV4-LS-SVM method is unbiased. Like in the linear regres-
sion framework, the IV based method displays a slightly
larger variance than the LS method. Note thatφ1 in this case
is explicitly defined soρ1 can be directly accessed, while this
is not the case for the other parametersρ2 andρ3.

Figure 1 shows the estimation results ofg(u) by the
IV4-LS-SVM and the LS-SVM algorithms and exposes the
mean estimated function together with the standard deviation
interval. As expected, both algorithms perform similarly in
estimatingg asu(k) is uncorrelated withe(k) and therefore
ϕ2(k) = ζ2(k). Figure 2 shows the estimation results of
f(y) by the IV4-LS-SVM and the LS-SVM algorithms in
terms of the mean and standard deviation of the estimates.
The bias of the LS-SVM method algorithm clearly appears
in this figure. In contrast, the mean estimate off by the IV4-
LS-SVM algorithm is centered on the original one. Note that
a more advanced instrument might lead to even better results.

Table I also displays the mean and standard deviation of
the BFR for both algorithms on a validation set. This clearly
shows that on the validation set, the proposed IV4-LS-SVM
method achieves, even for this simple model, significantly
better performance than the usual LS-SVM algorithm. As
the computation time of̂χ is negligible, this implies that the
execution time of the IV4-LS-SVM is only approximately
two times of the LS-SVM method, where the latter is known
to be computationally efficient.

Finally, it needs to be pointed out that w.r.t. (35a-b),
condition X2 holds only ifχ(k − 2) < 0. Even though, the
achieved estimation performance by the proposed approach
has considerably increased on the whole feature space (even
for χ(k−2) ≥ 0). This highlights that condition X2 cannot be
asserted for any nonlinear structures, but it holds in general
for structures which are linear in the output (Hammerstein,
Linear parameter varying, etc.).

VII. C ONCLUSION

In this paper, an instrumental variable estimation scheme
has been proposed for the SVM framework, which signif-
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Fig. 1. True nonlinearityg(u) (dotted black) together with the mean estimate (solid grey)+/− standard deviation (dashed black) over the Monte-Carlo
simulation.
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Fig. 2. True nonlinearityf(y) (solid black) together with the mean estimate (solid grey)+/− standard deviation (dashed black) over the Monte-Carlo
simulation.

icantly extends the applicability of the LS-SVM algorithm
to general noise cases while maintaining its computational
efficiency. To the authors’ knowledge, this method is among
the first of the LS-SVM approaches designed to be consistent
under modeling error of the noise. Via a simulation example,
it has been demonstrated that the proposed IV4-LS-SVM
method performs better than the LS-SVM algorithm w.r.t.
data generated by a non-ARX system. It has also been
observed that the computational load of the IV4-LS-SVM
scheme is at the same magnitude as the LS-SVM method.
Future research concerns the introduction of optimal instru-
ments for different system classes and the refinement of the
proposed IV4-LS-SVM scheme for extended noise models
directly which is hoped to decrease variance of the estimates.
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