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Abstract— Identification of Linear Parameter-Varying (LPV)
systems in an Input-Output (IO) setting is investigated, focusing
on the case when the noise part of the data generating system is
an additive colored noise. In the Box-Jenkins (BJ) and Output-
Error (OE) cases, it is shown that the currently available linear
regression and Instrumental Variable (IV) methods from the
literature are not optimal in terms of bias and variance of
the estimates. To overcome the underlying problems, a statis-
tically optimal Refined Instrumental Variable (RIV) method is
introduced. The proposed approach is compared to the existing
methods via a representative simulation example.

I. I NTRODUCTION

The common need for accurate and efficient control of
today’s industrial applications is driving the system iden-
tification field to face the constant challenge of providing
better models of physical phenomena. Systems encountered
in practice are often nonlinear or have time-varying nature.
Dealing with models of such kind without any structure is
often found infeasible in practice. This rises the need for
system descriptions that form an intermediate step between
Linear Time-Invariant (LTI) systems and nonlinear/time-
varying plants. To cope with these expectations, the model
class ofLinear Parameter-Varying(LPV) systems provides
an attractive candidate. In LPV systems the signal relations
are considered to be linear just as in the LTI case, but the
parameters are assumed to be functions of a measurable time-
varying signal, the so-calledscheduling variablep : Z → P.
The compact setP ⊆ R

nP denotes thescheduling space.
The LPV system class has a wide representation capability
of physical processes and this framework is also supported
by a well worked out and industrially reputed control theory.
Despite the advances of the LPV control field, identification
of such systems is not well developed.

The existing LPV identification approaches are almost
exclusively formulated in discrete-time, commonly assuming
static dependence on the scheduling parameter (dependence
only on the instantaneous value of the scheduling variable),
and they are mainly characterized by the type of LPV model
structure used:Input-Output(IO) [2], [3], [21] State Space
(SS) [14], [20], [5] orOrthogonal Basis Functions(OBFs)
based models [19] (see [18] for an overview of existing
methods). In the field of system identification, IO models
are widely used as the stochastic meaning of estimation
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is much better understood for such models, for example
via the Prediction-Error (PE) setting, than for other model
structures. Often an important advantage of IO models is
that they can be directly derived from physic/chemical laws
in their continuous form. Therefore, it is more natural to
express a given physical system through an IO operator form
or transfer function modeling. A comparison between IO and
SS models based approaches can be found in [17] for linear
systems.

Among the available identification approaches of IO mod-
els, the interest forInstrumental Variable(IV) methods has
been growing in the last years. The main reason of this in-
creasing interest is that IV methods offer similar performance
as extendedLeast Square(LS) methods or otherPrediction
Error Minimization (PEM) methods (see [15], [13]) and
provide consistent results even for an imperfect noise struc-
ture which is the case in most practical applications. These
approaches have been used in many different frameworks
such as direct continuous-time [15], [10], nonlinear [11]
or closed-loop identification [9], [8] and lead to optimal
estimates if the system belongs to the model set defined.

In the LPV case, most of the methods developed for
IO models based identification are derived under a linear
regression form [21], [2], [1]. By using the concepts of
the LTI PE framework, recursive LS and IV methods have
been also introduced [7], [4]. However, it has been only
recently understood how a PE framework can be established
for the estimation of general LPV models [18]. Due to the
linear regressor based estimation, the usual model structure
in existing methods is assumed to beauto regressive with
exogenous input(ARX). Even if a non-statistically optimal
IV method has been recently introduced in [4] for LPV
Output Error (OE) models, no method has been proposed
so far to deal with colored noise in a statistically optimal
way. Moreover, it can be shown that it is generally impos-
sible to reach statistically optimal estimates by using linear
regression as presented so far in the literature. These imply,
that there is lack of an LPV identification approach, which is
capable of statistically optimal estimation of LPV-IO models
under colored noise conditions, e.g. as in aBox-Jenkins(BJ)
setting, which is the case in many practical applications.

By aiming at fulfilling this gap, an optimal estimation
method is developed in this paper for LPV-IO BJ discrete-
time models in the SISO case. The properties of the method
are compared to the existing theory showing the increased
statistical performance of the estimation.

The paper is organized as follows: In Section II, the
general class of LPV systems in an IO representation form



is introduced pointing out the main difficulties presented.
In Section III, linear regression in the LPV prediction error
framework is analyzed and it is shown that such an estimation
scheme even in a IV setting is statistically not optimal if
the noise is not white. Moreover, a reformulation of the
dynamical description of LPV data generating plants in
the considered setting is introduced which makes possible
the extension of LTI-IV methods to the LPV framework.
In Section IV, statistically optimal LPV-IV methods are
introduced and analyzed, while their performance increase
compared to other methods is shown in Section V. Finally
in Section VI, the main conclusions of the paper are drawn
and directions of future research are indicated.

II. PROBLEM DESCRIPTION

A. System description

Consider the data generating LPV system described by the
following equations:

So

{

Ao(pk, q−1)χo(tk) = Bo(pk, q−1)u(tk−d)

y(tk) = χo(tk) + vo(tk)
(1)

whered is the delay,χo is the noise-free output,u is the
input, vo is the additive noise with bounded spectral density,
y is the noisy output of the system andq is the time-
shift operator, i.e.q−iu(tk) = u(tk−i). Ao(pk, q−1) and
Bo(pk, q−1) are polynomials inq−1 of degreena and nb

respectively:

Ao(pk, q−1) = 1 +

na∑

i=1

ao
i (pk)q−i, (2a)

Bo(pk, q−1) =

nb∑

j=0

bo
j (pk)q−i, (2b)

where the coefficientsai and bj are real meromorphic
functions, e.g. rational functions, with static dependence on
p. It is assumed that these coefficients are non-singular on
P, thus the solutions ofSo are well-defined and the process
part is completely characterized by the coefficient functions
{ao

i }
na
i=1 and{bo

j}
nb
j=0.

Most of existing methods in the literature assume an ARX
type of data generating system, which means that the noise
processvo can be written as

eo(tk) = Ao(pk, q−1)vo(tk), (3)

where eo is a zero-mean, discrete-time white noise pro-
cess with a normal distributionN (0, σ2

o), whereσ2
o is the

variance. This assumption is unrealistic in most practical
applications as it assumes that both the noise and the process
part of So contain the same dynamics. Often the colored
noise associated with the sampled output measurementy(tk)
has a rational spectral density which has no dependence on
p. Therefore, it is a more realistic assumption thatvo is
represented by a discrete-timeautoregressive moving average
(ARMA) model:

vo(tk) = Ho(q)eo(tk) =
Co(q

−1)

Do(q−1)
eo(tk), (4)

where Co(q
−1) and Do(q

−1) are monic polynomials with
constant coefficients and with respective degreenc andnd.
Furthermore, all roots ofzndDo(z

−1) are inside the unit disc.
It can be noticed that in caseCo(q

−1) = Do(q
−1) = 1, (4)

defines an OE noise model.

B. Model considered

Next we introduce a discrete-time LPV Box-Jenkins (BJ)
type of model structure that we propose for the identification
of the data-generating system (1) with noise model (4). In
the proposed model structure the noise model and the process
model is parameterized separately.

1) Process model:The process model is denoted byGρ

and defined in a form of a LPV-IO representation:

Gρ :
(
A(pk, q−1, ρ), B(pk, q−1, ρ)

)
= (Aρ,Bρ) (5)

where thep-dependent polynomialsA andB are parameter-
ized as

Aρ







A(pk, q−1, ρ) = 1 +

na∑

i=1

ai(pk)q−i,

ai(pk) = ai,0 +

nα∑

l=1

ai,lfl(pk) i = 1, . . . , na

Bρ







B(pk, q−1, ρ) =

nb∑

j=0

bj(pk)q−i,

bj(pk) = bj,0 +

nβ∑

l=1

bj,lgl(pk) j = 0, . . . , nb

In this parametrization,{fl}
nα

l=1 and {gl}
nβ

l=1 are meromor-
phic functions ofp, with static dependence, allowing the
identifiability of the model (pairwise orthogonal functions
on P for example). The associated model parametersρ are
stacked columnwise in the parameter vector,

ρ =
[
a1 . . . ana

b0 . . . bnb

]⊤
∈ R

nρ , (7)

where
ai =

[
ai,0 ai,1 . . . ai,nα

]
∈ R

nα+1

bj =
[

bj,0 bj,1 . . . bj,nβ

]
∈ R

nβ+1

and nρ = na(nα + 1) + (nb + 1)(nβ + 1). Introduce also
G = {Gρ | ρ ∈ R

nρ}, as the collection of all process models
in the form of (5).

2) Noise model:The noise model is denoted byH and
defined as a LTI transfer function:

Hη : (H(q, η)) (8)

whereH is a monic rational function given in the form of

H(q, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + . . . + cnc

q−nc

1 + d1q−1 + . . . + dnd
q−nd

. (9)

The associated model parametersη are stacked columnwise
in the parameter vector,

η =
[

c1 . . . cnc
d1 . . . dnd

]⊤
∈ R

nη , (10)

wherenη = nc + nd. Additionally, denoteH = {Hη | η ∈
R

nη}, the collection of all noise models in the form of (8).



3) Whole model:With respect to a given process and
noise part(Gρ,Hη), the parameters can be collected as

θ =

[
ρ
η

]

, (11)

and the signal relations of the LPV-BJ model, denoted in the
sequel asMθ, are defined as:

Mθ







A(pk, q−1, ρ)χ(tk)=B(pk, q−1, ρ)u(tk−d)

v(tk)=
C(q−1, η)

D(q−1, η)
e(tk)

y(tk)=χ(tk) + v(tk)

(12)

Based on the previously defined model structure, the model
set, denoted asM, with process (Gρ) and noise (Hη) models
parameterized independently, takes the form

M
{
(Gρ,Hη) | col(ρ, η) = θ ∈ R

nρ+nη
}

. (13)

This set corresponds to the set of candidate models in which
we seek the model that explains data gathered fromSo the
best, under a given identification criterion (cost function).

C. Predictors and prediction error

Similar to the LTI case, in the LPV prediction er-
ror framework, one is concerned about finding a model
in a given LPV model structureM, which minimizes
the statistical mean of the squared prediction error based
on past samples of(y, u, p). However in the LPV case,
no transfer function representation of systems is avail-
able. Furthermore, multiplication withq is not commu-
tative over the p-dependent coefficients, meaning that
q−1B(pk, q−1)u(tk) = B(pk−1, q

−1)u(tk−1) which is not
equal toB(pk, q−1)u(tk−1). Therefore to define predictors
with respect to modelsMθ ∈ M, a convolution type
representation of the system dynamics, i.e. a LPVImpulse
Response Representation(IRR), is used where the coeffi-
cients has dynamic dependence onp (dependence on future
and past samples ofp) [18]. This means thatS0 with an
asymptotically stable process and noise part is written as

y(tk)=(Go(q) ⋄ p)(tk)u(tk)
︸ ︷︷ ︸

χo(tk)

+(H0(q) ⋄ p)(tk)
︸ ︷︷ ︸

eo(tk)

vo(tk)

(14)

where

(Go(q) ⋄ p)(tk) =
∞∑

i=0

(αo
i ⋄ p)(tk)q−i, (15a)

(Ho(q) ⋄ p)(tk) = 1 +
∞∑

i=1

(βo
i ⋄ p)(tk)q−i, (15b)

with αo
i ⋄ p expressing dynamic dependence ofαi on p, i.e.

αo
i ⋄ p = αi(p, qp, q−1p, q2p, . . .). Now if p is deterministic

and there exits a convergent adjointH†
o of Ho such that

eo(tk) = (H†
o(q) ⋄ p)(tk)vo(tk), (16)

then it is possible to show (see [18]) that theone-step ahead
predictor of y is

y(tk | tk−1) =
(
(H†

o(q)Go(q)) ⋄ p
)
(tk) u(tk)

+
(
(1 − H†

o(q)) ⋄ p
)
(tk) y(tk). (17)

In case the noise model is not dependent onp, like in (4),
(Ho(q) ⋄ p)(tk) = Co(q

−1)
Do(q−1) and (H†

o(q) ⋄ p)(tk) = Do(q
−1)

Co(q−1) .
With respect to a parameterized model structure, we can
define theone-step ahead prediction erroras

εθ(tk) = y(tk) − ŷ(tk | tk−1), (18)

where

ŷ(tk | tk−1) =
(
(H†(q, θ)G(q, θ)) ⋄ p

)
(tk) u(tk)

+
(
(1 − H†(q, θ)) ⋄ p

)
(tk) y(tk) (19)

with G(q, θ) andH(q, θ) the IRR’s of the process and noise
part respectively. DenoteDN = {y(tk), u(tk), p(tk)}N

k=1

a data sequence ofSo. Then to provide an estimate ofθ
based on the minimization ofεθ, an identification criterion
W (DN , θ) can be introduced, like theleast squarescriterion

W (DN , θ) =
1

N

N∑

k=1

ε2
θ(tk), (20)

such that the parameter estimate is

θ̂N = arg min
θ∈R

nρ+nη

W (DN , θ). (21)

D. Persistency of excitation

In order to estimate an adequate model in a given model
set, most PEM algorithms like least squares or instrumental
variables methods require that apersistency of excitation
condition with respect toDN collected from the system is
satisfied. Such condition is required to guarantee consistency
and convergence of the algorithm provided estimates. In
order to analyze the estimation of the defined LPV-BJ model
structure, the characterization of the data sets satisfying this
condition with respect toM is needed.

In the LTI case, persistency of excitation is associated
with the notion of aninformative data set. Let DN =
{y(tk), u(tk)}N

k=1 be a data set of quasi-stationaryu and y
collected from the data generating system and letW (DN , θ)
be an identification criterion.DN is called informative with
respect to a parametric model setM with parametersθ
and a givenW (DN , θ) if any two models inM can be
distinguished underW (DN , θ) [6]. Basically this means that
if the model setM is identifiable (no two parametersθ1 and
θ2 given models correspond to the same predictor) and the
data setDN is informative, thenW (DN , θ) has a global
optimum in the statistical sense. The latter is the essential
requirement for consistency of any minimization method.
The notion of persistency of excitation with ordern means
in the LTI case an informativeDN with respect to a model
structure withn parameters. The latter is equivalent to the
possibility of statistically uniquely estimating anth order
FIR filter based onDN .

In the LPV case, there are numerous differences. First of
all, the requirements for identifiability imply that the linear
combinations of the usedfl andgl functions in the coefficient
parametrization provide inequivalent dynamical behaviors of
the model structure for eachθ. With respect to the considered
LPV-BJ structure and a LS criterion, a sufficient condition



of identifiability is that{fl}
nα

l=1 and{gl}
nβ

l=1 are orthogonal
on P and the polynomialsA, B, C, D are co-prime for
all pk ∈ P. Moreover, the notion of an informative data
set in the LPV case is not equivalent to the condition of
persistency of excitation with a given order. First of all, the
model parametersθ are related to signalsfl(pk)q−iy(tk),
gl(pk)q−ju(tk), and not only the time-shifted versions of
u and y, thus the functionsfl and gl and the scheduling
trajectoryp together also influence the estimation ofθ. More-
over, the estimation of the parameters of a LPV-FIR filter,
irrelevant to the coefficient parametrization, is not equivalent
with the estimation of a LPV-BJ model due to the non-
commutativity of multiplication byq. This means that the
terminology of persistency of excitation with ordern is ill-
defined in the LPV case. Instead, the informativity of the data
sets with respect to the assumed coefficient parametrization
and model order is needed to be satisfied in order to ensure
consistency and convergence of the estimation. However,
conditions of informative data sets have not been investigated
directly in the LPV literature.

In [3] and [21], for the case of LPV-IO ARX models with
polynomial dependence of the coefficients on the parameters,
i.e. fl(pk) = gl(pk) = pl

k, conditions for persistency of
excitation has been investigated, unknowingly addressingthe
question of informativity of the data set. In these works it
is assumed that a LPV system is a family of LTI systems
associated with each points inP. If the dependence onp
is a polynomial of ordernmax = max(nβ , nα), then the
LPV system identification can be realized by identifying at
leastnmax LTI models operating at distinct values ofP, and
use them to determine the coefficients of the polynomial
dependence based on the interpolation principle. This means
that a data setDN is informative if

• p visits at leastnmax different pointsp̄1, . . . , p̄n ∈ P.
• Each sequence ofu associated with āpl must be

persistently exciting with respect to the LTI model
corresponding tōpl.

• The number of revisits of each̄pl must be large enough
to approximate the ergodicity condition in a given
neighborhood around the considered points ofP.

However, this condition is rather conservative from a number
of viewpoints. A LPV system can be considered as a set
of LTI systems associated with each point ofP, but these
systems share a common memory so they can describe the
continuation of the signal trajectories whenp changes. This
means that in terms of the above given condition the variation
of p must be infinitely slow in order to consider these systems
to be independent LTI systems. However, ergodicity requires
basically that the number of revisits of the chosen points
must be infinite in the general case, which means that thep
should vary as fast as possible to revisit these points more
often. This concludes that the above given condition is too
conservative for practical use. In [21], an improved version
of this approach has been developed which tries to overcome
the problem of conservativeness, however as it is based on
the same principle of independent LTI system estimation, the

question whether a data set is informative in the LPV case
remains open.

E. Identification problem statement

Based on the previous considerations, the identification
problem addressed in the sequel can now be defined.

Problem 1: Given a discrete time LPV data generating
systemSo defined as (1) and a data setDN collected from
So. Based on the LPV-BJ model structureMθ defined by
(12), estimate the parameter vectorθ using DN under the
following assumptions:

A1 So ∈ M, i.e. there exits aGo ∈ G and aHo ∈ H

such that(Go,Ho) is equal toSo.
A2 In the parametrizationAρ and Bρ, {fl}

nα

l=1 and
{gl}

nβ

l=1 are chosen such that(Go,Ho) is identifi-
able for any trajectory ofp.

A3 u(tk) is not correlated toeo(tk).
A4 DN is informative with respect toM.
A5 So is uniformly frozen stable, i.e. for anȳp ∈ P, the

roots ofzna(A(p̄, z−1)) are in the unit disc [18].

III. O N THE USE OF LINEAR REGRESSION FRAMEWORK

AND STATISTICAL OPTIMALITY

All methods for LPV-IO parametric identification pro-
posed in the literature so far are based on linear regression
methods such as least squares or instrumental variables [3]
[4]. The currently accepted view in the literature is that ifthe
system belongs to the model set defined in (13), theny(tk)
can be written in the linear regression form:

y(tk) = ϕ⊤(tk)ρ + ṽ(tk) (22)

with ρ as defined in (7),

ϕ(tk) =













−y(tk)f0(pk)
...

−y(tk)fnα
(pk)

u(tk)g0(pk)
...

u(tk)gnβ
(pk)













∈ R
nρ , (23a)

y(tk) =






y(tk−1)
...

y(tk−na
)




, u(tk) =






u(tk−d)
...

u(tk−nb−d)




, (23b)

and
ṽ(tk) = A(pk, q−1, ρ)v(tk). (23c)

In this section it is shown why such a linear regression
framework cannot lead to statistically optimal (unbiased and
minimal variance) estimates when the model structure is a
LPV Box–Jenkins. Let us first introduce the adjointA† of A,
such thatχ = A†(pk, q−1, ρ)u ⇔ A(pk, q−1, ρ)χ = u. Note
that the adjoint always exits in a IRR sense with respect to an
asymptotically stableA. In the LTI case,A† = 1

A
, however,

in the LPV case,A† 6= 1
A

due to the non-commutativity of
the multiplication byq.



A. The conclusion brought in [4]

By considering (22) and the associated extended regressor
in (23a), it is well known that the LS method leads to
optimal estimate only if the noise model is ARX (ṽ(tk)
is a white noise). This condition implies thatv(tk) =
A†(pk, q−1, ρ)e(tk) and is not fulfilled in many practical
situations asvo is often not related to the process itself
and does not depend onpk. Therefore it is proposed in [4]
to use an IV method where the instrument is built using
the simulated data generated from an estimated auxiliary
ARX model. Instrumental variables have the particularity to
produce unbiased estimates if the instrument is not correlated
to the measurement noise. The algorithm proposed in [4] can
be summed up as follows:

Algorithm 1 (One-step IV method):

Step 1 Estimate an ARX model by the LS method (mini-
mizing (20)) using the extended regressor (23a).

Step 2 Generate an estimateχ̂(tk) of χ(tk) based on the
resulting ARX model of the previous step. Build
an instrument based on̂χ(tk) and then estimateρ
using the IV method.

Based on the numerical simulation given in [4], the following
conclusions have been proposed:

• In caseSo corresponds to a LPV-OE model (vo = eo),
Algorithm 1 leads to an unbiased estimate.

• The variance of the estimated parameters is much larger
than in a LS estimation process as it is well-known.

• The estimation result can be improved if one uses a
multi-step algorithm such as in [12].

B. Existing methods and optimal estimates

In the present paper, the authors only partially agree with
the conclusions stated in [4]. It is true that the results can
be improved and that the IV estimates are unbiased but this
paper claims that:

• Even by using multi-step algorithm of [12], the optimal
estimate cannot be reached with the linear regression
form (22).

• The optimal estimates can be reached for LPV-BJ
models by using IV methods and the variance in the
estimated parameters might be lower than the LS esti-
mator in given situations.

In the following part it is shown why these statements hold
true. In order to show why statistically optimal estimationof
the model (12) cannot be reached under the viewpoint (22),
it is necessary to revisit the result of optimal prediction error
in the LTI case.

1) The LTI case:In analogy with (12), consider the LTI-
BJ model as

MLTI

θ







A(q−1, ρ)χ(tk) = B(q−1, ρ)u(tk−d)

v(tk) =
C(q−1, η)

D(q−1, η)
e(tk),

y(tk) = χ(tk) + v(tk).

(24)

where A(q−1, ρ) and B(q−1, ρ) are polynomials inq−1

with constant real coefficients and have degreena and nb

respectively ande is a white noise withe(tk) ∈ N (0, σ2).
y(tk) can be written in the linear regression form:

y(tk) = ϕ⊤(tk)ρ + ṽ(tk), (25)

with

ρ =
[

a1 . . . ana
b0 . . . bnb

]⊤
∈ R

na+nb+1

ϕ =
[
y(tk−1) . . . y(tk−na

) u(tk−d) . . . u(tk−nb−d)
]⊤

and
ṽ(tk) = A(q−1, ρ)v(tk). (26)

Following the conventional PEM approach of the LTI frame-
work (which is maximum likelihood estimation because of
the normal distribution assumption one(tk)), the prediction
error εθ(tk) of (25) with respect to (24) is

εθ(tk) =
D(q−1, η)

C(q−1, η)A(q−1, ρ)

(

A(q−1, ρ)y(tk)

− B(q−1, ρ)u(tk)
)

, (27)

where the filterD(q−1, η)/C(q−1, η) can be recognized
as the inverse of the ARMA(nc,nd) noise model in (24).
The polynomial operators commute and thereforeεθ(tk) is
equivalent to the error functionε∗(tk) defined as:

ε∗(tk) = A(pk, q−1, ρ)yf(tk) − B(pk, q−1, ρ)uf(tk), (28)

whereyf = Q(q−1, θ)y and uf = Q(q−1, θ)u represent the
outputs of the prefiltering operation with

Q(q−1, θ) =
D(q−1, η)

C(q−1, η)A(q−1, ρ)
. (29)

Therefore (25) is equivalent to:

yf(tk) = ϕ⊤
f (tk)ρ + ṽf(tk) (30)

with
ṽf(tk) = A(q−1, ρ)vf(tk) = e(tk). (31)

In other words, if the optimal filter (29) is knowna priori,
it is possible to filter the data such that the estimation
problem is reduced to the maximum likelihood estimation.
This implies that a simple LS algorithm applied to the data
prefiltered with (29) leads to the statistically optimal estimate
under minor conditions.

2) The LPV case:Following the above introduced PEM
approach in the LPV case (which is again maximum likeli-
hood estimation because of the normal distribution assump-
tion one(tk)), the prediction errorεθ(tk) of (22) with respect
to (12) is

εθ(tk) =
D(q−1, η)

C(q−1, η)
A†(pk, q−1, ρ)

(

A(pk, q−1, ρ)y(tk)

− B(pk, q−1, ρ)u(tk)
)

(32)

whereD(q−1, η)/C(q−1, η) can be again recognized as the
inverse of the ARMA(nc,nd) noise model of (12).

In opposition to the LTI case, the polynomial operators
do not commute in the LPV case as it has been shown in



Section II-C. Hence, no filter can be chosen such that both
conditions

A(pk, q−1, ρ)yf(tk)= D(q−1,η)
C(q−1,η)A

†(pk, q−1, ρ)A(pk, q−1, ρ)y(tk)

B(pk, q−1, ρ)uf(tk)= D(q−1,η)
C(q−1,η)A

†(pk, q−1, ρ)B(pk, q−1, ρ)u(tk)

are fulfilled simultaneously. Consequently, no filtering ofthe
data can lead to a regression equation

yf(tk) = ϕ⊤
f (tk)ρ + ṽf(tk) (33)

which is equivalent to (22) and wherẽvf is white. In other
words, by choosingϕ such as in (23a) and therefore by
assuming (22) (as in [3] and [4]) it is not possible to
transform the estimation problem of (12) into a maximum
likelihood estimation problem. The latter implies that no
method proposed so far in the literature for solving the
estimation of LPV-IO models or LTI-IO models can lead
to optimal estimate in the LPV-BJ case by assuming the
regression form (22). As a consequence, the existing theory
needs to be modified in order to solve the identification
problem stated in Section II-E.

C. Reformulation of the model equations

In order to introduce a method which provides a solution
to the identification problem of LPV-BJ models, rewrite the
signal relations of (12) as

Mθ







χ(tk) +

na∑

i=1

ai,0χ(tk−i)

︸ ︷︷ ︸

F (q−1)χ(tk)

+

na∑

i=1

nα∑

l=1

ai,lfl(pk)χ(tk−i)
︸ ︷︷ ︸

χi,l(tk)

=

nb∑

j=0

nβ∑

l=0

bj,lgl(pk)u(tk−d−j
︸ ︷︷ ︸

)

uj,l(tk)

v(tk)=
C(q−1, η)

D(q−1, η)
e(tk)

y(tk)=χ(tk) + v(tk)
(34)

whereF (q−1) = 1 +
∑na

i=1 ai,0q
−i. Note that in this way

the LPV-BJ model is rewritten as aMultiple-Input Single-
Output(MISO) system with(nb +1)(nβ +1)+nanα inputs
{χi,l}

na,nα

i=1,l=1 and {uj,l}
nb,nβ

j=0,l=0 as represented in Fig. 1.
Given the fact that the polynomial operator commutes in this
representation (F (q−1) does not depend onpk), (34) can be
rewritten as

y(tk) = −
na∑

i=1

nα∑

l=1

ai,l

F (q−1)
χi,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,l

F (q−1)
uk,j(tk) + H(q)e(tk), (35)

which is a LTI representation. As (35) is an equivalent form
of the model (12), thus under the Assumption A1, it holds
that the data generating systemSo has also a MISO-LTI
interpretation.

IV. REFINED INSTRUMENTAL VARIABLE FOR LPV
SYSTEMS

Based on the MISO-LTI formulation (35), it becomes
possible to achieve optimal PEM using linear regression and
to extend theRefined Instrumental Variable(RIV) approach
of the LTI identification framework to provide an efficient
way of identifying LPV-BJ models.

A. Optimal PEM for LPV-BJ models

Using (35),y(tk) can be written in the regression form:

y(tk) = ϕ⊤(tk)ρ + ṽ(tk) (36)

where,

ϕ(tk)=
[
−y(tk−1) . . . −y(tk−na

) −χ1,1(tk) . . .

−χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

ρ=
[
a1,0 . . . ana,0 a1,1 . . . ana,nα

b0,0 . . . bnb,nβ

]⊤

and
ṽ(tk) = F (q−1, ρ)v(tk). (37)

It is important to notice that (36) and (22) are not equivalent.
The extended regressor in (36) contains the noise-free output
terms{χi,k}. By following the conventional PEM approach
on (36), the prediction errorεθ(tk) is given as:

εθ(tk) =
D(q−1, η)

C(q−1, η)F (q−1, ρ)

(

F (q−1, ρ)y(tk)−

−
na∑

i=1

nα∑

l=1

ai,lχi,l(tk) +

nb∑

j=0

nb∑

l=0

bj,luk,j(tk)

)

(38)

whereD(q−1, η)/C(q−1, η) can be recognized again as the
inverse of the ARMA(nc,nd) noise model in (12). However,
since the system written as in (35) is equivalent to a LTI
system, the polynomial operators commute and (38) can be
considered in the alternative form

εθ(tk) = F (q−1, ρ)yf(tk) −
na∑

i=1

nα∑

l=1

ai,lχ
f
i,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,lu
f
k,j(tk) (39)

whereyf(tk), uf
k,j(tk) andχf

i,l(tk) represent the outputs of
the prefiltering operation, using the filter (see [24]):

Q(q−1, θ) =
D(q−1, η)

C(q−1, η)F (q−1, ρ)
. (40)

Based on (39), the associated linear-in-the-parameters model
takes the form [24]:

yf(tk) = ϕ⊤
f (tk)ρ + ṽf(tk), (41)

where

ϕf(tk)=
[
−yf(tk−1) . . . −yf(tk−na

) −χf
1,1(tk) . . .

−χf
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)

]⊤

and
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Fig. 1. MISO LTI interpretation of the LPV-BJ model

ṽf(tk) = F (q−1, ρ)vf(tk) =

F (q−1, ρ)
D(q−1, η)

C(q−1, η)F (q−1, ρ)
v(tk) = e(tk). (42)

B. The refined instrumental variable estimate

Many methods of the LTI identification framework can
be used to provide an efficient estimate ofρ given (41)
whereṽf(tk) is a white noise. Here, the refined instrumental
variable method is chosen for the following reasons:

• RIV methods lead to optimal estimates ifSo ∈ M, see
[16]. This statement is true as well for usual prediction
error methods such as the extended LS approach.

• In practical situation of identification,Go ∈ G might
be fulfilled due to first principle or expert’s knowledge.
However, it is commonly fair to assume thatHo /∈ H.
In such case, RIV methods has the advantage that they
still provide consistent estimates whereas methods such
as extended LS are biased and more advanced PEM
methods needs robust initialization [13].

Aiming at the application of the RIV approach for the esti-
mation of LPV-BJ models, consider the relationship between
the process input and output signals as in (36). Based on this
form, the extended-IV estimate can be given as [16]:

ρ̂XIV(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

L(q)ζ(tk)L(q)ϕ⊤(tk)

]

−

[

1

N

N∑

t=1

L(q)ζ(tk)L(q)y(tk)

]∥
∥
∥
∥
∥

2

W

, (43)

whereζ(tk) is the instrumental vector,‖x‖2
W = xT Wx, with

W a positive definite weighting matrix andL(q) is a stable
prefilter. if Go ∈ G, the extended-IV estimate is consistent
under the following conditions1:

C1 Ē{L(q)ζ(tk)L(q)ϕ⊤(tk)} is full column rank.

1The notationĒ{.} = limN→∞

1

N

PN
t=1

E{.} is adopted from the
prediction error framework of [12].

C2 Ē{L(q)ζ(tk)L(q)ṽ(tk)} = 0.

Moreover it has been shown in [16] and [22] that the
minimum variance estimator can be achieved if:

C3 W = I.
C4 ζ is chosen as the noise-free version of the extended

regressor in (36) and is therefore defined in the
present LPV case as:

ζ(tk)=
[
−χ(tk−1) . . . −χ(tk−na

) −χ1,1(tk) . . .

−χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

C5 Go ∈ G and nρ is equal to the minimal number
of parameters required to representGo with the
considered model structure.

C6 L(q) is chosen as in (40).

C. Remarks on the use of the RIV approach

• Full column rank ofĒ{L(q)ϕ(tk)L(q)ϕ⊤(tk)} follows
under Assumption A4 [3]. To fulfill C1 under A4, the
discussion can be found in [16].

• C5 cannot be satisfied if the data generating LPV system
So is quasi, i.e.pk is correlated tou(tk) or y(tk), and
So can be described as a Hammerstein or Wiener model
[11].

• In a practical situation none of F (q−1, ρ),
{ai,l(ρ)}na,nα

i=1,l=0, {bj,l(ρ)}
nb,nβ

j=0,l=0, C(q−1, η), D(q−1, η)
is known a priori. Therefore, the RIV estimation
normally involves an iterative (or relaxation) algorithm
in which, at each iteration, an ‘auxiliary model’ is
used to generate the instrumental variables (which
guarantees C2), as well as the associated prefilters. This
auxiliary model is based on the parameter estimates
obtained at the previous iteration. Consequently, if
convergence occurs, C4 and C6 are fulfilled. It is
important to note that convergence of the iterative RIV
has not been proved so far and is only empirically
assumed [23].



D. Iterative LPV-RIV Algorithm

Based on the previous considerations, the iterative scheme
of the RIV algorithm can be extended to the LPV case as
follows.

Algorithm 2 (Optimal LPV-RIV):

Step 1 Assume that as an initialization, an ARX estimate
of Mθ is available by the LS approach, i.e.θ̂(0) =
[ (ρ̂(0))⊤ (η̂(0))⊤ ]⊤ is given. Setτ = 0.

Step 2 Compute an estimate ofχ(tk) by simulating the
auxiliary model:

A(pk, q−1, ρ̂(τ))χ̂(tk) = B(pk, q−1, ρ̂(τ))u(tk−d)

based on the estimated parameterŝρ(τ) of
the previous iteration. Deduce the output terms
{χ̂i,l(tk)}

na,nα

i=1,l=0 as given in (34) and using the
modelM

θ̂(τ) .

Step 3 Compute the estimated filter:

Q̂(q−1, θ̂(τ)) =
D(q−1, η̂(τ))

C(q−1, η̂(τ))F (q−1, ρ̂(τ))

and the associated filtered signals
{uf

j,l(tk)}
nb,nβ

j=0,l=0, yf(tk) and{χf
i,l(tk)}na,nα

i=1,l=0.

Step 4 Build the filtered estimated regressorϕ̂f(tk) and in
terms of C4 the filtered instrument̂ζf(tk) as:

ϕ̂f(tk)=
[
−yf(tk−1) . . . −yf(tk−na

) −χ̂f
1,1(tk)

. . . −χ̂f
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)

]⊤

ζ̂f(tk)=
[
−χ̂f(tk−1) . . . −χ̂f(tk−na

) −χ̂f
1,1(tk)

. . . −χ̂f
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)

]⊤

Step 5 The IV optimization problem can now be stated in
the form

ρ̂(τ+1)(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

ζ̂f(tk)ϕ̂⊤
f (tk)

]

ρ

−

[

1

N

N∑

k=1

ζ̂f(tk)yf(tk)

]∥
∥
∥
∥
∥

2

(44)

This results in the solution of the IV estimation
equations:

ρ̂(τ+1)(N)=

[
N∑

k=1

ζ̂f(tk)ϕ̂⊤
f (tk)

]−1
N∑

k=1

ζ̂f(tk)yf(tk)

whereρ̂(τ+1)(N) is the IV estimate of the process
model associated parameter vector at iterationτ +1
based on the prefiltered input/output data.

Step 6 An estimate of the noise signalv is obtained as

v̂(tk) = y(tk) − χ̂(tk, ρ̂(τ)). (45)

Based onv̂, the estimation of the noise model
parameter vector̂η(τ+1) follows, using in this case
the ARMA estimation algorithm of theMATLAB
identification toolbox (an IV approach can also be
used for this purpose, see [23]).

Step 7 If θ(τ+1) has converged or the maximum number
of iterations is reached, then stop, else increaseτ
by 1 and go to Step 2.

Based on a similar concept, a statistically optimal method,
the so-calledsimplified LPV-RIV (LPV-SRIV), can also
be developed for the estimation of LPV-OE models. This
method is based on a model structure (12) withC(q−1, η) =
D(q−1, η) = 1 and consequently, Step 6 of Algorithm 2
can be skipped. Naturally, the LPV-SRIV is not statistically
optimal for LPV-BJ models, however it still has a certain
degree of robustness as it is shown in Section V.

V. SIMULATION EXAMPLE

As a next step, the performance of the proposed and of
the existing methods in the literature are compared based
on a representative simulation example. The robustness with
respect to noise and modeling error is investigated as well.

A. Data generating system

The system taken into consideration is inspired by the
example in [4] and is mathematically described as follows:

So







Ao(q, pk) = 1 + ao
1(pk)q−1 + ao

2(pk)q−2

Bo(q, pk) = bo
0(pk)q−1 + bo

1(pk)q−2

Ho(q) =
1

1 − q−1 + 0.2q−2

(46)

wherev(tk) = Ho(q)e(tk) and

ao
1(pk) = 1 − 0.5pk − 0.1p2

k (47a)

ao
2(pk) = 0.5 − 0.7pk − 0.1p2

k (47b)

bo
0(pk) = 0.5 − 0.4pk + 0.01p2

k (47c)

bo
1(pk) = 0.2 − 0.3pk − 0.02p2

k (47d)

In the upcoming examples, the scheduling signalp is con-
sidered as a periodic function of time:

pk = 0.5 sin(0.35πk) + 0.5, (48)

andu(tk) is taken as a white noise with a uniform distribu-
tion U(−1, 1) and with lengthN = 4000 to generate data
setsDN of So.

B. Model structures

In the sequel, the instrumental variable method presented
in [4] named hereOne Step Instrumental Variable(OSIV)
and the conventionalLeast Square(LS) method such as the
one used in [3] are compared to the proposed methods. Both
methods assume the following model structure:

MLS,OSIV
θ







A(pk, q−1, ρ)=1+a1(pk)q−1+a2(pk)q−2

B(pk, q−1, ρ)=b0(pk)q−1+ b1(pk)q−2

H(pk, q, ρ)=A†(pk, q−1, ρ)

where
a1(pk) = a1,0 + a1,1pk + a1,2p

2
k (49a)

a2(pk) = a2,0 + a2,1pk + a2,2p
2
k (49b)

b0(pk) = b0,0 + b0,1pk + b0,2p
2
k (49c)

b1(pk) = b1,0 + b1,1pk + b1,2p
2
k (49d)



In contrast with these model structures, the proposed LPV
Refined Instrumental Variablemethod (LPV-RIV) represents
the situationSo ∈ M and assumes the following LPV-BJ
model:

MLPV−RIV

θ







A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, η) =
1

1 + d1q−1 + d2q−2

with a1(pk), a2(pk), b0(pk), b1(pk) as given in (49a-d),
while the LPV Simplified Refined Instrumental Variable
method (LPV-SRIV) represents the case whenGo ∈ G,
Ho /∈ H and assumes the following LPV-OE model:

MLPV−SRIV

θ







A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, η) = 1

C. Example 1: Robustness to noise

In this part, the robustness of the proposed and existing
algorithms are investigated with respect to differentsignal-
to-noise ratios(SNR)

SNR = 10 log
Pχo

Peo

, (50)

wherePχo
andPeo

are the average power of signalsχo and
eo respectively. To provide representative results, a Monte-
Carlo simulation ofNMC = 100 runs with new noise
realization is accomplished at different noise levels:15dB,
10dB, 5dB and0dB. An example of input/output signals at
SNR = 0dB is shown in Figure 2.

With respect to the considered methods, Table I shows the
norm of the bias and variance of the estimated parameter
vector:

Bias norm= ||ρo − Ē(ρ̂)||2 (51a)

Variance norm= ||Ē(ρ̂ − Ē(ρ̂))||2 (51b)

where Ē is the mean operator over the Monte-Carlo simu-
lation and||.||2 is theL2 norm. The table also displays the
mean number of iterations the algorithms needed to converge
to the estimated parameter vector.

For the Monte-Carlo simulation atSNR = 15dB, Table II
and III show the detailed results about mean and standard
deviation of the estimated parameters. In some practical
application, only one realization is accessible and therefore
it is not possible to compute the uncertainty throughMonte-
Carlo simulation(MCS). In this latter case it is important to
be able to determine thestandard error(SE) on the estimated
parameters with asingle realization (SR). Therefore the
results of SR are also given in these tables. Note that
it is possible to compute the SR standard error from the
covariance matrix defined as [23]

P̂ρ = σ̂2
e

[
N∑

k=1

ζ̂f(tk)ζ̂⊤f (tk)

]−1

(52)

by using the relation

SE=

√

diag(P̂ρ). (53)
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Fig. 2. I/O signals atSNR = 0dB

It can be seen from Table I that the IV methods are
unbiased according to the theoretical results. It might not
appear clearly for theOSIV method when using SNR under
10dB but considering the variances induced, the bias is only
due to the relatively low number of simulation runs. Under
10dB, the results of theOSIV cannot be considered as
relevant as they induce such large values. In the present BJ
system, theOSIV method does not lead to satisfying results
and cannot be used in practical applications. It can be seen
that for SNR down to5dB, the optimalLPV-RIV produces
variance in the estimated parameters which are very close to
the one obtained with theLS method, not mentioning that
the bias has been completely suppressed. The suboptimal
LPV-SRIV methods offers satisfying results, considering
that the noise model is not correctly assumed. The variance in
the estimated parameters is twice as much as in the optimal
LPV-RIV case and it is in close range to the variance of the
LS method. Finally, it can be pointed out that the number
of iterations is high in comparison to the linear case for
RIV methods (typically, 4 iterations are needed in a second
order linear case). Table II and III shows that detailed results
lead to the same conclusion as when looking at Table I.
It can be finally seen from III that the optimalLPV-RIV
method estimates accurately the noise model and that the
standard error obtained from a single realization is well
correlated to the standard deviation obtained through Monte-
Carlo simulation.

D. Example 2: Robustness to modeling error

All the tests realized in the previous section has been
achieved in the case whenGo ∈ G. This assumption is
fair for linear systems as most process can be derived from
first principle laws. In nonlinear systems however, the non-
linearity and therefore the scheduling parameter dependence
is often an approximation of the real function. Therefore itis
relevant to investigate the case whenGo /∈ G. However, it is
not possible in this case to compare the estimated parameters
to the true parameters. Consequently, the authors choose to



TABLE I

ESTIMATOR BIAS AND VARIANCE NORM AT DIFFERENT SNR

Method 15dB 10dB 5dB 0dB
LS Bias norm 2.9107 3.2897 3.0007 2.8050

Variance norm 0.0074 0.0151 0.0215 0.0326

OSIV Bias norm 0.1961 1.8265 6.9337 10.8586
Variance norm 1.3353 179.4287 590.7869 11782

LPV-SRIV Bias norm 0.0072 0.0426 0.1775 0.2988
Variance norm 0.0149 0.0537 0.4425 0.4781

mean iteration number 22 22 25 30

LPV-RIV Bias norm 0.0068 0.0184 0.0408 0.1649
Variance norm 0.0063 0.0219 0.0696 0.2214

mean iteration number 31 30 30 32

TABLE II

MEAN AND STANDARD DEVIATION OF THE ESTIMATED A POLYNOMIAL PARAMETERS AT SNR = 15DB

a1,0 a1,1 a1,2 a2,0 a2,1 a2,2

method true value 1 -0.5 -0.1 0.5 -0.7 -0.1
LS mean -0.3794 2.2373 -2.0584 -0.1085 -0.0755 -0.4786

std 0.0219 0.0663 0.0591 0.0125 0.0600 0.0558

OSIV mean 1.0259 -0.6161 0.0205 0.5092 -0.7510 -0.0377
std 0.3023 1.0330 0.8605 0.1227 0.4348 0.3986

LPV-SRIV mean 1.0003 -0.5013 -0.0971 0.5007 -0.7047 -0.0943
MCS std 0.0313 0.1022 0.0893 0.0106 0.0650 0.074

LPV-SRIV ρ̂ 0.9801 -0.3743 -0.2120 0.4978 -0.7154 -0.0736
SR SE 0.0377 0.1567 0.1486 0.0171 0.1010 0.1099

LPV-RIV mean 0.9999 -0.5020 -0.0989 0.5005 -0.7050 -0.0962
MCS std 0.0170 0.0589 0.0610 0.0084 0.0488 0.0523

LPV-RIV ρ̂ 0.9947 -0.5053 -0.0506 0.4981 -0.7303 -0.0350
SR SE 0.0120 0.0479 0.0435 0.0050 0.0330 0.0368

TABLE III

MEAN AND STANDARD DEVIATION OF THE ESTIMATED B AND D POLYNOMIAL PARAMETERS AT SNR = 15DB

b0,0 b0,1 b0,2 b1,0 b1,2 b2,2 d1 d2

method true value 0.5 -0.4 0.01 0.2 -0.3 -0.02 -1 0.2
LS mean 0.5043 -0.4045 0.0085 -0.3201 0.7890 -0.7335 X X

std 0.0039 0.0233 0.0219 0.0097 0.0284 0.0238 X X

OSIV mean 0.4986 -0.3991 0.0110 0.2096 -0.3409 0.0181 X X
std 0.0115 0.0564 0.0503 0.1151 0.3731 0.2922 X X

LPV-SRIV mean 0.4996 -0.3998 0.0101 0.1997 -0.3004 -0.0190 X X
MCS std 0.0038 0.0183 0.0171 0.0104 0.0367 0.0300 X X

LPV-SRIV ρ̂ 0.4998 -0.3783 -0.0108 0.1996 -0.2885 -0.0273 X X
SR SE 0.0044 0.0221 0.0216 0.0138 0.0561 0.0493 X X

LPV-RIV mean 0.4998 -0.3993 0.0092 0.1998 -0.3008 -0.0194 -1.003 0.2042
MCS std 0.0020 0.0106 0.0106 0.0055 0.0228 0.0214 0.0171 0.0172

LPV-RIV ρ̂ 0.5020 -0.4142 0.0245 0.1971 -0.2889 -0.0219 X X
SR SE 0.0016 0.0075 0.0072 0.0042 0.0165 0.0141 X X



expose the fitness score [13]

fit = 100% ·

(

1 −
||χ̂(tk) − χo(tk)||2

||χo(tk) − Ē(χo(tk))||2

)

(54)

between the noise-free outputχo(t) and the outputχ̂(t)
simulated using the identified model.

The fitness score is100% if the simulated output coincides
exactly to the noise-free output. If the score equals0% the
estimated output fits the noise-free output as good as its mean
value. A score under−100% is set to−100. The minimum,
maximum and mean value of the fitness score for different
approaches are displayed in Table IV (SNR = 10dB) and
Table V (SNR = 0dB) for a Monte-Carlo simulation of20
runs. The right model for the presented system isna = 2,
nb = 2, nc = 0, nd = 2, nα = 2 and nβ = 2 denoted
as [na nb nc nd nα nβ ] = [220222]. For example the model
[210101] corresponds to

M210101







A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2,

B(pk, q−1, ρ) = b0(pk)q−1,

H(pk, q, η) =
1

1 + d1q−1
,

with

a1(pk) = a1,0, a2(pk) = a2,0, b0(pk) = b0,0 + b0,1pk.

Table IV and Table V show that theLS method fails to
correctly fit the output. AtSNR = 0dB, the LS method gives
very poor fitting score. Table IV shows that at10dB, even
if the OSIV estimator is not efficient, it can compete with
the LPV-RIV estimator in some runs but the values of the
fitting score are more sparse. Table V shows that theOSIV
estimator cannot be used reliably. It can be noticed that in
all simulations, the best fitting score of theOSIV estimated
model is less than the average fitting score of theLPV-RIV
estimated model. TheLPV-RIV estimator seems to be the
less affected by strong noise and is reliable even for strong
modeling error (model[110011]) and atSNR = 0dB (see
Figure 3).

VI. CONCLUSION

This paper highlighted the lack of efficient methods in
the literature to handle the estimation of LPV Box-Jenkins
models. It has been shown that the conventional formulation
of least squares estimation cannot lead to statistically optimal
parameter estimates. As a solution, the LPV identification
problem is reformulated and a method to estimate efficiently
LPV-BJ models was proposed. The introduced method has
been compared to the existing methods of the literature
both in terms of theoretical analysis and in terms of a
representative numerical example. The presented example
has shown that the proposed procedure is robust to noise
and modeling error and outperforms the existing methods.
As continuation of the presented work, extensions of the
method to closed-loop and continuous-time LPV system
identification are intended.
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TABLE IV

MODELING ERRORMONTE-CARLO SIMULATION WITH SNR = 10DB

Model parameters LS OSIV LPV-RIV
na nb nc nd nα nβ min(fit) max(fit) mean(fit) min(fit) max(fit) mean(fit) min(fit) max(fit) mean(fit)
2 2 0 2 2 2 60.2268 63.631 61.8351 19.0787 95.5119 80.9420 98.2614 99.2459 98.7147
2 2 0 0 1 1 61.2401 63.8981 62.7319 -1.8039 97.1807 86.3854 72.4847 99.1952 97.2106
1 1 0 2 2 2 47.7804 52.058 50.4318 74.9416 78.1466 76.4985 79.2946 79.6643 79.549
1 1 0 0 1 1 47.5383 52.6303 50.0925 71.5279 76.8744 74.8501 78.3167 78.6013 78.5231

TABLE V

MODELING ERRORMONTE-CARLO SIMULATION WITH SNR = 0DB

Model parameters LS OSIV LPV-RIV
na nb nc nd nα nβ min(fit) max(fit) mean(fit) min(fit) max(fit) mean(fit) min(fit) max(fit) mean(fit)
2 2 0 2 2 2 28.2972 35.866 32.9784 -28.3212 84.5957 62.4347 93.4777 97.5705 95.9271
2 2 0 0 1 1 33.0264 41.1713 36.1755 -100 83.4528 34.4322 48.6399 97.7966 87.4178
1 1 0 2 2 2 1.6346 6.818 4.5074 -100 73.4932 14.8833 22.5242 79.4046 75.8615
1 1 0 0 1 1 1.1722 6.0193 4.2104 -100 75.2366 28.2461 42.8853 79.244 71.9069
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Fig. 3. Noise-free output, noisy output and simulated outputfor model [110011] identified withLPV-RIV (SNR = 0dB and fit= 79%)
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