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Abstract— Identification of Linear Parameter-Varying (LPV) is much better understood for such models, for example
systems in an Input-Output (I0) setting is investigated, focusing  via the Prediction-Error (PE) setting, than for other model
on the case when the noise part of the data generating system is g ctures. Often an important advantage of 10 models is
an additive colored noise. In the Box-Jenkins (BJ) and Output- . . . .

Error (OE) cases, it is shown that the currently available linear .that they Can be directly derived from_phys'C/Chem'Cal laws
regression and Instrumental Variable (|V) methods from the in their continuous form. Therefore, it is more natural to

literature are not optimal in terms of bias and variance of express a given physical system through an IO operator form
the estimates. To overcome the underlying problems, a statis- or transfer function modeling. A comparison between 10 and

tically optimal Refined Instrumental Variable (RIV) method is g5 models based approaches can be found in [17] for linear
introduced. The proposed approach is compared to the existing

methods via a representative simulation example. systems. . . o
Among the available identification approaches of IO mod-
. INTRODUCTION els, the interest fonstrumental Variablg1V) methods has

- een growing in the last years. The main reason of this in-
The common need for accurate and efficient control o A . i
. . o . - ., _creasing interest is that IV methods offer similar perfoncea
today’s industrial applications is driving the system iden

as extended.east SquaréLS) methods or othePrediction

tification field to face.the constant challenge of prowdmgEgor Minimization (PEM) methods (see [15], [13]) and
better models of physical phenomena. Systems encountere

: . . . . rovide consistent results even for an imperfect noisecstru
in practice are often nonlinear or have time-varying natur o . . S

. . . . . fure which is the case in most practical applications. These
Dealing with models of such kind without any structure is

. . . : Lo approaches have been used in many different frameworks
often found infeasible in practice. This rises the need for : . ) .

. : . such as direct continuous-time [15], [10], nonlinear [11]
system descriptions that form an intermediate step betweén

) ! . . . or closed-loop identification [9], [8] and lead to optimal
Linear Time-Invariant (LTl) systems and nonlinear/time- ~ . ; !
. . X estimates if the system belongs to the model set defined.
varying plants. To cope with these expectations, the modé
. ) : In the LPV case, most of the methods developed for
class ofLinear Parameter-VaryindLPV) systems provides ; e . .
IO models based identification are derived under a linear

an attractive candidate. In LPV systems the signal relat|onregreSSion form [21], [2], [1]. By using the concepts of

are considered to be linear just as in the LTI case, but tqﬁe LTI PE framework, recursive LS and IV methods have
parameters are assumed to be functions of a measurable time '

varying signal, the so-callescheduling variabley : Z — P €en also introduced [7], [4]. However, it has been c_)nly
The compact,se]P’ C R™ denotes thscheduliﬁg spaée recently uqder;tood how a PE framework can be established
The LPV system class has a wide representation capabil'ftor the estimation of general LPV models [18]. Due to the

. . . lIlﬁear regressor based estimation, the usual model stauctu
of physical processes and this framework is also supportc?n existing methods is assumed to hato regressive with
by a well worked out and industrially reputed control theory

Despite the advances of the LPV control field, identificatior?\)/(or%eer:ﬁgj ';g:(ﬁség' ri\cl:g?\tllf ain?ggjzaet(ft;ﬁal[% Ofg:'rrl];lv
of such systems is not well developed. y

The existing LPV identification approaches are aImos(t)Utput Error (OE.) models, no _met_hod has_ b_een prop_osed
. so far to deal with colored noise in a statistically optimal

exclusively formulated in discrete-time, commonly assugni . L . i
. . way. Moreover, it can be shown that it is generally impos
static depenq ence on the scheduling paramete_r (depgndenl e to reach statistically optimal estimates by usingdin
only on the Instantaneous val_ue of the scheduling vanableﬁ gression as presented so far in the literature. Thesey,impl
2{; S;{L ?e/ irseeg:ﬁmd)tl_gﬁriizleg)z e[<21] b?gih?zt{]ng tle‘PSV ;T:Zd at there is lack of an LPV identification approach, which is
P P b . P capable of statistically optimal estimation of LPV-IO migle
(SS) [14], [20], [5] orOrthogonal Basis FunctionfOBFs) under colored noise conditions, e.g. as iBa-JenkingBJ)

based models [19.] (see [18] for an overview of exIStln%etting, which is the case in many practical applications.
methods). In the field of system identification, IO models By aiming at fulfiling this gap, an optimal estimation

are widely used as the stochastic meaning of esnmatlorﬂethod is developed in this paper for LPV-I0 BJ discrete-
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is introduced pointing out the main difficulties presentedwhere C,(¢~') and D,(¢~') are monic polynomials with
In Section Ill, linear regression in the LPV prediction erro constant coefficients and with respective degigeand nq.
framework is analyzed and it is shown that such an estimatidfurthermore, all roots of*¢ D, (2~1) are inside the unit disc.
scheme even in a IV setting is statistically not optimal ifit can be noticed that in casg,(¢~!) = Do(¢7!) =1, (4)
the noise is not white. Moreover, a reformulation of thelefines an OE noise model.

dynamical description of LPV data generating plants i
the considered setting is introduced which makes possibleé
the extension of LTI-IV methods to the LPV framework. Nextwe introduce a discrete-time LPV Box-Jenkins (BJ)
In Section IV, statistically optimal LPV-IV methods are type of model structure that we propose for the identificatio
introduced and analyzed, while their performance increasd the data-generating system (1) with noise model (4). In
compared to other methods is shown in Section V. Finall{he Proposed model structure the noise model and the process
in Section VI, the main conclusions of the paper are drawfiodel is parameterized separately.

and directions of future research are indicated. 1) Process modelThe process model is denoted by
and defined in a form of a LPV-IO representation:
[l. PROBLEM DESCRIPTION

. -1 -1 _
A. System deSCfiption gp . (A(pk7q >p)7B(pk7q 7p)> - (Ame) (5)

Consider the data generating LPV system described by tMd1ere thep-dependent polynomiald and B are parameter-

Model considered

following equations: ized as
Ao(Pr: 4™ )Xo (tk) = Bo(Pr, ¢~ Hulti—a) W Apryatp) =1+ ailpr)a ™,
y(tk) = Xo(tk) =+ vo(tk) -Ap - i=1
whered is the delay,y, is the noise-free output, is the ai(pr) = aio+ Y _aiifilps) i=1,...,n,
input, v, is the additive noise with bounded spectral density, =1
y is the noisy output of the system andis the time- B I b b »
shift operator, i.e.q u(ty) = u(tp_;). Ao(pr,q~') and (Pr.a™",p) _Z i (Pr)a ™
Bo(pr,q~ ") are polynomials ing~! of degreen, and ny, B, 5;0
respectively: bj(pk) = bjo + Z bjigi(pr) J=0,...,n
) na ) 1=1
Ao(pr g™ ) =1+ Zai (P)g™, (23) | this parametrization{ f;};*, and {g;},”, are meromor-
i=1 . . . L .
- phic functions ofp, with static dependence, allowing the
Bo(pr g Y) = 2 (p1)g ", (2b) identifiability of the model (pa}lrW|se orthogonal funct®n
( ) ;J i () on P for example). The associated model parameteese

- . stacked columnwise in the parameter vector,
where the coefficientsz; and b; are real meromorphic

functions, e.g. rational functions, with static dependenan p=[a ... a, by ... by, ]T eR™, (7)
p. It is assumed that these coefficients are non-singular o

P, thus the solutions of, are well-defined and the processW ere —

part is completely characterized by the coefficient fumio 8 = [ a0 Qi1 - Ging ] € R

{ag}iz, and {b9}72,. bj=[bjo b1 ... bjn, | €R™H

Most of existing methods in the literature assume an AR d
type of data generating system, which means that the noiée:
processy, can be written as

n, = Na(ne + 1) + (np + 1)(ng + 1). Introduce also
{G, | p € R"}, as the collection of all process models
in the form of (5).

eo(tr) = Ao(prsq V)vo(ts), (3) 2) Noise model:The noise model is denoted ¥ and

) ) ) ) ) defined as a LTI transfer function:
where ¢, is a zero-mean, discrete-time white noise pro-

cess with a normal distribution/ (0, 02), whereo? is the Hy : (H(g,m)) (8)
variance. This assumption is unrealistic in most practice‘l’l,hereH is a monic rational function given in the form of
applications as it assumes that both the noise and the groces

part of S, contain the same dynamics. Often the colored H(g,n) = Cla~t,n) _ 1 teog e g . (9)
noise associated with the sampled output measuregtept ’ D(g=Y,m) 1+dig7t+... +dp,q™

has a rational spectral density which has no dependence PRe associated model parametgrare stacked columnwise
p- Therefore, it is a more realistic assumption thatis i the parameter vector,

represented by a discrete-tiraatoregressive moving average T

(ARMA) model: n=[eca ... ¢ di ... dn, ] €R™, (10)

Colqg™1) ; 4 wheren,, = n. + nq. Additionally, denotel = {H,, | n €
Do(qfl)e‘)( &) ) R™}, the collection of all noise models in the form of (8).

vo(tr) = Ho(q)eo(tr) =



3) Whole model:With respect to a given process andin case the noise model is not dependentpotike in (4),
noise part(G,, H,), the parameters can be collected as  (H,(q) o p)(tx) = Cola") ang (HI(q) op)(ty) = Do(a”)

. Do(q~1) h Co(q™ 1)
p With respect to a pglrameterlzed model structureq, we can
0= [ " } ) (11)  define theone-step ahead prediction erras
and the signal relations of the LPV-BJ model, denoted in the eo(ty) = y(tr) — 9(te | th—1), (18)
sequel asMy, are defined as:
where
A(pe,q™, p)x(te) = B(pr, q~ ", p)u(te—a) X :
Clq,n) It [ te—1) = ((H'(q,0)G(q,0)) o p) (tx) ults)

Me v(tk): D e(tk) (12)

(¢=1,m) +((1 = H'(q,0)) op) (te) y(tr) (19)
y(te) =x(tr) + v(tr) with G(q,0) and H(q, 0) the IRR’s of the process and noise
Based on the previously defined model structure, the modgart respectively. Denot®y = {y(tx), u(ts), p(tr) -,
set, denoted ad(, with process,) and noise t/,,) models a data sequence &,. Then to provide an estimate of
parameterized independently, takes the form based on the minimization afy, an identification criterion
M{(G, Hy) | col(p,m) =0 €R™ ™M)} (13) W (D, 0) can be introduced, like thHeast squaresriterion

This set corresponds to the set of candidate models in which
we seek the model that explains data gathered f&nthe

N
1
W(Dy.0) = & ;ezw, (20)
best, under a given identification criterion (cost function

such that the parameter estimate is

C. Predictors and prediction error
Oy =arg min W(Dy,9). (21)

Similar to the LTI case, in the LPV prediction er- 9eR™ P+
ror framework, one is concerned about finding a mod
in a given LPV model structuréM, which minimizes
the statistical mean of the squared prediction error based!n order to estimate an adequate model in a given model
on past samples ofy,u,p). However in the LPV case, Set, most PEM algorlthm_s like least squares or mst_rumental
no transfer function representation of systems is avaikariables methods require that persistency of excitation
able. Furthermore, multiplication witly is not commu- condition with respect t@y collected from the system is

tative over the p-dependent coefficients, meaning thasatisfied. Such condition is required to guarantee comsigte
¢ B(pe, ¢ Vulty) = B(pr—_1,q ulte—1) which is not and convergence of the algorithm provided estimates. In

equal to B(p, g )u(ty_1). Therefore to define predictors Order to analyze the estimation of the defined LPV-BJ model
with respect to modelsM, € M, a convolution type Structure, the characterization of the data sets satipffirs
representation of the system dynamics, i.e. a URpulse condition with respect tol is needed. _
Response Representati¢iRR), is used where the coeffi- [N the LTI case, persistency of excitation is associated
cients has dynamic dependenceofdependence on future With the notion of aninformative data setLet Dy =
and past samples gf) [18]. This means thatS, with an  {¥(tx), u(tx)};—, be a data set of quasi-stationaryand y

asymptotically stable process and noise part is written as collected from the data generating system andietD v, )
be an identification criteriorD y is called informative with
y(te) = (Gola) o p)(tr)ultr) + (Holg) o p)(tk) eo(tr) (14)  respect to a parametric model sdt with parametersd

%. Persistency of excitation

Xo(tk) o (th) and a givenW (Dy, ) if any two models inM can be
where distinguished undel (D, 6) [6]. Basically this means that
0o if the model setM is identifiable (no two parametefs and
(Golq) o p)(tr) = Z(ag op)(te)g™", (15a) 062 given models correspond to the same predictor) and the
i—0 data setDy is informative, thenW (Dy,6) has a global
s ] optimum in the statistical sense. The latter is the esdentia
(Ho(q) op)(tr) = 14+ > (B op)(te)g ", (15b)  requirement for consistency of any minimization method.
i=1 The notion of persistency of excitation with ordermeans

with o o p expressing dynamic dependencengfon p, i.e. in the LTI case an informativédy with respect to a model
af o p=ai(p,qp,q'p,¢°p,...). Now if p is deterministic  structure withn parameters. The latter is equivalent to the

and there exits a convergent adjoifif, of H, such that  possibility of statistically uniquely estimating @ order
eol(tr) = (HI(q) o p)(tr)vo(tr), 16) FIR filter based orD .

. : () = (Ho(a) o)t/ ltn) (16) In the LPV case, there are numerous differences. First of
then it is possible to show (see [18]) that thiee-step ahead )| the requirements for identifiability imply that the &ar
predictor of y is combinations of the usef] andg; functions in the coefficient

y(tr | tir) = (HS(9)Go(q)) o p) (tr) ults) parametrization provide inequivalent dynamical beheaiufr

+ the model structure for ea¢h With respect to the considered
+((L=Hl(@) op)(te) y(te). (A7) | pv-BJ structure and a LS criterion, a sufficient condition



of identifiability is that{f; },', and {gl}fjl are orthogonal question whether a data set is informative in the LPV case
on P and the polynomialsAd, B, C, D are co-prime for remains open.
all p, € P. Moreover, the notion of an informative data o
set in the LPV case is not equivalent to the condition of- dentification problem statement
persistency of excitation with a given order. First of dfiet ~ Based on the previous considerations, the identification
model parameterd are related to signalgi(px)g~"y(tx),  problem addressed in the sequel can now be defined.
9i1(pk)g~?u(ty), and not only the time-shifted versions of Problem 1: Given a discrete time LPV data generating
u and y, thus the functionsf; and g; and the scheduling systems, defined as (1) and a data $Bty collected from
trajectoryp together also influence the estimatiordoMore- S, Based on the LPV-BJ model structurel, defined by
over, the estimation of the parameters of a LPV-FIR filter(12), estimate the parameter vectbiusing Dy under the
irrelevant to the coefficient parametrization, is not eglémt  following assumptions:
with the estimation of a LPV-BJ model due to the non- A4 S, € M, i.e. there exits &, € G and aH, € K
commutativity of multiplication byg. This means that the such that(G., H,) is equal toS,.
terminology of persistency of excitation with orderis ill- At Na
defined ingt);le LFF)>V case. Izstead, the informativity of theadat A2z I{n tug parametrizationd, and 5, {f-l}l-: L &l -d

- o Sdt aqi},2, are chosen such th&g,,H,) is identifi-
sets with respect to the assumed coefficient parametnizatio able for any trajectory o.
and model order is needed to be satisfied in order to ensurepg u(ty) is not correlated ta, ().
consistency and convergence of the estimation. However, A4 Dy is informative with respect tou.
conditions of informative data sets have not been invetgtija A5 S, is uniformly frozen stable, i.e. for ay € P, the
directly in the LPV literature. roots of 2™+ (A(p, 2~ ')) are in the unit disc [18].

In [3] and [21], for the case of LPV-IO ARX models with

polynomial dependence of the coefficients on the parameterdll. ON THE USE OF LINEAR REGRESSION FRAMEWORK
i.e. filpr) = qi(px) = pL, conditions for persistency of AND STATISTICAL OPTIMALITY

excitation has been investigated, unknowingly addressiag A\l methods for LPV-IO parametric identification pro-

question of informativity of the data set. In these works ifoseq in the literature so far are based on linear regression
is assumed that a LPV system is a family of LTI systemi,athods such as least squares or instrumental variables [3]
associated with each points ih If the dependence op 4] The currently accepted view in the literature is thahi

is a polynomial of ordemua. = max_(ng,na)'_ then the system belongs to the model set defined in (13), thgn)
LPV system identification can be realized by identifying at.an pe written in the linear regression form:
leastn.x LTI models operating at distinct values Bf and

use them to determine the coefficients of the polynomial y(te) =o' (tr)p + 0(tr) (22)
dependence based on the interpolation principle. This mean . )
that a data seDy is informative if with p as defined in (7),

« p Visits at leastn,,,, different pointsp,,...,pn, € P. =y (tr) fo(pr)
o Each sequence ofi associated with g; must be :
persistently exciting with respect to the LTI model _
corresponding tg;. p(te) = Z((::));:(‘})(Sk) € R™, (23a)
« The number of revisits of eagh must be large enough S
to approximate the ergodicity condition in a given :
neighborhood around the considered point&of L u(tk)gns (Pr) |
However, this condition is rather conservative from a numbe y(te_1) w(tp—q)
of viewpoints. A LPV system can be considered as a set (th) = . u(ty) = : (23b)
of LTI systems associated with each point Bf but these : ’ : ’
systems share a common memory so they can describe the y(te—n.) u(tk—ny—d)
continuation of the signal trajectories wherchanges. This gng
means that in terms of the above given condition the variatio 5(tk) = Apr, a1, p)ults). (23c)

of p must be infinitely slow in order to consider these systems

to be independent LTI systems. However, ergodicity reguire In this section it is shown why such a linear regression
basically that the number of revisits of the chosen pointBamework cannot lead to statistically optimal (unbiasad a
must be infinite in the general case, which means thaptheminimal variance) estimates when the model structure is a
should vary as fast as possible to revisit these points mok®V Box—Jenkins. Let us first introduce the adjoitit of A,
often. This concludes that the above given condition is tosuch thaty = A (px, ¢!, p)u < A(pr, ¢, p)x = u. Note
conservative for practical use. In [21], an improved vaisiothat the adjoint always exits in a IRR sense with respect to an
of this approach has been developed which tries to overcoragymptotically stabled. In the LTI case AT = %, however,

the problem of conservativeness, however as it is based onthe LPV case At # % due to the non-commutativity of
the same principle of independent LTI system estimatiom, ththe multiplication byg.



A. The conclusion brought in [4] respectively anc is a white noise withe(t;) € N(0,0?).
By considering (22) and the associated extended regreséfr) can be written in the linear regression form:

in (23a), it is well known that the LS method leads to T ~

’ t,) = t 4 25
optimal estimate only if the noise model is ARX({x) ith y(te) = ¢ (be)p + 0(tw), (25)
is a white noise). This condition implies that(ty) wit
At (pr,q7 1, p)e(t) and is not fulfilled in many practical p= [ ar ... an, bo ... by, ]T € Ratnntl

situations asv, is often not related to the process itself T
and does not depend gn.. Therefore it is proposed in [4] ¢ = [¥(tx—1) - Y(ten,) u(te-a) - w(tr-n,—d)]

to use an IV method where the instrument is built usin

the simulated data generated from an estimated auxiliary o(ty) = A(qg Y, p)o(ty). (26)

ARX model. Instrumental variables have the particulardy t . _
produce unbiased estimates if the instrument is not caeetla FOllowing the conventional PEM approach of the LTI frame-

to the measurement noise. The algorithm proposed in [4] c4fPrk (wWhich is maximum likelihood estimation because of

be summed up as follows: the normal distribution assumption ef)), the prediction
Algorithm 1 (One-step IV method): error eg(tx) of (25) with respect to (24) is
Step 1 Estimate an ARX model by the LS method (mini- D(g~',n)
mizing (20)) using the extended regressor (23a).  co(tx) = =— = (A(qflm)y(tk)
- Clg~t,mAlg,p)
Step 2 Generate an estimatét;) of x(t;) based on the
resulting ARX model of the previous step. Build - B(qflm)u(tk)), (27)
an instrument based ofi(t;) and then estimatg ] )
using the IV method. where the filter D(¢=*,71)/C(¢~*,n) can be recognized
Based on the numerical simulation given in [4], the follogiin @S the inverse of the ARMA.nq4) noise model in (24).
conclusions have been proposed: The polynomial operators commute and therefey&.) is
« In cases, corresponds to a LPV-OE model,(= e.) equivalent to the error function, (¢;) defined as:
Algorithm 1 leads to an unbiased estimate. e (tr) = Alpr, a L p)ye(tr) — Blpr,a~ Y, p)us(ty), (28)

« The variance of the estimated parameters is much larger
than in a LS estimation process as it is well-known. whereys = Q(¢~*,0)y andus = Q(¢~*,0)u represent the
« The estimation result can be improved if one uses autputs of the prefiltering operation with
multi-step algorithm such as in [12].

- D(q~',n)
1 _ ’
B. Existing methods and optimal estimates @a.0) = Clg~ Y, mA(g~,p)’ (29)
In the present paper, the authors only partially agree withperefore (25) is equivalent to:
the conclusions stated in [4]. It is true that the results can
be improved and that the IV estimates are unbiased but this ye(tr) = @f (te)p + e(tr) (30)
paper claims that: with . .
« Even by using multi-step algorithm of [12], the optimal U (tk) = Alg™, p)ue(tr) = e(t). (31)
estimate cannot be reached with the linear regressiQn other words, if the optimal filter (29) is knowa priori,
form (22). it is possible to filter the data such that the estimation

o The optimal estimates can be reached for LPV-Bjroplem is reduced to the maximum likelihood estimation.
models by using IV methods and the variance in thehis implies that a simple LS algorithm applied to the data
estimated parameters might be lower than the LS es{refiltered with (29) leads to the statistically optimaliestte
mator In given situations. under minor conditions.

In the following part it is shown why these statements hold 2) The LPV case:Following the above introduced PEM
true. In order to show why statistically optimal estimatmin  approach in the LPV case (which is again maximum likeli-
the model (12) cannot be reached under the viewpoint (22)ood estimation because of the normal distribution assump-
it is necessary to revisit the result of optimal predictioroe  tion one(t;)), the prediction errog, (¢ ) of (22) with respect

in the LTI case. to (12) is
1) The LTI case:In analogy with (12), consider the LTI- .
D(g™*, _ _
BJ model as 0(t) = A ™) (Al )
A(qilﬁ))X(tk% = B(qilvp)u(tk—d) 7 B( 1 ) ( )) (32)
LTI _Clam) — B(pr,q , p)ulty
Mg S ou(ty) = D(q—l,n)e(tk)’ (24)

where D(¢~1,7)/C(¢~*,n) can be again recognized as the
t == t t . . 9 9 )

y(t) = x(t) + vlte) inverse of the ARMA(.,nq) noise model of (12).

where A(¢~ %, p) and B(¢~ %, p) are polynomials ing~* In opposition to the LTI case, the polynomial operators
with constant real coefficients and have degrgeand n;, do not commute in the LPV case as it has been shown in



Section II-C. Hence, no filter can be chosen such that both V. REFINED INSTRUMENTAL VARIABLE FOR LPV

conditions SYSTEMS
1 D(q~ 7,) $ 1 Based on the MISO-LTI formulation (35), it becomes
Alpr ™ P)yr(t) = et A (Pi a5 ) Apr 5 p)y(ts) possible to achieve optimal PEM using linear regression and
D(q’1

to extend theRefined Instrumental Variabl@gRlV) approach
of the LTI identification framework to provide an efficient
way of identifying LPV-BJ models.

A. Optimal PEM for LPV-BJ models

(tx) =

are fulfilled simultaneously. Consequently, no filteringttoé
data can lead to a regression equation

B(pr, g~ p)us C(q_l,,)AT(pkyq 10)Bpk,q "} p)uliy)

ye(tr) = @f (te)p + e(tr) (33) Using (35),y(t) can be written in the regression form:
which is equivalent to (22) and wheig is white. In other y(te) = @ (tr)p + 0(ts) (36)
words, by choosingy such as in (23a) and therefore bywhere
assuming (22) (as in [3] and [4]) it is not possible to
transform the estimation problem of (12) into a maximump(t)=[—y(te—1) ... —y(tr—n.) —x1,1(tk) ---
likelihood estimation problem. The latter implies that no B (t) oo (te) u (t )]T
method proposed so far in the literature for solving the Xnana k) ©0,088k) - -~ tnp,ng\th .
estimation of LPV-IO models or LTI-IO models can lead  p=[a10 ... Gn,0 1,1 --- Gnone D00 - by |
to optimal estimate in the LPV-BJ case by assuming th
regression form (22). As a consequence, the existing theory o(ty) = F(g™t, p)o(ty). 37)

needs to be modified in order to solve the identification

problem stated in Section II-E.

C. Reformulation of the model equations

It is important to notice that (36) and (22) are not equivalen

The extended regressor in (36) contains the noise-freaibutp
terms{x; x }. By following the conventional PEM approach

on (36), the prediction errary(t) is given as:

In order to introduce a method which provides a solution

to the identification problem of LPV-BJ models, rewrite the

signal relations of (12) as

x(tk) +ZazOX i +Zz&ufl pr)X(tr—i) =
i=1 i=1 [=1
le(tk)
F(g)x(tr)
np g
M > biagi(pr)ults—a—;)
J=0I=0 w1 (tk)
Clq~ ,n)
v(te) =7 5eltr)
D(g=1,m)
y(te ):x(tk)+v( k)
(34)
where F(¢g™') = 1+ >, a;0¢~". Note that in this way

the LPV-BJ model is rewritten as lultiple-Input Single-
Output(MISO) system with(ny, + 1)(ng + 1) +nane, inputs
{aahiziisy and {u; 5200

_ D(q717 77) —1
Eﬁ(tk) - C(q_l,n)F(q_l,p) F(q ap)y(tk)
- Z Z aiiXi (k) + Z Z bj,luk,j(tk)> (38)
i=11=1 §=0 1=0
where D(q=1,7)/C(¢~*t,n) can be recognized again as the

inverse of the ARMA(G.,nq) noise model in (12). However,
since the system written as in (35) is equivalent to a LTI
system, the polynomial operators commute and (38) can be
considered in the alternative form

Na Na

Zzazlle (tk)

=1 [=1
n, Ng

+ D0 b (t)

§=0 1=0

eo(tr) = F(q~ ", p)ye(te)

(39)

as represented in Fig. 1. wherey:(tx), ukj(tk) andxll(tk) represent the outputs of

Given the fact that the polynomlal operator commutes in thithe prefiltering operation, using the filter (see [24]):

representationi{(¢—*) does not depend am.), (34) can be
rewritten as

==Y Ftat)

=1 =1

> P@l)uk (te) + H()e(ty), (35)
§=0 1=0

which is a LTI representation. As (35) is an equivalent form ¢¢(tx)=
of the model (12), thus under the Assumption Al, it holds

that the data generating systefy has also a MISO-LTI
interpretation.

1oy D(q™',n)
Qla0) = Clg~t,mF(q~Y,p)

Based on (39), the associated linear-in-the-parametedeimo
takes the form [24]:

(40)

ye(ts) = of (tr)p + e (tr), (41)
where
[—ye(te-1) - —ye(thn,) —x51 (k) -
-
_Xia,na(tk) u{),o(tk) M uflb}n[-}(tk):l

and



LPV-BJ model

Krandtr)

Ju(Pr)

1 1 uo,0(tr)

u(ty) | € 91(px)

1 Zl,o(tk)
= e T e | e

Eq,n)

v(t)

uﬂwnﬂ( tk)
Gny(Pr) -b"‘””"
LTI model

Fig. 1. MISO LTI interpretation of the LPV-BJ model
r(ty) = F(g™, p)or(ty) = C2  E{L(q)¢(tx)L(q)0(tr)} = 0.
D(q~t,n) Moreover it has been shown in [16] and [22] that the

F(qg™t p) v(ty) = e(ty). (42)

Clg~t,mF(g,p)

minimum variance estimator can be achieved if:

B. The refined instrumental variable estimate C3 W=1I

Many methods of the LTI identification framework can
be used to provide an efficient estimate pfgiven (41)
wheret () is a white noise. Here, the refined instrumental
variable method is chosen for the following reasons:

o RIV methods lead to optimal estimatesSf € M, see
[16]. This statement is true as well for usual prediction

C4 (s chosen as the noise-free version of the extended

regressor in (36) and is therefore defined in the
present LPV case as:

Ctr)=[—x(tr-1) -+ —X(th—n) —x11(tk) .-

T
“Xna,na (tk) u0,0(tk) e unb,ng (tk)]

error methods such as the extended LS approach. C5 G, € G andn, is equal to the minimal number

« In practical situation of identificationg, € § might
be fulfilled due to first principle or expert's knowledge.

of parameters required to represafy with the
considered model structure.

However, it is commonly fair to assume th&t, ¢ K. C6 L(q) is chosen as in (40).

In such case, RIV methods has the advantage that they

still provide consistent estimates whereas methods su@ Remarks on the use of the RIV approach

as extended LS are biased and more advanced PEM
methods needs robust initialization [13]. .

Aiming at the application of the RIV approach for the esti-
mation of LPV-BJ models, consider the relationship between
the process input and output signals as in (36). Based on this®
form, the extended-IV estimate can be given as [16]:

pxv(N) = arg min
pER™P

N

[le 3 L<q><(tk>L<q>sﬂ<tk>] .
k=1

2

CS))
w

N
_ H ZL(q)C(fk)L(Q)y(tk)]
t=1

where( () is the instrumental vectoliz |3, = 7 Wz, with

W a positive definite weighting matrix anbl(q) is a stable
prefilter. if G, € G, the extended-1V estimate is consistent
under the following conditiorts

Cl  E{L(q)¢(tx)L(q)¢ " (t)} is full column rank.

1The notationE{.} = limy_ o % Zi\]:lE{‘} is adopted from the
prediction error framework of [12].

Full column rank ofE{L(q)¢(tx)L(q)¢ " (t)} follows
under Assumption A4 [3]. To fulfill C1 under A4, the
discussion can be found in [16].

C5 cannot be satisfied if the data generating LPV system
S, is quasi, i.epy is correlated tou(ty) or y(tx), and

S, can be described as a Hammerstein or Wiener model
[11].

In a practical situation none of F(q~ 1, p),
{aii(p)} i) os {b50(0)} 20 s Cla™3m), D(g™4n)

is known a priori. Therefore, the RIV estimation
normally involves an iterative (or relaxation) algorithm
in which, at each iteration, an ‘auxiliary model' is
used to generate the instrumental variables (which
guarantees C2), as well as the associated prefilters. This
auxiliary model is based on the parameter estimates
obtained at the previous iteration. Consequently, if
convergence occurs, C4 and C6 are fulfilled. It is
important to note that convergence of the iterative RIV
has not been proved so far and is only empirically
assumed [23].



D. lterative LPV-RIV Algorithm Step 7 1f60("t1) has converged or the maximum number

Based on the previous considerations, the iterative scheme of iterations is reached, then stop, else increase
of the RIV algorithm can be extended to the LPV case as by 1 and go to Step 2.

follows. Based on a similar concept, a statistically optimal method,
Algorithm 2 (Optimal LPV-RIV): the so-calledsimplified LPV-RIV (LPV-SRIV), can also
(Ige developed for the estimation of LPV-OE models This
of M, is available by the LS approach, i#? — method is based on a model structure (12) Wity !, 7) =
[(GOYT  (HO)T |7 is given. Setr — 0. D(q~ ,n)_ 1 and consequently, Step 6 of Algor!th_m 2
) ] ) can be skipped. Naturally, the LPV-SRIV is not statistigall
Step 2 Compute an estimate gft,) by simulating the optimal for LPV-BJ models, however it still has a certain

Step 1 Assume that as an initialization, an ARX estimat

auxiliary model: degree of robustness as it is shown in Section V.
Alpr,a P )X (te) = B(pr, ¢ 7)) ulte—a) V. SIMULATION EXAMPLE
based on the estimated parametep§”) of As a next step, the performance of the proposed and of

the previous iteration. Deduce the output termghe existing methods in the literature are compared based

{Ria(te) b 2'i_o as given in (34) and using the on a representative simulation example. The robustness wit

model M., . respect to noise and modeling error is investigated as well.
Step 3 Compute the estimated filter: A. Data generating System
5(g-1 {0 — D(qg=*, /(M) The system taken into consideration is inspired by the
Qg™ )= Clg~, A F (g1, p(0) example in [4] and is mathematically described as follows:
an? the associated . filtered signals Ao(g,pr) =1+ aS(pr)gt + a$(pr)qg 2
np,Nn Na,Ma
{0 (t6) Y5 20,1200 ye(tr) @nd {x;  (8) 121 S, { Bola,pr) = b3(pr)a~t + b8 (pr)a—> (46)
Step 4 Build the filtered estimated regresge(t;) and in Hy(q) = 1
terms of C4 the filtered instrument(t,) as: © 1—q140.2¢72
@f(tk):[_yf(tkfﬁ _yf(tkfna —x () wherew(ty) = H,(q)e(t) and
K (B6) who(te) - b, ()] i (p) = L~ 0.5p = 0.1 (472)
~ e ’ o _ _ _ 2
Gt =[Relteor) - Slnon) R0 bgpi T ij;b;
. T o0(pk) = 0.5 — 0.4px, + 0.01p c
. _th na(tk) ugo(tk) nb ng(tk)] 2 I;
b3 (pr) = 0.2 — 0.3p, — 0.02py, (47d)
Step 5 The IV optimization problem can now be stated in
the form In the upcoming examples, the scheduling sigmas con-
LN sidered as a periodic function of time:
PrEN) = arg min [N D Gt)@ (k) | p P = 0.55in(0.357k) + 0.5, (48)
k=1

2 andu(ty) is taken as a white noise with a uniform distribu-
(44) tion U (—1,1) and with lengthN = 4000 to generate data

1.
_ = t t
l Ce(tr)ye (tr) setsDy of S,.

N
k=1

This results in the solution of the IV estimation B. Model structures

equations: . In the sequel, the instrumental variable method presented

R (r+1 N N in [4] named hereOne Step Instrumental Variabl@Sl V)

P Z Ce(tr) @y (k) ZCf tk)ye(tk)  and the conventiondleast SquarégLS) method such as the
k=1

one used in [3] are compared to the proposed methods. Both
where("t1 () is the IV estimate of the process methods assume the following model structure:
model associated parameter vector at iteratien
based on the prefiltered input/output data.
Step 6 An estimate of the noise signals obtained as

Alp, g1, p)=1+a1(pr)g +az(pr)g 2

Mrés,oslv B(pr,q 1, p)=bo(prx)q*+ b1(pr)q 2
H(py, . p)=A(pr,q7", p)

B(tr) = y(te) — X(tg, o). 45
(te) = y(te) — X(tk, p'7) (45) Where )
Based ond, the estimation of the noise model a1(pr) = a1,0 + a1,1px + a1,20; (49a)
E)haragneter Veftoﬁijﬂrl) f?"w\tﬁ usi?gﬂi]ré\;&jﬁ_cA%se az(pr) = ag.0 + ag.1px + az.2p} (49b)
e ARVA estimation algorithm o b —b b e+ b o2 49¢
identification toolbox (an IV approach can also be o(p) 0.0+ %0.1Pk + O’Qp’; (49¢)
used for this purpose, see [23]). b1(pk) = b1,0 + brapr + b1 2pj; (49d)



In contrast with these model structures, the proposed LP ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Refined Instrumental Variableethod LPV- Rl V) represents ) 7
the situationS, € M and assumes the following LPV-BJ
model:

ouput

Apr,q . p) =1+ ai1(pe)g + azx(pr)g™?
M2V=RY ) B(py, g, p) = bo(pr)a ™" + ba(pr)g~ R A
1 10 20 30 40 50 60 70 80 90 100

H(py = :
(Pk,a,m) T r a1 7 dog 2 time
with aq(pr), a2(pk), bo(px), bi(px) as given in (49a-d),
while the LPV Simplified Refined Instrumental Variable
method [PV- SRI V) represents the case whé&h < G,
H, ¢ H and assumes the following LPV-OE model:

input
°

2

-1 - -1 - L L L L f L L | ) 1
LPV—SRIV A(pk’ 1 ’p) =1 * al(pk)q ta (pk)q 10 20 30 40 50 60 70 80 90 100
MG B(pimq_l,p) = bo(Pk)q_l +b1(pk)q_2 time
H(prk,q:m) =1

C. Example 1: Robustness to noise

In j[his part, t_he robustness_ of the pr0pose_d an_d eXisting 1 can be seen from Table | that the IV methods are
algorithms are investigated with respect to differsignal-  iageq according to the theoretical results. It might not

to-noise ratios(SNR) appear clearly for th€sl V method when using SNR under
SNR = 10log Py, (50) 10dB but considering the variances induced, the bias is only

)

eo due to the relatively low number of simulation runs. Under

WherePX andpe are the average power of S|gna<|§ and 10dB, the results of theOSI V cannot be considered as

e, respectively. To provide representative results, a Monté€levant as they induce such large values. In the present BJ
Carlo simulation of Ny = 100 runs with new noise System, thedSI V method does not lead to satisfying results

Fig. 2. 1/O signals aBNR = 0dB

realization is accomplished at different noise levelsdB, ~and cannot be used in practical applications. It can be seen

10dB, 5dB and0dB. An example of input/output signals atthat for SNR down tadB, the optimalLPV- Rl V produces

SNR = 0dB is shown in Figure 2. variance in the estimated parameters which are very close to
With respect to the considered methods, Table | shows tgée one obtained with theS method, not mentioning that

norm of the bias and variance of the estimated parametéle bias has been completely suppressed. The suboptimal
vector: LPV- SRI V methods offers satisfying results, considering

) _ that the noise model is not correctly assumed. The variance i
Bias norm= ||p, — E(5)]l2 (518)  the estimated parameters is twice as much as in the optimal
Variance norm= ||E(p — E(p))||2 (51b) LPV-RIVcase and it is in close range to the variance of the

whereE is the mean operator over the Monte-Carlo simyl-S method. Finally, it can be pointed out that the number

lation and||.|| is the £» norm. The table also displays theOf iterations is high in comparison to the linear case for

mean number of iterations the algorithms needed to conver (\j/ rr:_ethods (typ'c_?”gl’ 4”|terz;t||(|)|nshare nﬁedgd ".]I adTecond
to the estimated parameter vector. rder linear case). Table Il an shows that detailed ltesu

For the Monte-Carlo simulation &NR — 15dB. Table || '€@d to the same conclusion as when looking at Table I.
and 11l show the detailed results about mean and standafid®®" be fmally seen from Il that the optimalPv- R V
deviation of the estimated parameters. In some practicg]ethOd estimates a_ccurately the hoise mod_el ?‘”d _that the
application, only one realization is accessible and thuzeef standard error obtained from a smgle_reallzanon is well
it is not possible to compute the uncertainty throddbnte- correlated to the standard deviation obtained through Btont
Carlo simulation(MCS). In this latter case it is important to Carlo simulation.
be able to determine tretandard error(SE) on the estimated _
parameters with ssingle realization(SR). Therefore the D. Example 2: Robustness to modeling error
results of SR are also given in these tables. Note that s the tests realized in the previous section has been
it is possible to compute the SR standard error from thg.hieved in the case whe@, € G. This assumption is

covariance matrix defined as [23] fair for linear systems as most process can be derived from

R N R -1 first principle laws. In nonlinear systems however, the non-
P,=¢62 [Z gf(tk)gf(tk)] (52) linearity and therefore the scheduling parameter depereden
k=1 is often an approximation of the real function. Therefores it
by using the relation relevant to investigate the case wh@n¢ G. However, it is

- not possible in this case to compare the estimated parasneter
SE=\/diag(P,). (53) to the true parameters. Consequently, the authors choose to



TABLE |

ESTIMATOR BIAS AND VARIANCE NORM AT DIFFERENT SNR

Method 15dB 10dB 5dB 0dB
LS Bias norm 2.9107 | 3.2897 3.0007 2.8050
Variance norm 0.0074 | 0.0151 0.0215 0.0326
oSl Vv Bias norm 0.1961| 1.8265 6.9337 | 10.8586
Variance norm 1.3353 | 179.4287| 590.7869| 11782
LPV- SRl V Bias norm 0.0072 | 0.0426 0.1775 0.2988
Variance norm 0.0149 | 0.0537 0.4425 0.4781

mean iteration numbef| 22 22 25 30
LPV-RI V Bias norm 0.0068 | 0.0184 0.0408 0.1649
Variance norm 0.0063 | 0.0219 0.0696 0.2214

mean iteration numbef| 31 30 30 32

TABLE I

MEAN AND STANDARD DEVIATION OF THE ESTIMATED A POLYNOMIAL PARAMETERS AT SNR = 15DB

ai,o a1 ai,2 az,0 a1 az 2

method true value 1 -0.5 -0.1 0.5 -0.7 -0.1
LS mean -0.3794 | 2.2373 | -2.0584 | -0.1085| -0.0755 | -0.4786
std 0.0219 | 0.0663 | 0.0591 | 0.0125 | 0.0600 | 0.0558
sl vV mean 1.0259 | -0.6161 | 0.0205 | 0.5092 | -0.7510| -0.0377
std 0.3023 | 1.0330 | 0.8605 | 0.1227 | 0.4348 | 0.3986
LPV- SRI V mean 1.0003 | -0.5013 | -0.0971| 0.5007 | -0.7047 | -0.0943
MCS std 0.0313 | 0.1022 | 0.0893 | 0.0106 | 0.0650 | 0.074
LPV- SRI V p 0.9801 | -0.3743| -0.2120| 0.4978 | -0.7154 | -0.0736
SR SE 0.0377 | 0.1567 | 0.1486 | 0.0171 | 0.1010 | 0.1099
LPV-RI V mean 0.9999 | -0.5020 | -0.0989 | 0.5005 | -0.7050| -0.0962
MCS std 0.0170 | 0.0589 | 0.0610 | 0.0084 | 0.0488 | 0.0523
LPV-RI V D 0.9947 | -0.5053| -0.0506 | 0.4981 [ -0.7303] -0.0350
SR SE 0.0120 | 0.0479 | 0.0435 | 0.0050 | 0.0330 | 0.0368

TABLE Il

MEAN AND STANDARD DEVIATION OF THE ESTIMATED B AND D POLYNOMIAL PARAMETERS AT SNR = 15DB

bo,o bo,1 bo,2 b1,0 bi,2 ba2 di da

method true value 0.5 -0.4 0.01 0.2 -0.3 -0.02 -1 0.2

LS mean 0.5043| -0.4045| 0.0085 | -0.3201| 0.7890 | -0.7335 X X

std 0.0039| 0.0233 | 0.0219 | 0.0097 | 0.0284 | 0.0238 X X

oSl v mean 0.4986 | -0.3991 | 0.0110 | 0.2096 | -0.3409| 0.0181 X X

std 0.0115| 0.0564 | 0.0503 | 0.1151 | 0.3731 | 0.2922 X X

LPV- SRI V mean 0.4996 | -0.3998 | 0.0101 | 0.1997 | -0.3004 | -0.0190 X X

MCS std 0.0038| 0.0183 | 0.0171 | 0.0104 | 0.0367 | 0.0300 X X

LPV- SRl V 0 0.4998 | -0.3783 | -0.0108 | 0.1996 | -0.2885| -0.0273 X X

SR SE 0.0044 1 0.0221 | 0.0216 | 0.0138 | 0.0561 | 0.0493 X X
LPV-RI'V mean 0.4998 | -0.3993 | 0.0092 | 0.1998 | -0.3008 | -0.0194 | -1.003 | 0.2042
MCS std 0.0020| 0.0106 | 0.0106 | 0.0055 | 0.0228 | 0.0214 | 0.0171| 0.0172

LPV-RI'V P 0.5020 | -0.4142| 0.0245 | 0.1971 | -0.2889 | -0.0219 X X

SR SE 0.0016| 0.0075 | 0.0072 | 0.0042 | 0.0165 | 0.0141 X X




expose the fitness score [13]

L (X CER) = Xo(t)l]2
fit = 100% (1 o (t0) = ECxo(t0)T

between the noise-free output,(¢) and the outputy(t)
simulated using the identified model.

The fithess score iB)0% if the simulated output coincides
exactly to the noise-free output. If the score equils the
estimated output fits the noise-free output as good as ita med*!
value. A score under100% is set to—100. The minimum,
maximum and mean value of the fithess score for different
approaches are displayed in Table I¥NR = 10dB) and
Table V SNR = 0dB) for a Monte-Carlo simulation 020
runs. The right model for the presented systemjs= 2,

[1]
) (54)
[2]

my =2, ne =0, ng =2, ne =2 andng = 2 denoted  °!
as [n, np, Ne Mg Mo ng) = [220222]. For example the model
[210101] corresponds to -
Apr,q7 " p) = 1+ ar(pr)g™" + az(pr)g?,
Moaio101 B(pr,q~',p) = bO(lpk)q_la (8]
H = —
(Pr>q5m) T rdig
. 9]
with
ai(px) = a10, a2(pr) = az20, bo(px) = bo,o + bo,1Pk- 1101
Table IV and Table V show that theS method fails to 19

correctly fit the output. ASNR = 0dB, the LS method gives
very poor fitting score. Table IV shows that H2dB, even

if the GSI'V estimator is not efficient, it can compete withy;
the LPV- Rl V estimator in some runs but the values of the
fitting score are more sparse. Table V shows that@eVv  [13]
estimator cannot be used reliably. It can be noticed that in
all simulations, the best fitting score of tlésl V estimated [14]
model is less than the average fitting score of tR¥/- Rl V
estimated model. ThePV- Rl V estimator seems to be the ;5
less affected by strong noise and is reliable even for strong
modeling error (mode([110011]) and atSNR = 0dB (see [18]
Figure 3). [17]
VI. CONCLUSION

This paper highlighted the lack of efficient methods ir8l
the literature to handle the estimation of LPV Box-Jenkins
models. It has been shown that the conventional formulatigmo]
of least squares estimation cannot lead to statisticaliynab
parameter estimates. As a solution, the LPV identification
problem is reformulated and a method to estimate efficientigo]
LPV-BJ models was proposed. The introduced method has
been compared to the existing methods of the Iiteratur[gl]
both in terms of theoretical analysis and in terms of a
representative numerical example. The presented example
has shown that the proposed procedure is robust to noise
and modeling error and outperforms the existing methodg2]
As continuation of the presented work, extensions of the
method to closed-loop and continuous-time LPV systel#%s]
identification are intended.
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TABLE IV

MODELING ERRORMONTE-CARLO SIMULATION WITH SNR = 10DB

Model parameters LS [eSIY} LPV-RI'V
Na | b | Nc | Ma | Mo | ng min(fit) | max(fit) | mean(fit) || min(fit) | max(fit) | mean(fit) || min(fit) | max(fit) | mean(fit)
2 2 0 2 2 2 60.2268 | 63.631 | 61.8351 || 19.0787 | 95.5119 | 80.9420 || 98.2614 | 99.2459 | 98.7147
2 2 0 0 1 1 61.2401 | 63.8981 | 62.7319 || -1.8039 | 97.1807 | 86.3854 || 72.4847| 99.1952 | 97.2106
1 1 0 2 2 2 47.7804 | 52.058 | 50.4318 || 74.9416 | 78.1466 | 76.4985 || 79.2946 | 79.6643 | 79.549
1 1 0 0 1 1 47.5383 | 52.6303 | 50.0925 || 71.5279| 76.8744 | 74.8501 || 78.3167 | 78.6013 | 78.5231
TABLE V
MODELING ERRORMONTE-CARLO SIMULATION WITH SNR = ODB
Model parameters LS [eSIY} LPV-RI'V
Na | Np | Nc | Nd | Mo | Mg min(fit) | max(fit) | mean(fit) min(fit) max(fit) | mean(fit) || min(fit) | max(fit) | mean(fit)
2 2 0 2 2 2 28.2972 | 35.866 | 32.9784 || -28.3212 | 84.5957 | 62.4347 || 93.4777 | 97.5705| 95.9271
2 2 0 0 1 1 33.0264 | 41.1713| 36.1755 -100 83.4528 | 34.4322 || 48.6399 | 97.7966 | 87.4178
1 1 0 2 2 2 1.6346 6.818 45074 -100 73.4932 | 14.8833 || 22.5242 | 79.4046 | 75.8615
1 1 0 0 1 1 1.1722 | 6.0193 4.2104 -100 75.2366 | 28.2461 || 42.8853 | 79.244 | 71.9069
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Fig. 3. Noise-free output, noisy output and simulated oufpuimodel [110011] identified withLPV- RI V (SNR = 0dB and fit= 79%)
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