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Motivations

|dentification of Wiener systems

What is a Wiener system ?

m Dynamical block nonlinear systems

= A dynamical linear model followed by a nonlinear function

u(t) : Linear Z(t)= Nonlinear y(t:)

Dynamic Static

v
Two philosophies

m The system is truly, physically, Wiener

® we know something about the nonlinearities
B parity, monotony, parametrization

m Wiener models are a good approximation of true systems

m Nonlinearities represent the unknow/too complex phenomena
B We do not know anything about the nonlinearities
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Motivations

Truly Wiener system : the race to optimality

Parametric methods

m Heavy optimization algorithms

= ML PEM = How to initialize ?
m Gradient descent, particule m Either not discussed

filters m Or use simple LS using FIR
® Ljung

.

Nonparametric methods

m Non-parametric nonlinearity modelling

m SVM, Volterra series,...

B paremeter number increases exponentially with the linear parameter number
m In Wiener models : often applied on less than 4 parameter FIR examples

m Grieblicky, Pawlack, Bernstein

N
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Motivations

Wiener model as system approximation

What is then optimality ?

= Should we really try to identify the nonlinearity ?
m Why not trying to get the best linear approximation possible 7
m ldeal for control

m If not precise enough, it can be used for initialisation
v

Possible solutions

m Pintelon, Schoukens

m Either using Frequency identification — BLA
m Or using a FIR approximation — LS

= Bai

m Use FIR approximation
m Requires only monotony information

u All these methods are computationally very cost effective

A

Wiener Identification seems to go through FIR approximation )
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Motivations

FIR Wiener model description

Why is the FIR approximation needed ?
u(t) 2(t) y(t)

Linear Nonlinear

Dynamic Static

= z(t) is not accessible for IR estimation
v

FIR model (for now with Gaussian input assumption)
u(t) Z(t) y(t)

Gaussian Nonlinear
dist::bultion =D FIR =D Fun(l:tion =>

iy )
olt) & ; L 02| y(t) = fp'(£)0)) +e(t)
u(t —n+1)] h(n—1)

A

How to get the linear part only ? Does the BLA work ?
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The Best Linear Approximation

How does the BLA perform?

N = 100000, ng = 100,SNR = oo , nonlinearity : y = z;

True Noisy
—Estimated Estimated

True

m BLA=LS is at its best : optimal estimator

m Try some real Wiener system
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The Best Linear Approximation

How does the BLA perform?

N = 100000, ng = 100,SNR = oo , nonlinearity : y = z + 0.52°;

True Noisy
——Estimated - Estimated
True

m BLA still works fine
m Maybe the nonlinearity is “not nonlinear enough”

m Try something more nonlinear
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The Best Linear Approximation

How does the BLA perform?

N = 100000, ny = 100,SNR = oo , nonlinearity : y = 2sign(z) + z;

True Noisy
—— Estimated Il Estimated

True

m BLA seems not to be disturbed by discontinuities J
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The Best Linear Approximation

How does the BLA perform?

N = 100000, ny = 100,SNR = oo , nonlinearity : y = 2sign(z);

True Noisy
—— Estimated - Estimated

True

m Not even for saturation case

= Try add some noise
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The Best Linear Approximation

How does the BLA perform?

N = 100000, ny = 100,SNR = 10dB , nonlinearity : y = 2sign(z);

True
—— Estimated

m The linear part estimation is still really close to the truth J

= Reduce the number of points
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The Best Linear Approximation

How does the BLA perform?

N = 1000, ng = 100,SNR = 10dB , nonlinearity : y = 2sign(z);

True

True  Noisy
—Estimated - Estimated
2

m The linear part estimation is still acceptable (N = 10n)
= What is the catch?
= All functions were monotonous

= Try non-monotonous functions
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The Best Linear Approximation

How does the BLA perform?

N = 1000, ng = 100,SNR = 10dB , nonlinearity : y = 0.82° 4+ 0.22%;

True Noisy
— Estimated Estimated
True

= Now it is off !
m Though, asymptotically Ogr.a — 6o
m Is it possible to make the BLA fail ?

m Are Wiener identification efforts worth it ?

V. Laurain (Université de Lorraine) iModel



The Best Linear Approximation

What does the BLA do

The LS from the PEM point of view
= y(k) = (k) 0o + e(k)

® Ous = ming ||e(k)||2

w fus =E [ (¢(0)T0(K) | E [p(k) Ty (0)]

In the Wiener system case
n y(k) = f(p(k)"6o) + e(k)
m In Wiener systems, we are NOT interested in 6,

m Wiener model is ill-posed

The output is the same for any pair (Ao, f(z/\)), X € R
Usual constraint : ||0]]> =1

Any 6 = M., A € R is acceptable— 8 = 8/||4|2
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The Best Linear Approximation

The Wiener system identification problem

The identification problem as a geometric interpretation

m Any M0, is suitable — we are searching for a projection direction

= How to manipulate ¢ in order to find the correct projection ?

2r 1 2 &

1.5F 15

1 1

0.5F 0.5

% 0 >0

-0.5 -0.5
-1 1 -1 &

-1.5F -15
-2 1 -2 N
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The Best Linear Approximation

What does the BLA do?

s =2 [ (o007 0) "] E [0(K) Ty (K)] = nE[ ]
Where is y in the ¢ space?
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The Best Linear Approximation

What does the BLA do?

o -15 -15 o
-2 -2
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The Best Linear Approximation

What does the BLA do?
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The Best Linear Approximation

What does the BLA do?

o, -15 -15 o
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The Best Linear Approximation

What does the BLA do?

E [(K)y(K)] J
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The Best Linear Approximation

What does the BLA do?

Boea =E [(o(k)To(k) " |E [o(0) Ty(K)] )
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The Best Linear Approximation

What does the BLA do?

Conclusions

m BLA is surely not optimal

= It can be though proven : OsLA — Ao, A € R

m If enough data, the Wiener identification is then solved
v

m Ogra =FE {(;(k)’;(k)) 1} E [z(k)f(zx)]o

A

= If f is even, then E [z(k)f(zx)] = 0 and asymptotically fgra — 0

m Starting statement for our work

m Should we really bother only for even functions?

Yes, Life is not asymptotic )
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The Best Linear Approximation

Example in 2D
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The proposed approach
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The proposed approach

The BLA limitation

Why is the BLA limited ?

= For even nonlinear functions E [(¢(k) Ty(k))] — 0
m Is there any other operator which would be robust to even nonlinearities ?

m "Easy to see” the "main direction” of ¢(k) " y(k) (red cloud)
m Make a estimator based on PCA— E [((p(k)Ty(k))T (go(k)Ty(k))]
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The proposed approach

The WPCA algorithm

The main proof

= E (¢ (k) " (9(k) (k)] = 02E [y?] In + cov (%,2) 607
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The proposed approach

The WPCA algorithm

The main proof

s E [(gp(k)Ty(k))T (@(k)Ty(k))] =Rk D/ZJ I + cov (sz\/z’) 00T

® cov (2%, y?) and o7E [y?] are real numbers
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The proposed approach

The WPCA algorithm

The main proof

9

5 E [(e(0)Ty(k) " (e(0)Ty(K)] = o [y*] I +cov (2,y%) 667

® cov (2%, y?) and o7E [y?] are real numbers

= 07K [y’]l, has n eigenvalues equal to o7E [y?]
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The proposed approach

The WPCA algorithm

The main proof

= E (00 (k) " (9(k)Ty(K)] = 02 [y?] In + cov (2%,) 00

® cov (2%, y?) and o7E [y?] are real numbers
= 07K [y’]l, has n eigenvalues equal to o7E [y?]

m 007 has A\; = 1 with associated eigenvector +6 and n — 1 eigenvalues equal to 0
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The proposed approach

The WPCA algorithm

The main proof

s E {(;(k) y(k))  (¢(k) y(k):)} =o2E [y2] In + cov (22,y2) 00"

® cov (2%, y?) and o7E [y?] are real numbers

07K [y*]» has n eigenvalues equal to o7E [y?]

m 007 has A\; = 1 with associated eigenvector +6 and n — 1 eigenvalues equal to 0
T

E[(p(0)Ty(k) " (k) Ty (k)] has :

m 1 eigenvalue equal to o2E [y?| + cov (22, y?) with associated eigenvector +6
= n—1 eigenvalues equal to o7E [y°]
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The proposed approach

The WPCA algorithm

E [(#(k) Ty (k)" (k) Ty (k)] = 0ZE [y?] In + cov (22, y%) 667

cov (22,y2) and o2E [yﬂ are real numbers
oK [y?] I has n eigenvalues equal to o3 E [y?]

007 has A1 = 1 with associated eigenvector +6 and n — 1 eigenvalues equal to 0

E[(p(0)Ty(k) " (k) Ty (k)] has :

n — 1 eigenvalues equal to oK [y?]

Proposed estimator

Choose 0 as the eigenvector associated to the “different” eigenvalue : smallest or largest
depending on sign (cov (22, y2))
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The proposed approach

Slight details

The proof holds for any function of y : w(y(k)) = w(k)
s E [(g@(k)TW(k))T ((p(k)TW(/())} =o2E [W2] I + cov (2%, w?) 007

= Variance can be reduced e.g. : w(y) = +/|y|,1 — e*’. Empirically In(1 + |y|).

(k) normalization

= In the BLA, there is a normalization by E(w(k) " o(k))
m Here, the proof holds asymptotically for gaussian assumption

= In practice p(t) needs to be normalized such there isn’'t any a priori predominating
eigenvalue in ¢ :

[wi(;) ] y(;) s{)gg
B L TR 1 RN L]
oT(NV) y(N) B(N)
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The proposed approach

The algorithm

Step 1 : Normalization

m From ® = USV", compute ® = UV "

Step 2 : Weighting

w(y(N))@(N)

Step 3 : SVD

s &, =U,S,V, andset§=V or =V (the one farthest from median)

v

Step 4 : “Denormalization”

" azvs*lvTé—wzﬁ
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The proposed approach

Some programming aspects

n= 100 , N=3000 — t = 0.08s
n= 100 , N=30000 — t = 0.4s od
n= 100 , N=300000 — t = 5s 0
n= 100 , N=500000 — t = 10s
n= 100 , N=600000 — t = X

Step 1 reduces the variance : for large datasets, Step 1 can be skipped

Step 3 : SVD nxn

n= 100 — t ~ tgia < 0.1s

Very simple algorithm

Similar computation time as the BLA

V. Laurain (Université de Lorraine) iModel 24 /38



Some results
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Some results

Example : n=100, N=2000, SNR=12dB,w = In(1 + |y|)

angle mean worst best

1 15 15, 15
08 1 : 1 1
06 0.5 05 0.5
<
2 0 0 0 y
0.4
-0.5] -0.5
0.2 -1 -1
1.5 -1
% 05 0 1 S 0 1 55 0 1
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Some results

Example : n=100, N=2000, SNR=12dB,w = In(1 + |y|)

In the 6 space for a median angle :

0.4

Est
—true
0.3 mean

o2H || | e
o1\ (1 4 : Ml A A .

o ¥ |

YN NV LYWL WD YU LA YU AN A
011 oy T ARIRA1 : V\

10 20 30 40 50 60 70 80 90 100
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Some results

Example : n=100, N=10000, SNR=10dB

With a transfer function
m (1—-1.69¢7" +1.119g72 — 0.0969%)z(k) = 0.5¢ 3u(k)
= f(2) =|z|, w(y) = In(1 + |y])

1
Estimated
True
—Worst
0.5 —Mean
0 4
051 i
. I | I I | | I |
0 20 40 60 80 100 120 140 160 180 200
average worst Best possible

~average worst worst
true true . best possible

O R I SERU -
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Some results

Example : n=100, N=10000, SNR=10dB

With a transfer function

m (1—-1.69¢7" +1.119g72 — 0.0969%)z(k) = 0.5¢ 3u(k)
= f(z) = f(|z]), w(y) = In(1 + |y|)

Estimated
True
— Worst
0.5 —Mean
0 -
~05 -
1 1 1 1 1 | | 1 | |
0 20 40 60 80 100 120 140 160 180 200

average worst Best possible

10 10
average worst worst
« true true ) al best possible
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Some results

Example : n=100, N=10000, SNR=10dB

With a transfer function

m (1—-1.69¢7" +1.119g72 — 0.0969%)z(k) = 0.5¢ 3u(k)
m f(z) = 0.5sign(z) + z, w(y) = In(1 + |y|)

Estimated
True
— Worst
0.5 —Mean
0 -
~05 -
1 1 1 1 1 | | 1 | |
0 20 40 60 80 100 120 140 160 180 200

average worst Best possible

10 R
- average worst |t
t best possible i
5| ) 4
B
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With a transfer function

Some results

Example : n=100, N=10000, SNR=10dB

m (1—-1.69¢7" +1.119g72 — 0.0969%)z(k) = 0.5¢ 3u(k)
m f(z) = max(z) — z.2, w(y) = In(1 + |y|)

1
Estimated
True
— Worst
0.5 —Mean
0 J
o5l i
» I | I | | I | |
0 20 40 80 100 120 140 160 180 200
average worst Best possible
50|
- average worst
50 N true . best poss\b\eL,
+ e 4 ;
> §

i .. 30}
5
8
2

20

10
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Some results

Example : n=180, N=40000, SNR=10dB

With a transfer function

m (1—-1.69¢7" +1.119g72 — 0.096q%)z(k) = 0.5¢ 3u(k)

B f(z) = 2% + 4sin(6z7/max(|z])), w(y) = In(1 + |y|)

Estimated
True
Worst
Mean
"o 20 40 60 80 100 120 140 160 180 200
average worst Best possible
60 60;
‘ average worst 60y worst
LY true 1 50/ true 50 best possible
40 0 w© P
Y e
30 30 4 % % s
> EL Y > N T30 e #
w Y . 2 S F
» F % - 2 F
10 A \/‘f 10 s b‘ e \ 4
1 3 ¥ 10
¥ r L -
. - . i | . . /
)l » f - 0 l\
5 0 5 5 [ 5 5 o 5
z z o
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Leftovers : the non gaussian case
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Leftovers : the non gaussian case

Gaussian Hypothesis relaxation

What we are interested in

m E [(p(k) w(K) " (oK) w(k))]
m E[o(u)] with u ~ g, g is Gaussian PDF : E, [¢(u)]

v

What we have

N

= u~ f, (f not gaussian PDF), — E/ [¢(u)] ~ %Z‘f’f(“)
i=1

= Is it possible to get E, [¢(u)]?

Importance sampling

- B [o(w)] = [ owete)ds = [ o) £ r(0)au =B o)) |

u E, [op(uv)] = %Zqﬁ;(u)%, with u ~ f

m It is possible to estimate E, [¢(u)] from "any” f PDF distribution !
(asymptotically)
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z) = 0.2z> + 0.82°

BLA
. \/PCA
I resampling

m BLA is seriously handicaped

m original and resampled
distribution perform similarly
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z) = 0.22> + 0.87°

==rren
I resampling
m BLA is seriously handicaped
m original and resampled
= distribution perform similarly
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z) = 0.22> + 0.82°

BLA
. \/PCA
I resampling

m BLA is advantaged by the
uniform distribution

m Resampled distribution
performs better than original
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z) = 0.2z> + 0.82°

BLA
. \/PCA
I resampling

m BLA is advantaged by the
uniform distribution

m Resampled distribution
performs better than original
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z) = 0.2z> + 0.82°

m Is the problem solved ?
m No free lunch : resampling has a cost

m Let us raise the number of dimension 6 — 12
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z)

BLA
. \/PCA
I resampling

m BLA is seriously handicaped

m Resampled distribution
performs much worse than
original
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z)

EEBLA
I VVPCA
25f B rosampiing

m BLA starts reducing the
variance thanks to Uniform
distribution

m Resampled distribution
performs much worse than
o BLA

iModel 32 /38
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Leftovers : the non gaussian case

Example

From | To | A with NL= |/

, SNR=20dB, f(z) = 0.2z> + 0.82°

BLA
. \/PCA
I resampling

m BLA tends to asymptotic
results

m Resampled distribution does
not perform better than BLA
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Leftovers : the non gaussian case

Example

From :::,7 To /\ with NL= \/

, SNR=20dB, f(z) = 0.2z> + 0.82°

= What is the cost of resampling ?
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Leftovers : the non gaussian case

Extreme Example

Consider an extreme case : Uniform to Circle PDF 2D

m Originally N points
m Finally 70.5%N = 0.79N
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Leftovers : the non gaussian case

Extreme Example

Consider an extreme case : Uniform to Circle PDF 3D

m Originally N points
= Finally 4/370.5*N ~ 0.52N
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Leftovers : the non gaussian case

Extreme Example

Consider an extreme case : Uniform to Circle PDF more D

u n9:5

m Originally N points

m Finally N = 0.16N
m ng =10

m Originally N points

m Finally N =~ 0.003N
m ng =20

m Originally N points
m Finally N =~ ON

m There is some curse of dimensionality

Resampling from one distribution to another = loss of information
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Leftovers : the non gaussian case

good news and the bad news

From | To /\ with NL= 1./

, N= 10000, SNR=20dB, f(z) = 0.2z> + 0.8z

The bad news

Importance sampling will not
perform well for high dimensional
problems

| A

The good news

WPCA approach works fine
without resampling

A

02 03 04 05 06 07 08 08 1 11 12
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Conclusion
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@ Conclusion
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Conclusion

Conclusions

The correlation-based methods

m Most identification methods

= Will always have trouble with parity components
v

Another view on identification

m Geometric interpretation
m WPCA based approaches

v

m The proposed approach is not optimal

® what is optimality in approximation context ?
® how to initialise optimal approaches?
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Conclusion

Conclusions

Advantages of the method

m It does not require usual a priori NL knowledge :

m No need for invertibility, parity,continuity, monotony or fix point information
m It has a low computational effort

m It is robust to noise

m The gaussian assumption is not required in practice

V.

m Better formulation for IIR linear blocks

m How to best choose the weighting function

N
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Thank You

Wiener System ldentification by Weighted Principal

Component Analysis
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