UNIQUENESS OF TENSOR TRAIN DECOMPOSITION WITH LINEAR DEPENDENCIES

Yassine Zniyed', Sebastian Miron®, Rémy Boyer3, David Brie®

! Laboratoire des Signaux et Systémes, CentraleSupelec, Gif-Sur-Yvette, France
2 CRAN, Université de Lorraine, CNRS, Vandceuvre-leés-Nancy, France
3 Laboratoire CRIStAL, Univeristé de Lille, Villeneuve d’ Ascq, France

ABSTRACT

With the increase in measurement/sensing technologies, the
collected data are intrinsically multidimensional in a large
number of applications. This can be interpreted as a growth of
the dimensionality/order of the associated tensor. There exists
therefore a crucial need to derive equivalent and alternative
models of a high-order tensor as a graph of low-order tensors.
In this work we consider a “ train ” graph, i.e., a (Q-order ten-
sor will be represented as a Tensor Train (TT) composed of
@ — 2 3-order core tensors and two core matrices. In this con-
text, it has been shown that a canonical rank-R CPD model
can always be represented exactly by a TT model whose cores
are canonical rank- R CPD. This model is called TT-CPD. We
generalize this equivalence to the PARALIND model in order
to take into account potential linear dependencies in factors.
We derive and discuss here uniqueness conditions for the case
of the TT-PARALIND model.

Index Terms— Tensor Train, PARALIND, identifiability

1. INTRODUCTION

Canonical Polyadic Decomposition (CPD) [1] is one of the
most used tensor decompositions in signal processing. The
CPD and its variants are attractive tools due to their ability
to decompose tensors into physically interpretable quantities,
called factors. Its uniqueness has been studied in several state-
of-art articles such as [2, 3, 4]. Uniqueness and compactness
are two of the advantages that make the CPD widespread. In-
deed, the CPD is usually unique under mild conditions and its
storage cost grows linearly with respect to the order. Recently,
tensor networks (TNs) [5] have been subject of increasing in-
terest, especially for high-order tensors, allowing more flexi-
ble tensor modelling. TN split high-order () > 3) tensors
into a set of lower-order tensors. Tensor train decomposition
(TTD) [6] is one the most compact and simple TNs. Indeed,
TTD breaks a high (Q-order tensor into a set of ) lower-order
tensors, called TT-cores. These TT-cores have orders at most
equal to 3. In this sense, TNs are able to break the “curse of
dimensionality”.

In a recent work [7], an equivalence between the CPD and
the TTD was proposed. In fact, it has been shown that a Q-

order CPD of rank- R is equivalent to a train of 3-order CPD(s)
of rank-R. This result makes it easier to jointly reduce the
dimension and estimate the CPD factors using the TT-cores
when the original tensor has a high order. Otherwise, when
Q is high, the CPD factors estimation becomes a difficult task
using ALS-based techniques [8]. At the same time, the ex-
isting results on the equivalence between CPD and TTD are
based on the assumption that the CPD factor matrices are all
full column rank, in which case, estimating the factor matri-
ces from the TT-cores is straightforward. Posteriorly to [7],
in the unpublished work [9], another TT-based method has
been proposed for CPD factors estimation. This latter only
assumes that the TT-cores have a CP decomposition, with-
out specifying the coupling properties between the TT-cores,
which leads to a straightforward factor estimation up to same
column permutation and scaling indeterminacies whose prod-
uct equals 1, as in [7, 10]. Dealing with the CPD ambiguities
is not required in [7, 10], in contrast to [9]. Moreover, none of
these works have discussed the partial identifiability, which is
one of the contributions of this work.

In this work, we focus on the case where linear depen-
dencies are present between the columns on the factor ma-
trices leading to high-order PARALIND (PARAllel profiles
with LINear Dependences) model [11]. PARALIND is a vari-
ant of the CPD with constrained factor/loading matrices, that
models a linearly dependent factor P as a product of a full
column rank matrix P and an interaction matrix ®. Matrix
® introduces the linear dependency and rank deficiency in P.
Linear dependencies in factor matrices are of great interest in
real scenarios and can be encountered in chemometrics appli-
cations [11] or in array signal processing [12], to mention a
few. In this work, some new equivalence results between the
TTD and PARALIND are presented. The TT-cores structure
is exposed when the (Q-order PARALIND has only two full
column rank factor matrices. Partial and full uniqueness con-
ditions for the new TT-PARALIND model are also studied.

The notations used in this paper are as follows. Scalars,
vectors, matrices and tensors are represented by z, x, X and
X, respectively. The symbols (-)T and (-)~! denote, respec-
tively, the transpose and the inverse. Zj, r denotes the k-order
identity tensor of size R X --- X R, and Z9 g = I g. The ma-
trix unfold; X of size N, X Ny -+ Ni_1 Ny - - - Ng refers



to the k-mode unfolding of X of size N7 x - - - x Ng. The n-
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mode product is denoted by e. The contraction e between two
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tensors A and B of size N1 X --- x Ng and M7 x --- x Mp,
with N, = M,, is a tensor of order (Q + P — 2) such that
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2. EQUIVALENCE BETWEEN PARALIND AND TTD

2.1. Tensor-Train Decomposition (TTD)

Definition 1. A Q-order tensor of size N1 x ... x Nq that
follows a Tensor Train decomposition (TTD) [6] of TT-ranks

{R1,...,Ro—1} admits the following definition:
1,1, 1 1 1
X:G1592§QSZ---Q:1QQ—15GQ; (1

where the TT-cores G1,G,, and Gg are, respectively, of di-
mensions N1 x Ry, R;_1 x Nq x Ry, and Rg_1 X Ng, for
2 < ¢ < Q-1, andwe haverank{G1} = Ry, rank{Gg} =
Ro—1, rank{unfold1G,} = R,_1, and rank{unfold3G,} =
R,.

It is straightforward to see that the TTD of X in eq. (1) is
not unique since

1 1 1 1 1
X=A _10A
19A29 A0 o Ag-1e Ao,
where

A =GUY,
Ag=Ug 1Go,

1,01,
quUq_lggquql.

For1 < g < Q—1, U, are square nonsingular matrices of di-
mension R, x R,. In practice, the TTD is performed thanks
to the state-of-art TT-SVD algorithm [6]. It is a sequential
algorithm that recovers the TT-cores G, based on (Q — 1)
SVDs applied to several matrix-based reshapings using the
original tensor X. This algorithm allows to recover the true
TT-cores up to a post and pre-multiplication by transforma-
tion (change-of-basis) matrices due to the extraction of dom-
inant subspaces when using the SVD. In the next section, we
will derive the structure of the estimated TT-cores when the
original tensor X follows a CPD with linear dependencies
between the columns of the loading matrices.

2.2. PARALIND-TTD equivalence

Consider Q-order tensor X of size N7 X - - - X N that follows
arank-R CPD:

XZIQ7R:P1;P2...C02PQ, (2)

where the loading matrices P, are of size N, x R. It was
shown in [7, 10] that if the loading matrices P, are full-
column rank for 1 < ¢ < @, then they can be recovered
from the TT-cores by order-3 CPD decompositions.

In this section we study the case where linear dependen-
cies are present between the columns of the loading matrices
of (2). Thus, a loading matrix P, can be expressed as:

pP,=P,®, 3)

where P,, is full column rank of size N, x R, (R, < R) and
®, is a rank deficient matrix of size R, x I containing the
dependency pattern between the columns of 15q. This CPD
model with linear dependencies is also known as PARALIND
(PARAllel profiles with LINear Dependences) [11].

Theorem 1 (PARALIND - TTD equivalence). Decomposing
tensor X in (2) into a TT format, where Py and P are full
column rank matrices, and Py (2 < ¢ < Q — 1) follow (3),
recovers the estimated TT-cores such that

G,=PU;",
Gy =TsreUys18(Py®,)eU; ", 2<q<Q~1
T
Go=Uqg-1Pg,
where, for1 < q < Q—1, U, is a square R X R nonsingular
matrix. The TT-cores G1,G,, and G are, respectively, of

dimensions N1 x R, R x Ny x R, and R x Ngq, given TT-
ranks all equal to R.

Proof. Note that tensor Zg r in eq. (2) can be expressed as

1 1 1 1
7T =IpeT T I 4
Qr=1reIsr " Q°_1 3,1%52 R, 4

replacing eq. (4) into eq. (2), we get
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Before introducing the ambiguity matrices U4, tensor X can
then be expressed into a TT format as

1 ~ 1 1 ~
X =P ;(1'3,1%;132@2)3"' ., (IB,R;PQ72(I)Q72)
A, —
Az Ag_2
o (IspePo 18 1)s Ph (5)
ot IsrgPo1®o-1)s Pg .
AQ

Ag_1

One may note that for 2 < ¢ < @ — 1, the considered TT-
cores Ai, A, and Ag verify the definition of the TTD
given in Definition 1, ie., rank{A,} = rank{Ag} =
rank{unfold;A,} = rank{unfolds.A,} = R, which justify



that matrices P; and P must be of full column rank. By
identifying the TT-cores A, in eq. (5), introducing the pre-
and post-multiplication ambiguity matrices U, presented in
2.1, and using the following equivalence

11, _
gq:Uq,lg.Aquql:Aq:Uq,lquT,

theorem 1 is proven. o

3. UNIQUENESS OF THE PARALIND-TTD

One of the most popular condition for the uniqueness of the
CPD decomposition is the Kruskal’s condition [2] relying on
the concept of “Kruskal-rank”, or simply krank. The krank of
an N x R matrix P, denoted by krank{ P}, is the maximum
value of £ € N such that every ¢ columns of P are linearly
independent. By definition, the krank of a matrix is less than
or equal to its rank. Kruskal proved [2] that the condition

krank{ P} + krank{ P2} + krank{ P3} > 2R+ 2 (6)

is sufficient for uniqueness of the CPD decomposition in (2),
with Q = 3. Furthermore, it becomes a necessary and suf-
ficient condition in the cases R = 2 or 3 (see [3]). Herein,
by uniqueness, we understand “essential uniqueness”, mean-
ing that if another set of matrices P, P5 and P5 verify
(6), then there exists a permutation matrix IT and three in-
vertible diagonal scaling matrices (A1, Ao, Aj) satisfying
A1 A5 A3z = Ig, where Iy is the R-th-order identity matrix,
such that

P, =P IIA,, P,=P,IIA,, P3;=PsIIA;.

The uniqueness condition (6) has been generalised to Q-
order CPDs in [13]. It states that the loading matrices P,

(g=1,...,Q)in (2) can be uniquely estimated from X if
Q
> krank{P.} > 2R+ (Q — 1). (7)
q=1

This condition is sufficient but not necessary for the unique-
ness of the CPD decomposition.

Based on Kruskal’s uniqueness condition as well as on the
results derived in [4], we formulate in the following a partial
and a full uniqueness condition for the PARALIND-TTD of a
QQ-order tensor.

Theorem 2 (Partial uniqueness of TT-PARALIND). The
loading matrix P, can be uniquely recovered from the es-
timated TT decomposition of X if there exist q1 and qs

(q1 # qo # q), such that:

rank{P,, } = rank{Py,} = R,
rank{P,} > 2.

Proof. In the CPD (2) the order of the factor matrices is ar-
bitrary and can be changed by a simple index permutation.
Thus, in the following we will suppose, without loss of gen-
erality, that ¢; = 1 and g2 = Q. The fact that rank{P;} =
rank{Pg} = R implies that the square matrices U, in the-
orem 1 are all full rank R. Therefore, the G, tensor can be
uniquely recovered from X by the TT-SVD algorithm.

According to theorem 1, the tensor G, can be expressed
as:

-T
gq:I&R:Uq,l;quUq . (8)

Following Kruskal’s uniqueness condition (6), the factor
matrices in (8) can be recovered from G, if

krank{Uq_l}—i—krank{Pq}—l—krank{Uq_T} >2R+2. (9)

However, in our case we are only interested in recovering P,
which allows to relax Kruskal’s condition. It was proven in
[4] that the matrix P, can be be uniquely estimated from G,
if

krank{Uq,l}—f—rank{Pq}—f—krank{U;T} > 2R+2. (10)

AsU ,_1 and U ; are full rank square matrices, and rank{ P, }
2, (9) is verified, which completes the proof.
O

Theorem 3 (Full TT-PARALIND uniqueness). The loading
matrices Py, ..., Pqg can be uniquely recovered from the es-
timated TT-cores G1,Ga,...,G0-1,Gq if:

rank{P;} =rank{Pqo} =R
rank{P,;} >2, 2<¢<@Q-—1
krank{Ps}, krank{Pg_1} > 2.

Proof. This result is a consequence of theorem 2. The
uniqueness of factor matrices P, ..., Pg_; can be proven
by repeatedly applying theorem 2 to the different TT-cores
G, 2 < g £ Q — 1. Meanwhile, condition (10) does not
guarantee uniqueness of the change-of-basis matrices U ;1
and U,. In order to guarantee this, Kruskal’s condition (9)
would need to be verified, which we do not require.

Thus, the condition krank{Ps}, krank{ Pg_1} > 2 im-
plies uniqueness of the CPD decomposition of TT-cores G4
and Gg—1 and consequently, the uniqueness of the R x R
non-singular matrices U and Ug—_;. From theorem 1 we
get:

Py =GU,and P =GHUL!,.

Thus, the unique recovery of G and G from X along with
uniqueness of U and Ug_; implies uniqueness of factor
matrices Py and P, which completes the proof.

O

>



4. DISCUSSION

4.1. More restrictive conditions

Compared to Kruskal’s condition (7) for order-QQ CPD, the
uniqueness condition of theorem 3 is more restrictive. For ex-
ample, in the case of a fourth-order tensor (Q) = 4), the condi-
tion of theorem 3 implies 23=1 krank{P,} > 2R+4, while

Kruskal’s condition requires 23=1 krank{P,} > 2R + 3.
This is a direct consequence of imposing simultaneous (par-
tial) uniqueness on all the order-3 TT-cores. More restrictive
uniqueness conditions is the price to pay for having a numeri-
cally efficient algorithm, that guarantees recovery of the load-
ing matrices for a wide variety of scenarios.

4.2. Estimation scheme architecture

It is worth noting that, from an algorithmic point of view, the
estimation of the loading matrices P, can be done either in
parallel or sequentially. For a parallel estimation scheme, the
conditions of theorem 3 are sufficient. In [7], a sequential
scheme was proposed, based on a sequential retrieval of both
matrices P, and U ;. It requires at each step the knowledge
of U,_; for decomposing G,. To use a similar sequential
scheme for the TT-PARALIND model, it is necessary to also
ensure the uniqueness of matrices U,. This can be done by
replacing condition rank{P,} > 2 (2 < ¢ < Q — 1) in
theorem 3 by a stronger one, krank{P,} > 2 (2 < ¢ <
Q-1).

4.3. Perspectives

1. The condition rank{P;} = rank{Pq} in theorem
1 requires the knowledge of the indices of full-rank
modes of tensor X', which are then arbitrarily fixed to
1 and @; once these two modes are fixed, the order in
which the remaining modes are processed is arbitrary.
It is certainly possible to obtain a condition involving
only one full rank matrix, but in this case the order in
which the other modes are processed must be carefully
chosen to guarantee the required rank conditions for the
TT-SVD algorithm. This aspect is currently under in-
vestigation.

2. A very promising application domain of these results is
the low-rank approximation of high-dimensional prob-
ability mass functions. In this case, these uniqueness
results are of upmost importance as the linear depen-
dencies in the model could account for the random
variables correlations. A potential application is repre-
sented by the flow cytometry data analysis, as shown in
[14].

5. CONCLUSION

The factorisation of a high-order tensor into a collection of
low-order tensors, called cores, is an important research topic.
Indeed, this family of methods called tensor Networks is an
efficient way to mitigate the well-known “curse of dimention-
ality” problem. In this work, we prove that a ()-order PAR-
ALIND of rank R can be reformulated as a () — 2 train of
tensors possibly column-deficiency and two full column rank
matrices. The condition of partial and full uniqueness are ex-
posed and discussed.
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