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Abstract

Quaternions are still largely misunderstood and often considered as an “exotic” signal representation

without much practical utility, despite the fact that they have been around the signal and image processing

community for more than thirty years now. The main aim of this article is to counter this misconception

and to demystify the use of quaternion algebra for solving problems in signal and image processing.

To this end, we propose a comprehensive and objective overview of the key aspects of quaternion

representations, models and methods and illustrate our journey through the literature with flagship

applications. We conclude this work by an outlook on the remaining challenges and open problems

in quaternion signal and image processing.

Index Terms

Quaternion algebra, hypercomplex signal processing, quaternion representations, quaternion singular

value decomposition, HR-calculus, properness of quaternion random variables

I. HISTORY, BACKGROUND AND AIM OF THE PAPER

Quaternions were first introduced by Irish mathematician Sir William Rowan Hamilton in 1843 as a

result of his dedication to generalize complex numbers in more than two dimensions. He spent many

years trying in vain to define a three-dimensional algebra based on a system of triplets. Story has it that

he discovered the quaternions when walking along the Royal Canal in Dublin, Ireland on the 16th of

October 1843, and immediately carved the fundamental equation for quaternion algebra in the stone of

the nearby Brougham Bridge:

i2 = j2 = k2 = ijk = −1, (1)
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where i, j and k define imaginary units. While the carving has now disappeared, a plaque honoring

Hamilton’s memory can be found at the same place today. Hamilton devoted his last 20 years to the

study of his quaternions which culminated in his book, Elements of quaternions. After his death in 1865

quaternions remained fashionable for some time, but they were rapidly superseded by the advent of linear

algebra as we know it today through the work of Gibbs and Heaviside at the end of the 19th century1.

Still, Hamilton was a precursor in many aspects and influenced many. For instance, he invented the

term vector well before the advent of modern linear algebra: at the time, it simply referred to the three

dimensional imaginary part of a quaternion.

The set of quaternions is usually denoted by H as a tribute to Hamilton’s discovery. Just like complex

numbers are well known to describe algebraically the geometry of the 2D plane, quaternion algebra

permits straightforward descriptions of geometric transformations in 3D and 4D spaces. Formally, a

quaternion is defined by a real (or scalar) part and an imaginary (or vector) part made of three components

along imaginary units i, j and k. This close relationship between purely imaginary (or simply pure)

quaternions and vectors in R3 is fundamental. In fact, the triplet of imaginary units (i, j,k) can be

identified with the canonical Cartesian basis of R3 given by (e1, e2, e1×e2) where × denotes the cross-

product between vectors of R3. Remarkably, quaternion algebra encodes the cross-product operation in

a natural way since ij = k, jk = i or ki = j. More generally, the product of two quaternions involves

3D scalar products and cross-products. This also explains why the multiplication of two quaternions is

non-commutative: it results from the well-known non-commutativity of the cross-product, and translates

the fact that geometric transformations in 3D and higher dimensions lack commutativity as well. For

later reference, Table I collects essential definitions, sets, properties and polar forms related to quaternion

algebra.

Perhaps one of the most striking examples of quaternion utilization in today’s applications lies in their

ability to represent 3D rotations. Representing a 3D rotation with a single unit quaternion has many

benefits over standard Euler angles rotation matrices: a lower number of parameters, no gimbal lock

singularities2, nice interpolation properties between rotations. These advantages have been acknowledged

for a long time in robotics [1] and computer graphics [2], where the use of quaternions is well-established.

On the contrary, the use of quaternions in signal and image processing is still blooming, with first works

dating back to the early 1990s [3].

1To learn more about the fascinating history of quaternions and linear algebra, we recommend the reading of A History of

Vector Analysis: Evolution of the Idea of a Vectorial System, by Michael J. Crowe, Dover Publications, 1994.
2This refers to the loss of one degree of freedom that can occur when using Euler angles to parameterize 3D rotations, causing

important practical issues when representing a sequence of rotations.
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TABLE I

HANDBOOK OF QUATERNION ALGEBRA

Basic definitions Canonical basis H = span{1, i, j,k}

Elementary relations i2 = j2 = k2 = ijk = −1, ij = −ji = k

ki = −ik = j, jk = −kj = i

Cartesian representation q = a+ ib+ jc+ kd, a, b, c, d ∈ R

Real and imaginary parts Re(q) = a, Imi(q) = b,

Imj(q) = c, Imk(q) = d

Scalar and vector parts S(q) = a, V(q) = ib+ jc+ kd

Conjugation q = a− ib− jc− kd = S(q)−V(q)

Modulus |q| =
√
qq =

√
qq =

√
a2 + b2 + c2 + d2

Inverse q−1 =
q

|q|2 , q ̸= 0

Involution qµ = −µqµ, µ2 = −1

Sets Pure quaternions V(H) = {q ∈ H | Re(q) = S(q) = 0}

Unit quaternions Sp(1) = {q ∈ H | |q| = 1}

Complex subfields of H, µ ∈ V(H) ∩ Sp(1) Cµ = {α+ µβ | α, β ∈ R}

Properties

p, q ∈ H

Addition Re(p+ q) = Re(p) + Re(q)

Imµ(p+ q) = Imµ(p) + Imµ(q), µ = i, j,k

Product pq = S(p)S(q)− ⟨V(p),V(q)⟩R3

+ S(p)V(q) + S(q)V(q) +V(p)×R3 V(q)

Compatibility with operations conjugation (pq) = q p

involution (pq)µ = pµqµ

inverse (pq)−1 = q−1p−1

modulus |pq| = |p| |q|

Polar forms and geometry Euler formula (axis-angle representation) q = |q|eµqΦq = |q| (cosϕq + µq sinϕq)

axis µq ∈ V(H) with |µq| = 1, angle ϕq ∈ [0, 2π]

Euler angle polar form (xzy convention) q = |q|eiθe−kχejϕ

θ ∈ [−π

2
,
π

2
], χ ∈ [−π

4
,
π

4
], ϕ ∈ [0, 2π]

3D rotation by axis µ, angle α ∈ [0, π] Rµ,α(q) = exp(µα
2
)q exp(−µα

2
)
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This article aims at providing an overview of the current use of quaternions in signal and image

processing, ranging from data representation using quaternions to dedicated quaternion-domain methods

and algorithms. It is intended to demystify the field for the newcomers, and make it accessible to the

many. We hope to demonstrate that, up to the special care required to extend standard signal and image

processing tools to quaternion algebra, the use of quaternion-domain approaches enables a compact,

elegant and interpretable way to handle geometric properties of signals and images.

II. REPRESENTING SIGNALS AND IMAGES WITH QUATERNIONS

Many physical phenomena can be probed using (electronic) sensors. In a very broad viewpoint, sensors

transform complex physical properties into electrical properties (such as output voltage or current) that

can be processed by further electronics. For that reason, physical measurements always boil down to

acquiring real values: intensity of light passing through a color filter or variations of amplitude along one

direction in an accelerometer, for instance. Data recordings therefore correspond to arrays of real numbers,

such as vectors (e.g. univariate signals) or matrices (e.g. grayscale images). However, even if raw data are

intrisically real-valued, one often takes advantage of other representations to facilitate their modeling,

analysis or processing. One of the most striking examples is perhaps the use of complex numbers in

signal and image processing. They arise naturally when transforming raw data using the (complex)

Fourier transform. Such a manipulation enables many insights that would have been otherwise (almost)

impossible. For instance, complex numbers define unambiguously the essential notions of magnitude

and phase, which are pivotal to signal processing practice: spectral analysis, filter design, time-frequency

analysis, array processing, etc. They also provide a compact and elegant way to write pairs of signals such

as in-phase and quadrature components in communications or functional magnetic resonance imaging.

These several convenient properties explain the popularity of complex-valued representations in signal

and image processing.

Quaternions are no different in that respect. Just like complex numbers, they offer a novel representation

space which exhibits several unique properties such as polar forms and natural handling of 3D geometry,

which can be interesting to exploit in applications. More importantly, quaternions define a (skew)-field:

this means that except noncommutativity of the quaternion product, quaternions have the same desirable

properties as the real and complex fields. This ensures that the mathematical foundations crucial to signal

processing (Fourier transform, vector spaces, linear algebra, etc.) can all be defined in a meaningful

way. Moreover, the similarity between methodologies developed for quaternion-valued signal and image

processing and their real counterparts tend to demonstrate that noncommutativity is not an issue in general

– provided that it is handled in an adequate manner. Since their introduction in the signal processing
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community more than three decades ago, the usage of quaternion-valued representations has focused

on two complementary settings, namely the encoding of 3D and 4D signals and the construction of

interpretable algebraic embeddings of signals and images.

A. Encoding 3D and 4D vector signals

This first setting may arguably be seen as the most natural one. The main idea is to encode the

components of 3D or 4D vector signals on the three (imaginary only) or four (real and imaginary) parts

of a quaternion. This allows to extend the standard arithmetic operations over real numbers (addition,

subtraction, multiplication, division) to three and four dimensional real vectors. In the case of the two-

dimensional real vectors, this extension is naturally performed by the complex numbers. This way, one

can handle vector quantities using algebraic operations in a way similar to what can be done with

scalars. This can be very helpful especially for the case when 3D or 4D vector data is acquired with

respect to one or two diversities (time, space, wavelength, etc.). As an illustrative example, consider

the case of a color image defined by the triplet of real matrices {R,G,B} encoding red, green and

blue color channels respectively. This triplet can be conveniently represented as the pure quaternion

matrix Q = iR + jG + kB. This algebraic representation follows directly from the identification of

the imaginary units i, j,k with the canonical Cartesian basis of R3. It permits to separate between the

internal multivariate nature of the color image (i.e. a 3D vector encoding colors at each pixel) and its

external multidimensional nature (an array of M ×N spatial pixels) in an elegant way. In comparison,

the equivalent real-domain representation of such data is often cumbersome, and usually handled by

stacking the 3 or 4 components in a single long-vector or matrix. While this stacking procedure is

mathematically sound, it may hinder the intimate relationships between the internal components and the

geometric properties of such vector data. On the contrary, the algebraic quaternion encoding of 3D and 4D

vectors enables natural representations of multi-diversity vector data as quaternion vectors and quaternion

matrices. This also means that many fundamental signal processing operations for 3D and 4D vector

data can be formulated in terms of quaternion linear algebra operations in a rather straightforward way.

Building on these advantages, quaternions have been effectively employed to encode vector measurements

in seismology [4], wind and temperature forecasting [5], electromagnetics [6], telecommunications [7],

or color image processing [8], [9], to name a few.

B. Algebraic embeddings of signals and images

This second setting is a little bit more intricate. It relies on carefully designed transforms that map

signals or images into the quaternion domain. These transforms define quaternion embeddings which
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original image local amplitude local orientation (mod ) local phase

0.5 0.0 0.5 0.2 0.4 0.6 0.8 1.0 0 /2 0 /2

Fig. 1. Monogenic signal analysis of a AM-FM mode. The quaternion polar form enables identification of local amplitude

(Gaussian kernel envelope); local orientation (shown as direction for visualization purposes) which gives the orientation of the

tangent vector of contour lines; local phase which encodes image lines (0 or π values) and contours (π/2 values).

facilitate the analysis, understanding and processing of the original data. They ship with highly inter-

pretable parameters, making it possible to decipher geometric features of the original signal or image.

So far, most of the research towards interpretable quaternion-valued embbedings has focused on two

areas: the construction of quaternion transforms for analyzing local features in grayscale images and the

development of a geometric signal processing toolbox for bivariate signals. It is worth noting that albeit

being apparently unrelated, both approaches consider generalizations of the analytic signal in higher-

dimensions by exploiting quaternion algebra; they also both leverage extensively quaternion polar forms

for meaningful interpretations of the embeddings. These two areas are reviewed in detail here below.

Quaternions transforms for grayscale image analysis

The importance of the analytic signal for the understanding and modeling of instantaneous amplitude

and phase of real-valued signals has been recognized for a long time in signal processing. This motivated

the study of its generalizations in higher dimensions, the most prominent one being the definition of a

meaningful 2D-“analytic signal” to analyze the local content of images (grayscale). The main difficulty

in directly extending definitions from the 1D case is that higher dimensions (notably 2D) lack a natural

multidimensional Hilbert transform. To fill this gap, several approaches have been designed for the 2D

case: the most salient ones exploit the higher degrees of freedom offered by the quaternion algebra to

formulate meaningful 2D counterparts of the 1D analytic signal. A first approach, proposed by Bülow

and Sommer [10], uses a carefully designed 2D Quaternion Fourier Transform (QFT) enjoying desirable

symmetry properties for grayscale images. This permits to define a one-to-one mapping between a

grayscale image and a quaternion-valued image obtained by restricting its QFT to the first orthant.

Further decomposing this quaternion-valued signal using the Euler quaternion polar form (see Table I)
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allows identification of a local amplitude and three phases, which are meaningful for texture analysis.

This QFT-based approach was further explored in [11] with the design of a dual-tree quaternion wavelet

transform for coherent multiscale analysis of grayscale images.

Another line of work, perhaps the most popular one, revolves around the monogenic signal. It was

first introduced by Felsberg and Sommer [12] as a generalization of the analytic signal to the 2D case.

The monogenic signal is a quaternion-valued image, built from the original grayscale image and two

Riesz transforms. The interpretation as a 2D-“analytic signal” essentially comes from the intuition that,

“the Riesz transform is to the Hilbert transform what the gradient is to the derivative operator”, to

quote [13]. Given a grayscale image f(r) with spatial coordinates r = (r1, r2), the Riesz transform

Rf = (R1f,R2f) is defined in the spatial domain as

Rif(r) = p.v.
1

π

∫∫

R2

(ri − r′i)

∥r − r′∥32
f(r)dr, i = 1, 2 , (2)

where p.v. stands for Cauchy principal value. The Riesz transform is translation- and scale-invariant. It

also exhibits a nice compatibility with 2D rotations, a property known as steerability. The monogenic

signal Mf is constructed in the quaternion domain as Mf = f+iR1f+jR2f . Being quaternion-valued,

it can be uniquely decomposed using the quaternion polar form q = |q|eµqϕq , where the axis µq is a pure

unit quaternion (i.e. such that µ2
q = −1) and ϕq ∈ [0, π) is the phase. Applying this polar decomposition

to the monogenic signal enables identification of local features of the image f(r) in a straightforward

way. It reads

Mf(r) = A(r) exp(µθ(r)ϕ(r)) , (3)

where A(r) := |Mf(r)| defines the local amplitude, ϕ(r) is the local phase, and where the axis

µθ(r) = i cos θ(r) + j sin θ(r) defines a local orientation θ(r) ∈ [−π, π). Note that the axis µθ(r) has

no k-component, as a result of the construction of the monogenic signal Mf(r) along the imaginary

axes i and j. As a first example, consider a plane wave f(r) = A0 cos (κ · r) where κ = (κ1, κ2) ∈

R2 is the wavenumber vector. Direct computations of the Riesz transform yield the monogenic signal

Mf(r) = A0 exp [(κ · r)(i cos θ0 + j sin θ0))] with θ0 = arg(k1 + ik2). Hence the local amplitude is

constant A(r) = A0, the local phase ϕ(r) = κ ·r is directly that of the cosine wave, and local orientation

is constant θ(r) = θ0 corresponding to that of the wavenumber vector k in the 2D plane. Fig. 1 depicts

a more sophisticated example corresponding to a 2D AM-FM mode. The monogenic signal permits a

direct identification of Gaussian amplitude modulation kernel A(r) and local orientation θ(r). The local

phase ϕ(r) allows to detect lines (ϕ(r) = 0 mod π), simultaneously with contours (ϕ(r) = π/2).

The monogenic signal provides key insights into the geometry of 2D grayscale images. However, it

suffers from the same limitations as the standard 1D analytic signal approach. It exhibits poor performance
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in noisy settings and fails to capture meaningful local features when considering multicomponent 2D

signals, such as superposition of 2D AM-FM modes. Therefore, an important line of research has focused

on extending the monogenic signal approach towards multiscale or multiresolution analysis of grayscale

images. The general idea is to devise multiple filterbanks built from monogenic wavelets functions at

different scales. Then, at each scale or resolution, one can identify corresponding local features by

computing the quaternion polar form of coefficients3. We mention hereafter some of these extensions.

One is the monogenic continuous wavelet transform [14], which can be seen as a generalization of the 1D-

analytic wavelet transform to the case of grayscale images. In the discrete case, a minimally-redundant

monogenic multiresolution analysis was proposed in [13] using so-called Riesz-Laplace wavelets. A

generalization of the curvelet transform to the monogenic case, called monogenic curvelet transform,

was proposed in [15]. Other proposed approaches include transposing ideas from mode reconstructions in

time-frequency analysis to the case of the monogenic signal, leading to the monogenic synchrosqueezing

transform [16], or extending monogenic wavelet decompositions to the case of color images [17].

Monogenic signal-based approaches have found many applications (e.g. texture segmentation, target

recognition, boundary detection) in various domains such as medical imaging, synthetic aperture radar

imaging and geophysics.

Quaternion Fourier transform for bivariate signal processing

Bivariate signals appear in a broad range of applications where the joint analysis of two real-valued

time series is required: polarized waveforms in seismology and optics, eastward and northward current

velocities in oceanography, or even gravitational waves emitted by coalescing compact binaries. In

such applications, it is crucial to provide clear and straightforward interpretations of the joint geomet-

ric and dynamic properties of the two components x1(t) and x2(t) that define the bivariate signal.

Formally, a bivariate signal can be represented in two equivalent ways: a 2D time-evolving vector

x(t) = [x1(t), x2(t)] ∈ R2 or a complex-valued signal x(t) = x1(t) + ix2(t) ∈ C encoding the two

components on its real and imaginary parts. While the vector representation is generic (meaning that it

is not restricted to the bivariate case), it also hinders a natural understanding of the geometric properties

of bivariate signals. On the other hand, the complex representation permits the definition of a meaningful

quaternion framework for bivariate signals relying on: (i) a dedicated Quaternion Fourier Transform

3For completeness, it is worth noting that not all works subsequent to the original seminal paper [12] use an explicit quaternion

formulation of the monogenic signal. However, they largely make use of local angle and axis features, which are naturally

connected to the quaternion polar form (3) of the monogenic signal. Therefore, these approaches can be labeled as quaternion-

based, in a broad sense.
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Fig. 2. a) Instantaneous ellipse parameters [a, θ, χ, ϕ] associated to the bivariate signal x(t) thanks to the Euler polar form

(6) of its quaternion embedding. b) Poincaré sphere of polarization states, a visual tool appearing naturally in the quaternion

spectral representation of bivariate signals. Second-order properties of bivariate signals have a straightforward interpretation in

terms of physical Stokes parameters S0, S1, S2, S2. In turn, normalized Stokes parameters S1/S0, S2/S0, S3/S0 correspond

to Cartesian coordinates of points on the Poincaré sphere. c) Typical gravitational wave bivariate signal emitted by a compact

binary black hole system exhibiting precession of the orbital plane. d) Quaternion spectrogram of the bivariate signal depicted

in c). It describes the time-frequency content of the signal, both in terms of energy (S0) and polarization properties (normalized

Stokes parameters S1/S0, S2/S0, S3/S0).
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(QFT) and (ii) the extensive use of quaternion calculus (such as polar forms) to extract relevant physical

and geometric information.

The key intuition for a quaternion spectral representation of bivariate signals is rather simple. For real-

valued (that is, univariate) signals, the use of the standard complex Fourier transform enables a complex-

valued spectral representation. This complex embedding of univariate signals is at the heart of definitions

of amplitude and phase, which are crucial to many tasks of signal processing such as spectral analysis,

filtering or time-frequency analysis. Now, if one represents bivariate signals as complex-valued signals,

a quaternion embedding can be constructed in a similar way. First, observe that x(t) = x1(t) + ix2(t) ∈

Ci ⊂ H: it is a special case of a quaternion-valued signal. However, contrary to the complex Fourier

transform, the QFT has no unique (or canonical) definition. Freedom of definition comes from the position

of exponential, which can appear either left or right of the signal x(t), and from the choice of the axis

µ (a pure unit quaternion such that µ2 = −1) in the exponential. For instance, by choosing µ = i with

x(t) ∈ Ci one recovers the standard complex Fourier transform. For bivariate signals, the right-sided

QFT definition with µ = j is usually adopted [18]

X(f) =

∫

R
x(t)e−j2πftdt, x(t) ∈ Ci. (4)

The definition (4) exhibits every desirable property of FTs: it is well-defined for typical bivariate signals,

it preserves energy and inner products (Parseval-Plancherel theorem) and it can be computed efficiently

with 2 FFTs by observing that X(f) = X1(f) + iX2(f), where X1(f), X2(f) are standard (Cj-valued)

complex Fourier transforms of x1(t) and x2(t), respectively. More importantly, for bivariate signals viewed

as Ci-valued signals, it exhibits a Hermitian-like symmetry X(−f) = −iX(f)i, meaning that only the

positive frequency spectrum carries relevant information. This makes it possible to define the quaternion

embedding of a bivariate signal by canceling out the negative frequency spectrum. This bivariate analogue

of the well-known analytic signal of real-valued univariate signals is defined as

x+(t) =

∫

R+

X(f)ej2πftdf. (5)

The signal x+(t) is quaternion-valued. Therefore, at each time instant, it can be decomposed thanks

to the Euler polar form of a quaternion q = aeiθe−kχejϕ which identifies a magnitude a := |q|

and three phases corresponding to successive rotations around axes i, j and k. The Euler polar form

plays the same role as the standard polar form for the usual analytic signal. It establishes a one-to-one

mapping between the original bivariate signal x(t) and a canonical quadruplet of instantaneous parameters

[a(t), θ(t), χ(t), ϕ(t)], obtained by decomposing the quaternion embedding x+(t) as

x+(t) = a(t)eiθ(t)e−kχ(t)ejϕ(t). (6)
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Under a classical narrow-band assumption on x(t), it is now possible to attach a very insightful inter-

pretation to the canonical parameters [a(t), θ(t), χ(t), ϕ(t)].

Fig. 2a) displays the instantaneous ellipse traced out by x(t) in the (x1, x2) plane. The ellipse is char-

acterized by its size a(t), orientation θ(t) and shape χ(t): the last canonical parameter ϕ(t) corresponds

to the dynamical phase, i.e. the instantaneous position of x(t) within the ellipse. This shows that the

instantaneous parameters have a natural geometric interpretation, which also corresponds to the physical

notion of polarization in optics. The geometric insights provided by the quaternion representation do not

stop there. Fig. 2b) gives the Poincaré sphere of polarization states, where each point of the 2-sphere

corresponds to a given polarization state. Strikingly, it can be shown that the two quadratic quantities

appearing in the Parseval-Plancherel theorem for the QFT correspond directly to the physical Stokes

parameters S0, S1, S2, S3, a set of four real-valued parameters widely used in optics to describe the

polarization properties of light. The Poincaré sphere representation is particularly helpful, as it shows

that normalized Stokes parameters S1/S0, S2/S0, S3/S0 are Cartesian coordinates for polarization states.

For instance, the poles of the Poincaré sphere correspond to counter-rotating circularly polarized states,

whereas its equator contain linear polarization states, with orientation given by the longitude. This key

property enables the definition of power spectral densities or time-frequency representations (such as

spectrograms or scalograms) that have a straightforward interpretation in terms of physical polarization

parameters.

Fig. 2c) and Fig. 2d) showcase the time-frequency analysis of a gravitational wave (GW) bivariate

signal thanks to the quaternion Fourier transform framework. Gravitational waves are bivariate signals,

with two components x1(t) and x2(t) corresponding to plus and cross gravitational wave polarizations,

respectively. Fig. 2c) depicts a simulated GW emitted by a binary black hole, a typical GW astrophysical

source. The instantaneous variations of the interrelations between amplitude and phase of each component

yields polarization modulation, which provides crucial insights towards the orbital motion of the GW

(e.g. precession or orbital eccentricity). Fig. 2d) represents the quaternion spectrogram of the bivariate

GW signal depicted in Fig. 2c). The quaternion spectrogram is a natural generalization of the classical

spectrogram: it relies on the definition of the quaternion short-term Fourier transform (QSTFT), which

follows directly by considering the QFT (4) of windowed, time-translated signal segments x(t)g(t −

τ), where τ is a time-shift and g(t) is usually a real symmetric window with compact support [18].

Second-order conservation properties of the QSTFT lead to representing and interpreting the quaternion

spectrogram in terms of time-frequency Stokes parameters. This four time-frequency maps must be

analyzed jointly: S0 is alike the standard well-know spectrogram and gives the energy distribution of the

signal in the time-frequency plane; the normalized Stokes parameters S1/S0, S2/S0, S3/S0 reveal the
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instantaneous polarization state along ridges (i.e. lines of maximal energy in S0).

More generally, the quaternion spectral representation of bivariate signals enables the definition of

a full algebraic signal processing framework. It puts polarization at the heart of many fundamentals

tools of bivariate signal processing, such as general time-frequency or time-scale representations [18],

the definition of power spectral densities and their estimation [19] and the design of linear time-invariant

filters [20]. Quaternions provide considerable insights into the geometric properties of bivariate signals

by levaraging the well-established language of polarization in optics, without sacrificing the usual math-

ematical guarantees nor the availability of computationally cheap implementations.

III. THE QUATERNION TOOLBOX FOR SIGNAL PROCESSING

The interesting upper mentioned benefits of quaternion-valued representations immediately raise a

natural question: is it possible to extend standard signal processing tools (e.g. low-rank decompositions,

minimization of cost functions, least mean squares algorithms, etc.) to the quaternion setting in some

natural way? If the answer was negative, then quaternion-valued representations would be of little

practical use, since the insights gained by choosing quaternion representations would be canceled out by

cumbersome processing. Fortunately this is not the case: standard tools of signal and image processing

extend nicely over quaternion algebra. Still, this is not straightforward: the non-commutativity of the

multiplication of two quaternions usually prevents direct extensions from the real and complex case.

Over the last three decades, researchers have dedicated a lot of energy to establish a meaningful signal

processing toolbox to deal with quaternion-valued data. We propose hereafter a tour of these important

tools, and illustrate their relevance on flagship applications.

A. Low-rank quaternion models

Among the numerous applications of linear algebra in signal processing, low-rank approximation

plays a central role and algorithms for performing EigenValue Decomposition (EVD) or Singular Value

Decomposition (SVD) of data matrices are used on a daily basis in a wide range of applications. Existence

of EVD and SVD for quaternion matrices is known for a long time, even though standard concepts of

linear algebra have to be considered with caution because of the non-commutativity of the quaternion

product. For instance, one must distinguish between right and left eigenvalues, depending on the side

position of the scalar in eigenvalue problems. Given a square quaternion-valued matrix A ∈ HN×N ,

its right eigenvalues λr ∈ H are defined as solutions of Ax = xλr, where x ∈ HN is a nonzero

quaternion vector. Similarly, left eigenvalues λl ∈ H are defined as solutions of Ax = λlx. Right

eigenvalues are well understood and used in all applications of quaternions in data science until now. On



PREPRINT SUBMITTED TO IEEE SIGNAL PROCESSING MAGAZINE 13

the contrary, left eigenvalues are much more cumbersome: their study remains an active field of research

in mathematics. For signal processing practice, dealing with right eigenvalues is sufficient: they define

natural quaternion counterparts of usual real and complex eigenvalues and can be computed efficiently.

They also share some similar properties with their classical counterparts: for instance, a Hermitian matrix

A (i.e. AH = A, where (·)H is the usual conjugate-transpose operator) necessarily has real-valued right

eigenvalues. Moreover, a necessary and sufficient condition for Hermitian A to be positive semidefinite

(i.e. xHAx ≥ 0 for any x) is to have all its right eigenvalues nonnegative.

The quaternion singular value decomposition (Q-SVD) of a rectangular quaternion-valued matrix A ∈

HN×P is defined as [21]:

A = U∆V H, with U ∈ HN×N ,V ∈ HP×P ,∆ ∈ RN×P
+ . (7)

The expression of Q-SVD looks very familiar: ∆ is a rectangular diagonal matrix with non-negative real

numbers (the singular values of A) on its diagonal ∆ii = δi, U and V are unitary quaternion matrices,

meaning that UHU = IN and V HV = IP where I is the identity matrix. Columns of U define the left

singular vectors of A, whereas columns of V give its right singular vectors. Moreover, Q-SVD enables the

computation of the best rank-ℓ approximation of a quaternion matrix in the Frobenius norm: one simply

truncates the Q-SVD by keeping only the first ℓ terms corresponding to the ℓ largest singular values. As an

important special case of the Q-SVD, consider the case of an Hermitian matrix A ∈ HN×N . Its Q-SVD

reads A = UΣUH, where Σ = diag(|λ1|, . . . , |λN |) and λ1, . . . , λN ∈ R are the (right) eigenvalues

of A. Therefore, if A is positive semidefinite, then its right eigenvalues are real nonnegative, and the

Q-SVD of A is identical to its quaternion right EVD (Q-EVD). In particular, columns of U correspond

to (right) eigenvector of A. As a result, computing the Q-EVD of a positive definite Hermitian matrix

comes down computing its Q-SVD, for which efficient algorithms exist [22]. This result is particularly

important for subspace methods in array processing, which rely on diagonalization of covariance matrices

built from quaternion-valued samples, such as quaternion MUSIC (Q-MUSIC). See details below.

The Q-SVD plays a crucial role in the definition of any subspace methods over quaternions. In vector-

sensor array processing, for example, Q-SVD allows to separate quaternion data into signal and noise

subspaces and to take advantage of vector-sensors measurements to perform source localization [22]–[25].

However, one may question the relevance of using quaternions for subspace estimation. The mathematical

soundness of quaternion subspace methods relies on the orthogonality constraint inherited from the scalar

product over HN . The columns of U and of V in (7) are orthogonal, meaning that uH
ℓ uℓ′ = 0 and

vH
ℓ vℓ′ = 0 for ℓ ̸= ℓ′. This actually imposes that the real and the three imaginary parts of this scalar product

cancel out simultaneously. Such a constraint is much stronger than complex orthogonality (considering
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pair of complex-valued vectors rather than quaternion vectors). As a consequence, quaternion subspace

methods are usually more robust to model errors than their long-vector complex counterparts.

Quaternion-MUSIC for vector-sensor array processing An illustrative example of application of

subspace methods in signal processing is the estimation of the Direction Of Arrival (DOA) of polar-

ized sources impinging on a vector-sensor array using the quaternion MUSIC (Q-MUSIC) algorithm

introduced in [23] . For 2D vector-sensors (crossed dipoles, geophones, acoustic vector-sensors, etc.),

a narrow-band fully polarized source can be represented as the quaternion embedding of a bivariate

signal (6) with linear phase ϕ(t) = ω0t, slowly varying amplitude a(t) and constant polarization pa-

rameters [θ, χ]. Consider a uniform linear array made of M 2D vector-sensors, identically oriented,

with equal spacing ∆x. Assuming a single far-field source, the response of the m-th sensor reads

xm(t) = a(t) exp[iθ] exp[−kχ] exp[jω0t] exp[−jτm(α)] where τm(α) = (2π/λ)(m − 1)∆x sinα, is

the phase delay between the first and mth sensors. Here λ denotes the wavelength and α the DOA of

the source in the array plane. Therefore, a snapshot of the array at time instant t can be written as the

quaternion-valued vector x(t) ∈ HM such that

x(t) = x0(t)v(α), with v(α) =
[
1, e−jτ2(α), . . . , e−jτM (α)

]⊤
, (8)

where x0(t) is the quaternion-valued signal measured by the first sensor and (·)⊤ denotes the transpose

of a matrix. Generalizing this model to a noise-corrupted linear superposition of K far-field polarized

sources, a snapshot of the output of the sensor-array can be expressed as:

y(t) =

K∑

k=1

x0k(t)vk(αk) + n(t), (9)

with vk the steering vector associated to source k of DOA αk and where n(t) ∈ HM is the noise vector

on the array. Following the rationale of subspace methods developed in the real and complex cases, one

forms the quaternion-valued covariance matrix of the data Cyy = E{y(t)yH(t)} ∈ HM×M , where E{·}

denotes the mathematical expectation. Then, under some commonly accepted assumptions (uncorrelated

sources and white noise), the matrix Cyy is shown [23] to be written as:

Cyy = DΣDH + σ2
nIM , (10)

where the columns of D ∈ HM×K correspond to the K source vectors dk(θk, χk, αk) = eiθke−kχkvk(αk),

Σ = diag(σ2
1, . . . , σ

2
K) with σ2

k = |x0k(t)|2 the kth source power and σ2
n is the noise power. Now,

classical arguments yield that the signal subspace of the observations is spanned by the K quaternion

eigenvectors associated to the K largest eigenvalues of Cyy. The remaining M −K eigenvectors form

an orthonormal basis in the noise subspace. Recall that in this case, the Q-EVD of Cyy boils down to the
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Q-SVD (since it is Hermitian positive semidefinite). By leveraging the orthogonality between the signal

and noise subspaces, the expression of the Q-MUSIC functional is:

SQ-MUSIC(θ, χ, α) =
1

dH(θ, χ, α) Π d(θ, χ, α)
, (11)

where d(θ, χ, α) = eiθe−kχv(α) is the steering vector and Π = UK+1:U
H
K+1: is the orthogonal projector

on the noise subspace spanned by UK+1: = [uK+1, . . . ,uM ]. Similarly to standard MUSIC algorithm for

scalar sensors, the K highest local maxima of (11) correspond to the DOAs and polarization parameters

of the K sources.

Classically, when dealing with 2D vector-sensors, the two complex-valued components of size M of

the array are simply concatenated in a long-vector of size 2M . Then, the standard MUSIC algorithm

is applied to this enhanced data vector. This is commonly known as the long-vector MUSIC (LV-

MUSIC). Compared to LV-MUSIC, where classical orthogonality is imposed globally over the two stacked

components of the array, the quaternion-vector orthogonality associated with Q-MUSIC implies stronger

orthogonality constraints (component-wise) between signal and noise subspaces. It was shown in [23]

that these quaternion constraints enable a better separation between subspaces. This results in improved

performance (in terms of estimation error and resolution) compared to LV-MUSIC, while reducing the size

of the data covariance representation. Fig. 3 provides a brief illustration of the advantages of Q-MUSIC

compared to its long-vector counterpart. Following these results, several other quaternion methods [4],

[6], [26], extending the standard subspace-based DOA estimation algorithms to the quaternion framework

have been proposed.

B. Solving optimization problems in the quaternion domain

Modern signal and image processing problems can often be formulated as solutions of optimization

problems. Quaternion domain problems are no exception. For instance, the quaternion least mean squares

(QLMS) algorithm described in Section III-C or the sparse coding of 3D/4D data (see further below) can

all be formulated as the problem of minimizing a real-valued cost function f with quaternion arguments.

Formally, one is interested in solving optimization problems of the form

q̂ = argmin
q∈H

f(q), (12)

where f : H → R is a cost function (e.g. a quadratic form) and q̂ is the solution of the minimization

problem. This formulation extends easily to the case of quaternion vectors q ∈ HM and quaternion

matrices Q ∈ HM×N variables. Now, how can one solve (12)? If q was a standard real-valued variable,

it would be sufficient to explore the stationary points of f (points where the derivative of f vanishes, at
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Fig. 3. Comparison between Q-MUSIC and LV-MUSIC for a uniform linear array with M = 10 sensors with spacing ∆x = λ/4.

SNR was set to 0 dB assuming H-proper Gaussian noise. Sample covariance matrix were computed using 32 samples in all

experiments. a) Plots of the Q-MUSIC (red) and LV-MUSIC (blue) functionals for two far fields polarized sources with DOAs

α1 and α2. The two panels depicts values of functionals with respect to angle α, along two slices corresponding to polarization

parameters of each source (left: θ = π/3, χ = π/5, right: θ = −π/6, χ = −π/5). b) Performance comparison in terms of

MSE on the DOA in a single source scenario. Curves depicts average values computed using 1000 independents runs.

least in the differentiable case) to obtain the different local minima of the cost function f . Unfortunately,

the same approach cannot be applied directly with quaternion variables. The main reason is that quaternion

differentiability (in a quaternion analysis sense) can only be defined for analytic functions f : H → H.

In particular, cost functions – which are of interest for signal and image processing – are not analytic as

they only take values in R. On the other hand, the real-valued cost function f in (12) of quaternion

argument q = qa + iqb + jqc + kqd can also be considered as a function of its four real-valued
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components qa, qb, qc, qd, such that f(q) = f(qa, qb, qc, qd), with little abuse of notation. This formal

identification suggests that one could compute the derivative of the function f as if it was a function

of R4. This apparent contradiction between real-domain and quaternion-domain derivatives is addressed

by the theory of (generalized) HR-calculus, developed in the first half of the 2010 decade [27]–[30]. In

essence, it forms a complete set of calculus rules that permits computations of derivatives of functions of

quaternion variables, as if they were functions of their real and imaginary parts. Still, it operates directly

in the quaternion domain, meaning that the burden of transforming (12) into an equivalent real-domain

optimization problem can be completely avoided.

Before going further, let us mention that the construction of HR-calculus is closely related to the

framework of CR-calculus (also known as Wirtinger calculus) for solving optimization problems in

complex variables – often encountered in complex-valued signal processing. Still, the derivation of HR-

calculus is far from being trivial. Many differences and subtleties arise when generalizing from complex

variables to quaternion variables, in particular due to the noncommutativity of the quaternion product.

While we will only survey the basics of HR-calculus here to illustrate its usefulness, we refer the

interested reader to the seminal papers [27]–[29] for detailed proofs and extensive results.

Let us consider a cost function f : H → R. We suppose, for convenience, that f is real-differentiable

[29], that is the function f(qa, qb, qc, qd) is differentiable with respect to its four variables qa, qb, qc and

qd. The HR-derivatives of f with respect to q and q are defined as [30]

∂f

∂q
=

1

4

(
∂f

∂qa
− ∂f

∂qb
i− ∂f

∂qc
j − ∂f

∂qd
k

)
, (13)

∂f

∂q
=

1

4

(
∂f

∂qa
+

∂f

∂qb
i+

∂f

∂qc
j +

∂f

∂qd
k

)
. (14)

More generally, it is also possible to define HR-derivatives with respect to canonical involutions qi, qj , qk

and their respective conjugates. Equations (13) – (14) show that HR-derivatives are quaternion-valued,

as they collect partial derivatives of f(q) with respect to each one of the components of q along the

canonical basis {1, i, j,k}. Remark that since we assume f to be real-valued, the two HR-derivatives

are related through conjugation (∂f/∂q) = ∂f/∂q. However, to turn the fundamental definitions (13) –

(14) into a practical framework for computing quaternion derivatives, it is necessary to consider additional

derivatives with respect to qµ and qµ where µ ∈ H and µ ̸= 0. This leads to the generalized HR-calculus

[29], which equips (13) – (14) with convenient product and chain rules. It is worth noting that these

properties hold for arbitrary quaternion-valued functions f : H → H, i.e. the theory is not limited to

cost functions. Importantly, the (generalized) HR-calculus framework has been extended [27] to compute

derivatives with respect to quaternion vector and matrix variables. Vector and matrix counterparts of

∂f/∂q and ∂f/∂q are denoted in quite a natural way, i.e. ∇qf and ∇qf denote HR-gradients of f(q),
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TABLE II

HR-DERIVATIVES OF USUAL COST FUNCTIONS OF QUATERNION SCALAR, VECTOR AND MATRIX ARGUMENTS. ADAPTED

FROM [27], [29].

Scalar functions f : H → R ∂f

∂q
notes

f(q) = Re(αqβ + γ)
1

4
α β α, β, γ ∈ H

f(q) = |αqβ + γ| 1

4

α(αqβ + γ)β

|αqβ + γ| α, β, γ ∈ H

f(q) = |αqβ + γ|2 1

2
α (αqβ + γ)β α, β, γ ∈ H

Vector functions f : HM → R ∇qf

f(q) = Re
(
bHq

) 1

4
b b ∈ HM

f(q) = qHAq
1

2
Aq A ∈ HM×M , AH = A

f(q) = ∥Aq − b∥2HM

1

2
AH (Aq − b) A ∈ HM×N , b ∈ HM

Matrix functions f : HM×N → R ∇Qf

f(Q) = Re (trace{AQB}) 1

4
AHBH A ∈ HL×M ,B ∈ HN×L

f(Q) = ∥A−BQC∥2F
1

2
BH (BQC −A)CH A ∈ HL×P ,B ∈ HL×M , C ∈ HN×P

while ∇Qf and ∇Qf correspond to matrix derivatives of the function f(Q). Table II collects such

derivatives for some elementary cost functions in the scalar, vector and matrix case. Only derivatives

with respect to conjugates q, q and Q are given; since the considered functions are real-valued, it suffices

to take the quaternion conjugate to obtain derivatives with respect to q, q or Q. Moreover, observe the

similarity between HR-derivatives and usual real-domain functions: the only noticeable difference being

the unusual 1/4 prefactor arising from definitions (13) – (14).

As explained earlier, solving (12) requires the ability to find stationary points of the cost function. The

HR-calculus enables their characterization as one would expect: for instance, a vector q⋆ is a stationary

point of f(q) if the HR-gradient vanishes at this point, i.e. ∇qf(q⋆) = ∇qf(q⋆) = 0. Moreover, the

direction of the maximum rate of change of f at point q is given by ∇qf(q), that is the HR-gradient

with respect to q. This yields immediately the steepest gradient descent method in the quaternion domain
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as iterations

q(k+1) = q(k) − ηk∇qf(q
(k)) (15)

where ηk > 0 is the step size at iteration k. Eq. (15) is one of the first building blocks of quaternion-

domain optimization. For instance, it represents a cornerstone of the derivation of the quaternion LMS

(QLMS) algorithm and its variants – as we shall explain in detail in Section III-C. The generalized HR-

derivatives framework can be further refined. For instance, it is possible to define a meaningful quaternion

Hessian matrix, thus paving the way to extend well-known second-order algorithms such as the Newton

method to the quaternion domain. We refer the interested reader to [28] for further details on this topic.

To further illustrate the generalized HR-calculus framework, let us consider the quaternion sparse

coding problem. Let y ∈ HM be a vector of observations which one seeks to represent in a dictionary

D ∈ HM×N as y ≈ Dq where q is a sparse vector and N > M . This problem appears naturally in color

imaging, where y is a color patch encoded as a pure quaternion vector, D is an overcomplete collection

of color atoms and q is a sparse quaternion vector. Just like in the real and complex case, this problem

can be solved using greedy algorithms based on ℓ0 penalty, such as quaternion orthogonal matching

pursuit (Q-OMP) [8], [31]. On the other hand, following standard practice, one can relax the non-convex

ℓ0-penalty into a convex ℓ1-norm regularization leading to the quaternion LASSO (Q-LASSO) problem

[32], [33] (or equivalently, quaternion basis pursuit denoising):

argmin
q∈HM

∥y −Dq∥22 + λ∥q∥1 , λ ≥ 0. (16)

In (16) the quaternion ℓ1-norm of vector q ∈ HM is defined as the sum of moduli of its entries ∥q∥1 :=
∑M

m=1 |qm|. Interestingly, since the quaternion ℓ1-norm collects a sum of moduli, it can be interpreted

as a mixed norm ℓ2,1 on the real matrix A obtained by concatenating the four real-valued components

of q such that A = [qa qb qc qd] ∈ RM×4, i.e. ∥q∥1 = ∥A∥2,1. This means that the Q-LASSO (16) can

be interpreted in the real domain as a group Lasso with M groups of size 4.

The problem (16) defines a convex optimization problem in quaternion variables. In practice, quaternion

convex optimization problems can be solved by translating usual real domain algorithms to the quaternion

case by leveraging the generalized HR-calculus. Still, this generalization is not trivial and requires

special care [34]. In particular, the general form of equality constraints in quaternion convex optimization

problems is widely affine: i.e. it reads A1q + A2q
i + A3q

j + A3q
k = b, where matrices and vectors

are quaternion-valued with appropriate sizes. In comparison, in real-domain convex optimization, only

affine equality constraints of the form Ax = b, where vectors are all real-valued, are considered. To

solve the (unconstrained) problem (16), one can adapt the celebrated Iterative Shrinkage-Thresholding
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Algorithm (ISTA) to handle quaternion variables. Generalized HR-calculus makes it possible to derive

the quaternion ISTA iterations in a intuitive way. Letting f(q) = ∥y −Dq∥22, the iterations read

q(k+1) = Tληk

{
q(k) − ηk∇qf(q)

}
, (17)

where ηk > 0 is the step size at iteration k and Tβ is the soft-thresholding operator (i.e. the proximal

operator associated to the quaternion ℓ1-norm) given entry-wise by Tβ(q) = max(0, 1 − β/|q|)q. Note

that in this case, the gradient can be directly computed thanks to Table II as ∇qf(q) =
1
2D

H(Dq − b).

Of course, more sophisticated optimization problems can be formulated and solved directly in the

quaternion domain. For instance, in the case of 3D data sparse coding (such as color images) that uses pure

quaternions, it might be relevant to impose that the solution q⋆ satisfies Re(Dq⋆) = 0. This constraint is

widely linear – meaning that constraining the problem (16) preserves its convex nature. Solving this type

of constrained quaternion optimization problems can be carried out within the same general framework,

for instance using the quaternion alternating direction of multiplier method (Q-ADMM), as explained in

[34].

C. Statistics for quaternion random variables

Statistics for quaternion random variables and vectors has been developed in order to extend classical

signal processing algorithms relying on probabilistic models. As 4D variables, quaternions can either

be understood as four dimensional real vector-valued random variables, i.e. variables in R4 or as two

dimensional complex random vectors, i.e. variables in C2. Just like for complex-valued random variables

and vectors, detecting and taking into account symmetries in the probability density function (pdf) of

quaternion random variables is essential in devising powerful signal processing tools. The notion of

properness (also known as second order circularity) captures such rotation invariance of the pdf. It was

considered in many scenarios and exploited in several algorithms either as an extra parameter in the signal

model or as a signature of the absence/presence of a targeted signal hidden in a noisy environment. A

solid literature is available for the complex case, (see e.g., [35] and references therein).

In the quaternion case, the original study and definition of properness traces back to Vakhania’s

work [36], before being considered by the signal processing community [37]–[40]. The major difference

between the complex and quaternion cases is the existence of different levels of properness over H while

only one level can be identified over C. The three levels of properness of a quaternion-valued random

variable4 are denoted R-properness, (1,µ)-properness (where µ is a pure unit quaternion, also denoted

4The notion can be directly extended to vectors, but we illustrate here the concept on scalar-valued variable for clarity.
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Cµ-properness) and H-properness [38], [40]. These levels correspond to different invariance properties of

the random variable distribution. In the Gaussian case, properness means invariance properties of the 4×4

real (augmented) covariance matrix ΓR = E{qRq⊤R }, where qR = [qa, qb, qc, qd]
⊤ ∈ R4. Thus, symmetries

of the quaternion Gaussian pdf can be interpreted as symmetries of the equivalent real covariance matrix

of the augmented vector qR gathering the real and imaginary parts of q ∈ H. Fig. 4 gives an illustration

of the structure induced by two levels of properness on the 4×4 real covariance matrix ΓR in the case of

centered quaternion-valued Gaussian variables. While the H-properness level is the “simplest” (the four

components of the quaternion variables are uncorrelated and have the same variance), the (1,µ)-proper

case has a much more complicated correlation structure (here µ = j for illustration purposes).

Accounting for properness is essential in quaternion-valued signal processing. It means that the syme-

tries, or invariances, of the distribution are correctly taken into account. Therefore, an important research

effort has been dedicated to develop and formulate statistical tools to deal with proper and improper

quaternion signals. This includes extensions of generalized likelihood ratio method to test properness

levels of quaternion variables [41] or the development of quaternion independent component analysis

based on second-order statistics [42]. In estimation, accounting for properness naturally yields to the

notion of widely linear processing [38], [43], which exploits the dependence between a quaternion random

variable x and its three canonical involutions xi, xj and xk to capture the full second-order information,

hence providing optimal estimation performance.

Quaternion adaptive filtering for 3D and 4D signals Another important application of quaternion-

valued signal processing is provided by the quaternion implementation of the popular Least Mean Square

(LMS) adaptive filter. When dealing with 3D and 4D signals, using quaternion representations along

with the linear quaternion model allows exploiting the geometric coupling between channels in a natural

and structured manner. This is what motivated the development of the Quaternion Least Mean Squares

(QLMS) algorithm. The first formulation of QLMS was proposed in [5] and applied to temperature

and 3D-wind data measurements. Subsequently, various forms of quaternion adaptive filters have been

introduced along with their performance analysis [29], [44]–[48].

We provide hereafter, an overview of the derivation of the update expression for the QLMS filter

weights. QLMS algorithm is generally used to estimate the quaternion valued vector w of coefficients of

a desired filter, by minimizing the least mean square of the error signal (difference between the desired

and the actual signal). If n is the number of the current input sample x(n), QLMS aims at minimizing

the real-valued cost function of quaternion variables J (n) = |e(n)|2, where e(n) = d(n) − y(n) is the

error between the desired signal d(n) and the filter output y(n) = w(n)Hx(n). This minimization is
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Fig. 4. Two different properness levels for a centered quaternion scalar Gaussian variable. Insets show the corresponding

structure of the augmented covariance matrix ΓR, where identical colors indicate equal values.

performed using a steepest descent procedure, and the QLMS weights update is given by (see (15)):

w(n+ 1) = w(n)− η∇w̄J (n), (18)

where η > 0 is the step size. Using the HR-calculus rules from Table II and the general quaternion

calculus rules, it can be easily shown that ∇w̄J (n) = −x(n)ē(n)/2. Thus, absorbing the scalar factor

in the step size η, the QLMS update of the weight vector reads:

w(n+ 1) = w(n) + ηx(n)ē(n). (19)

One can observe that the quaternion update (19) has a similar form to the one obtained in the complex

case. It is well-known that the performance of the LMS filter depends on the second-order statistics on

the input vector x. When x is H-proper, the standard Hermitian covariance matrix Cxx = E{xxH}

contains the full second-order information of the data. However, when x is not H-proper, it is necessary

to consider the so-called augmented statistics, i.e. the correlations between x and its three involutions

xi,xj and xk to capture the full second-order information. This leads the the widely-linear QLMS (WL-

QLMS) [29], [47], [48], that has a similar form to (19), but for which the input vector x is replaced by
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the augmented input xa = [xT ,xiT ,xjT ,xkT ]T . A detailed analysis of QLMS performance for different

types of properness can be found in [47]. Application of QLMS and WL-QLMS on benchmark 3D data

(Lorenz attractor) as well as real-world 3D and 4D data [5] has shown that the quaternion approach

outperforms LMS and complex LMS (CLMS) in terms of accuracy, proving the capacity of quaternion

models to fusion heterogenous data sources.

IV. REMAINING CHALLENGES AND OPEN PROBLEMS IN QUATERNION-VALUED SIGNAL AND IMAGE

PROCESSING

It has been more than three decades now since the first appearance of quaternions in the signal and

image processing literature. Still, the use of quaternions in these domains regularly raises scepticism. For

instance, the question “Do quaternion-valued approaches perform better than standard real or complex-

valued methods?” is perhaps the most encountered. Even though this might be an interesting question

to ask, it misses a more fundamental point. Rather, we believe one should be questioning whether the

use of a quaternion-valued representation should be preferred over a more conventional real-valued

representation. Answering explicitly this question is crucial. It justifies the use of quaternions in the first

place, which can be motivated e.g. by the geometric insights offered by the algebra, or by the ease of

formulating compact and explicit models for the data at hand. In essence, one must identify the unique

properties offered by quaternion algebra that are relevant to the considered setting. Once the motivation

for using quaternion representations clearly established, the comparison of quaternion methods with other

real-valued approaches could be conducted. It is important to keep in mind that quaternion models can

always be transformed into equivalent (often structured) real-domain models. In that case, comparisons

between quaternion and real approaches are usually meaningless, since they describe the same model or

methodology, just expressed using different algebra rules. However, one can legitimately wonder whether

such equivalent real-domain model could have been directly formulated without the design of a quaternion

model in the first place. Therefore, we believe that discussions should focus on pros and cons for the

respective modeling approaches.

Quaternion representations call for dedicated tools. Indeed, if one wishes to advocate for the benefits

of quaternion-valued representations and models, then one should also develop the associated signal

processing methodologies in the quaternion domain. Doing otherwise, e.g. resorting to an equivalent

real-domain formulation to solve the problem at hand, would imply losing any advantages gained using

the original quaternion formulation. The tour of the current quaternion-valued signal and image processing

toolbox presented in Section III paves the way for end-to-end quaternion domain approaches. Nonetheless,

many questions remain open. In a nutshell, these define exciting research directions for quaternion-valued
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signal and image processing: the search for new insightful quaternion embeddings, the design of dedicated

quaternion-valued statistical models, novel decompositions for large quaternion datasets, and machine

learning with quaternions. These promising avenues of research are briefly outlined below:

• Novel models in the quaternion domain Often, models for quaternion signal and data are built by

mimicking standard linear algebra. This is the case, e.g. for the linear mixing model used in many

quaternion signal processing scenarios. However, the intrinsic link between quaternions and 3D /

4D geometry, such as rotations or reflections, allow for much more diverse modeling opportunities.

Future research should take into account this specificity of quaternion algebra to develop original

and innovative models capable of revealing further geometric insights into the studied phenomena.

This includes, for instance, models capable of identifying and separating features in polarimetric or

color imaging that are invariant to some geometric transformation.

• Statistical quaternion signal processing While there exists an important literature in complex-valued

statistical signal processing [35], the quaternion domain counterpart still exhibits plenty of opportu-

nities for theoretical and methodological developments. Indeed, until now, most of the research effort

has been concentrated towards establishing the notions of properness and widely linear filtering. As

a result, fundamental building blocks of quaternion statistical signal processing are still missing.

For example, the definition of general quaternion probability distributions beyond the Gaussian case

is still a largely open question. Constructing a satisfying and complete probabilistic framework for

quaternions would pave the way for meaningful end-to-end quaternion domain statistical approaches

such as Bayesian inference, hypothesis testing, performance bounds for estimators, etc.

• Structured decompositions of multidimensional quaternion arrays We have illustrated in this article

the fact that orthogonal low-rank decompositions of quaternion-valued matrices (Q-SVD, Q-EVD)

have been successfully used in various applications such as color image compression or vector-

sensor array processing. However, these orthogonal decompositions quickly reach their limits when

we must deal with either structured (e.g. Hankel matrices) or constrained (e.g. non-negative) data, as it

is often the case in machine learning applications, for example. There is a need for new versatile low-

rank decomposition tool allowing to account for these various constraints. Several authors already

proposed such structured decompositions for dictionary learning [8], sparse coding [32], [33] or

for learning features from polarized imaging data [49], but this research area is still in its infancy.

Another interesting research direction is the extension of multilinear (tensor) algebra models and

decompositions to quaternions. Because of the non-commutativity of quaternion multiplication, the

definition of multilinearity in the quaternion framework is a challenging but important theoretical
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question, for which there are already some promising leads.

• Quaternion neural networks Motivated by the success of quaternion encoding of 3D/4D signals, the

recent years have witnessed the development of quaternion (convolutional, recurrent) neural networks

(NNs) [50]. By leveraging the benefits of quaternion algebra that permits efficient accounting for

inter-channel relations, such NNs allow improved feature learning from 3D and 4D data. This usually

results in overall better performance than standard real-valued NNs in terms of classification /

prediction rates and in a lower number of learned parameters. This is the case, for example, for

the convolutional NNs that exploit correlations between the red, green and blue channels of a color

image seen as a quaternion matrix. However, there is still a long way to go before using these NNs

on a large scale. One of the main bottlenecks for these approaches is the hardware implementation of

the quaternion product which is a powerful but expensive operation in the context of quaternion NNs.

Optimized GPU implementations for this operation would allow to drastically improve computation

efficiency for these systems, and therefore their practical utility. An exciting prospect lies in devising

quaternion NNs that take full advantage of quaternion-based optimization (the HR-calculus) and

which are likely to reduce the computational burden and improve the efficiency of learning algorithms

in applications relying on quaternion representations.

Almost 180 years after their discovery nearby Brougham bridge, quaternions are still surrounded by

a hint of mystery for the newcomer. We hope the present article will help to demystify their use and

benefits to researchers in signal and image processing. If a large set of works have already illustrated the

power of quaternions to propose elegant and interpretable solutions to difficult problems, there remains

some necessary effort to even better understand and exploit their potential. Quaternions will certainly

continue to intrigue and inspire the signal processing community for the years to come.
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