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Abstract

Pushbroom imaging systems are emerging techniques for real-time ac-
quisition of hyperspectral images. These systems are frequently used in in-
dustrial applications to control and sort products on-the-fly. In this paper,
the on-line hyperspectral image blind unmixing is addressed. We propose
a new on-line method based on Alternating Direction Method of Multipli-
ers (ADMM) approach, adapted to pushbroom imaging systems. Because of
the generally ill-posed nature of the unmixing problem, we impose a min-
imum endmembers dispersion regularization to stabilize the solution; this
regularization can be interpreted as a convex relaxation of the minimum
volume regularization and therefore, presents interesting optimization prop-
erties. The proposed algorithm presents faster convergence rate and lower
computational complexity compared to the algorithms based on multiplica-
tive update rules. Experimental results on synthetic and real datasets, and
comparison to state-of-the-art algorithms, demonstrate the effectiveness of
our method in terms of rapidity and accuracy.
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1. Introduction

Hyperspectral imaging, which combines the power of digital imaging and
spectroscopy, is an effective tool in a wide range of applications (see e.g.,
[1, 2, 3]). Each pixel in a hyperspectral image provides local spectral infor-
mation about a scene of interest across a large number of contiguous bands.
Because of the limited spatial resolution of the sensor, mixed pixels (pixels
containing the contributions of several components) are often encountered in
hyperspectral data. Thus, hyperspectral unmixing is an important technique
for hyperspectral data interpretation, as it allows to decompose a mixed pixel
into a collection of spectral signatures (also called endmembers) and their rel-
ative proportions (also called abundances).

This paper addresses the problem of sequential (or on-line) unmixing of
hyperspectral Near InfraRed (NIR) images acquired by a pushbroom imager
[4], by means of Non-negative Matrix Factorization (NMF)-like approaches.
This problem is encountered e.g., in real-time industrial systems, for prod-
uct quality control applications. In particular, the approach proposed in this
paper is part of a project that aims at predicting and classifying in real-
time, the rendering quality of pieces of wood in an industrial process. This
is to be done by on-line unmixing method of hyperspectral images of wood
surface, which presents several advantages over the off-line methods: i) it
is well-adapted to real-time data processing for on-line industrial acquisition
systems; ii) it allows to alleviate computational burden and reduce mem-
ory requirements for big hyperspectral data cubes; iii) it permits to track
the spatial/time variability of the endmembers in a hyperspectral imaging
application.

1.1. Hyperspectral image unmixing

Hyperspectral unmixing methods are based on a mixture model describing
how the endmembers are combined in the acquired image. Depending on the
application and/or on the data, this model can be linear or non-linear [5].
In this article, we focus on the Linear Mixing Model (LMM) [6]; it is the
most commonly used model in hyperspectral unmixing because it is simple
to understand and represents a good approximation of the physical reality
in many applications. The LMM model can be generally expressed in the
following form:
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X ≈ SA, (1)

with X ∈ R
L×P
+ , S = [s1, ..., sR] ∈ R

L×R
+ and A ∈ R

R×P
+ , where R+ de-

notes the set of non-negative real numbers. In hyperspectral imaging, the P
columns of X represent the data samples (pixels) recorded at L wavelengths.
S is a matrix containing on its columns the R endmembers and A is a matrix
containing on its rows the abundances for the recorded samples. We assume
that

A ≥ 0 and A⊤1 = 1.

The constraint A ≥ 0 denotes the fact that A is component-wise non-
negative, where 0 is the matrix of zeros. The constraint A⊤1 = 1, where
1 is an all-ones vector, means A is a column-stochastic matrix, that is, the
entries in each column of A sums to one. Under theses constraints, the LMM
admits a geometrical interpretation. Figure 1 illustrates this geometrical
representation for a mixture of R = 3 endmembers: all the data points (red
points) belong to the convex hull defined by the endmembers (gray points)
s1, ..., sR and the origin (denoted conv {S}) or, equivalently, to the simplex
defined by s1, ..., sR. When the sum-to-one constraint does not hold, the
observations belong to the positive convex cone spanned by the endmembers.
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Figure 1: Geometric representation of the LMM for R = 3 endmembers

There are many methods in the literature for hyperspectral unmixing;
their goal is to recover the factors S and/or A from the data matrix X.
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Most of them are based on the pure pixel assumption, i.e., the existence of
pixels containing a single source, see e.g., [7, 8]. However, the pure pixel
assumption is a strong requirement that does not hold in general for highly
mixed data, and finding the endmembers is therefore a more challenging task.
For this case, another family of methods has been developed, based on the
volume minimization idea introduced by Craig in 1994 [9]. These approaches
consist in minimizing the volume of the simplex containing the data by “cre-
ating” virtual endmembers such as in [10, 11]. However the performance and
computational efficiency of these methods are often limited because of com-
plicated simplex volume calculations, sensitivity to initialization and lack of
rigorous performance analysis. A detailed analysis can be found in [5].

To overcome the up-mentionned problems, Non-negative Matrix Fac-
torization (NMF) [12] has been applied to hyperspectral data unmixing.
For a non-negative matrix X, the NMF consists in estimating two ma-
trices, S ≥ 0 and A ≥ 0, satisfying (1). In general, the NMF is not
unique and therefore, to reduce the size of the set of admissible solu-
tions, it is necessary to add regularization terms. The most effective reg-
ularized approaches are volume minimization (VolMin)-based NMF such as
[13, 14, 15, 16, 17, 18, 19, 20, 21], which can be considered as state-of-the-art
methods in blind hyperspectral unmixing. The reason to consider VolMin cri-
terion is motivated by geometric insights: in Figure 1 (in the noiseless case),
the columns of S (the endmembers) are the vertices of a convex hull that
contains the data points. In the absence of pure pixels, minimizing the vol-
ume of conv {S} allows to recover these endmembers under mild conditions
(see Section 3 for more details).

1.2. Pushbroom acquisition scheme

In pushbroom imaging systems, hyperspectral data cubes are acquired
slice by slice, sequentially in time. Each slice is an image, characterized by a
spectral dimension and a spatial dimension (one line of the scene). Figure 2
illustrates the test bench that we consider for the real-time characterization
of the wood material. Hyperspectral images are acquired line by line, as the
pieces of wood are carried under the imager, via a conveyor.
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Figure 2: Acquisition of hyperspectral images of wood

The stream of spectral-spatial data arrays is then stacked to form the
hyperspectral data cube. For each acquisition time k (k = 1, ..., K), the new
slice (represented by a dotted line in Figure 3) is a matrix of dimensions
L × P , where L denotes the spectral dimension (wavelengths) and P , the
across track spatial dimension (one line of the scene).
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Figure 3: Data structure for pushbroom acquisition

The goal of the on-line blind hyperspectral unmixing is to produce real-
time estimates of the endmember and abundance matrices for each new in-
coming slice, at the pushbroom system acquisition rate.

5



1.3. On-line NMF methods

On-line NMF algorithms sequentially update the endmembers and abun-
dances as the data size increases. In that respect, they are perfectly adapted
to the processing of hyperspectral data streaming as they allow to maintain
a low and controlled computational complexity. These algorithms can be
gathered into two main categories, depending on the considered assumptions
on the endmembers. In [22, 23, 24, 25], the endmembers do not vary from
one sample to another, while in [26, 27, 28, 29, 30, 31], the endmembers
may evolve between successive samples. In particular, the Incremental NMF
(INMF) [26] considers that the endmembers evolve slowly between two con-
secutive acquisitions; this is now the most widely used assumption adopted
in on-line NMF algorithms. In the context of hyperspectral unmixing, it
allows to account for the so-called spectral variability. However, as in the
off-line case, the uniqueness of the solution is not guaranteed, which led to
the development of on-line regularized NMF such as [28, 29, 30]. Recently,
the on-line Minimum Volume Regularization-NMF algorithm (OMVR-NMF)
was introduced in [31]. It is a straightforward adaptation of [28] specially
designed for pushbroom hyperspectral imaging system. To the best knowl-
edge of the present authors, OMVR-NMF is the only unmixing algorithm in
the literature, adapted to on-line processing of hyperspectral images. Thus,
it will serve as benchmark for the on-line volume regularized NMF method
proposed in this paper. However, OMVR-NMF is based on multiplicative
update rules which are known to be highly sensitive to initialization and of-
ten suffer from slow convergence rate [32]. These limitations are restrictive
in particular for the considered application; indeed, the on-line unmixing al-
gorithms must be fast in order to fulfill the real-time industrial production
constraints. Therefore, this paper aims to design an efficient algorithm for
on-line volume regularized NMF, specially devised for pushbroom acquisition
systems, and to compare it with on-line and off-line state-of-the-art methods
for blind hyperspectral unmixing.

1.4. Main contributions

The contribution of this manuscript (compared to our previous work [31]
and to the state-of-the-art on-line approaches) is twofold: first of all, we pro-
pose to replace the minimum volume regularization used in OMVR-NMF by
the Minimum Dispersion Regularization (MDR) [10, 16]. MDR can be seen
as a surrogate for the minimum volume regularization; it aims at minimiz-
ing the sum of the distances between each endmember and the endmembers’
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centroid, which indirectly minimizes the volume of conv {S} [33]. Although
this regularization could be considered as a rough one, it has some interesting
properties, in particular for the considered on-line context:

• Using MDR results in lower computational complexity compared to
MVR: only matrix multiplications are required for MDR while MVR
needs matrix inversions (required in OMVR-NMF algorithm). This is
of upmost importance in the context of fast on-line unmixing.

• Using MDR makes the S estimation subproblem convex and thus, offers
interesting optimization properties by enabling explicit updates of the
parameters.

• Unsing MDR results in faster convergence of the algorithm compared
to the non-convex regularization approach.

• Using MDR enables preservation of the decomposition rank for a wide
range of the regularization hyperparameter, which is essential for the
correct performance of the proposed approach.

The second contribution is algorithm design, in which we substitute the
on-line multiplicative update rules by using optimization method based on
Alternating Direction Method of Multipliers (ADMM) in [25]; ADMM proved
its superiority over multiplicative updates with respect to both reconstruc-
tion accuracy and convergence rate [34, 35, 36].

Through experimental results, we will show, first of all, that the use of
MDR for on-line volume regularized NMF, allows to significantly increase
the convergence speed of the algorithm compared, e.g., to OMVR-NMF,
for similar performance in terms of parameter estimates. Moreover, we will
illustrate the ability of the proposed on-line approach to produce meaning-
ful unmixing results on hyperspectral images using real-world data; these
results are obtained for a much smaller computational cost compared to
the batch (or off-line) advanced volume regularized algorithms. To assess
its performance, we will compare our implementation to two state-of-the-
art approaches: RVolMin (Robust Volume Minimization) [18] and VRNMF
(Volume-Regularized NMF) [20] algorithms.
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The remainder of this paper is organized as follows: Section 2 is dedicated
to the formulation of the on-line NMF problem for the acquisition scheme
of a pushbroom imager. Section 3 provides a theoretical study of different
volume regularizers. In particular, we highlight the differences between the
minimum dispersion and the determinant-based regularization. Section 4
presents the derivation of the proposed on-line ADMM approach; conver-
gence and computational complexity are also discussed. Finally, in Section
5, we give extensive experimental results on both synthetic and real data.
Comparison to off-line and on-line volume regularized algorithms are also
provided. Conclusions are drawn in Section 6.

2. On-line hyperspectral unmixing for pushbroom acquisition scheme

2.1. Data model

The principle of the proposed on-line method is to alternatively update
the endmember and abundance matrices estimated at time instant k when
a new sample (slice) arrives at time instant k + 1. One way to handle the
problem is to unfold the hyperspectral image as shown in Figure 4, where

X̃
(1)

= X(1) is the first slice of the hyperspectral image and X̃
(k)

is the kth

slice. The entire dataset at time instant k+1, i.e., X(k+1), can be represented
as the concatenation of the first k samples with the new incoming sample

i.e., X(k+1) =
[

X(k) X̃
(k+1)

]

. Similarly, we define S(k+1) =
[

S(k) S̃
(k+1)

]

and

A(k+1) =
[

A(k) Ã
(k+1)

]

.

X̃
(1) ...

X̃
(k)

X̃
(k+1)L

kP

P P P

X
(k)

Figure 4: Unfolded pushbroom hyperspectral image

Then, the on-line NMF model is given by:

X̃
(k+1)

≈ S̃
(k+1)

Ã
(k+1)

. (2)
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2.2. Cost function

The simplest way to fit the NMF model to the data is to minimize the
least square distance between the data and the model. Let J (k) denote the
cost function corresponding to the first k samples:

J (k)
(

S(k),A(k)
)

=
1

2

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

F
.

When the k+1th sample, X̃
(k+1)

arrives, the corresponding cost function
can be decomposed as follows:

J (k+1)
(

S(k+1),A(k+1)
)

=
1

2

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

F
+
1

2

∥

∥

∥
X̃

(k+1)
− S̃

(k+1)
Ã

(k+1)
∥

∥

∥

2

F
.

(3)
Without further assumptions, (3) is just a set of k independent least

squares problems and in this case, the on-line setup has no particular interest.
However, a natural assumption is that the endmembers vary only slightly

between consecutive samples i.e., S̃
(k+1)

≈ S̃
(k)
, ∀k. Thus, the cost function

(3) can be expressed as:

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

∣

∣

∣
A(k)

)

= J (k)
(

S̃
(k+1)

∣

∣

∣
A(k)

)

+ J̃ (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

,

with

J (k)
(

S̃
(k+1)

∣

∣

∣
A(k)

)

=
1

2

k
∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(k+1)
Ã

(ℓ)
∥

∥

∥

2

F
,

J̃ (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

=
1

2

∥

∥

∥
X̃

(k+1)
− S̃

(k+1)
Ã

(k+1)
∥

∥

∥

2

F
.

In order to add some tracking capability to the algorithm, a weighting
coefficient α (0 ≤ α ≤ 1) is incorporated into the cost function as:

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k) + (1− α)J̃ (k+1). (4)

In others words, α controls the trade-off between the contribution of the
old and the new samples. A version of the cost function (4) is used by the
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INMF algorithm proposed in [26]. Nevertheless, without additional regular-
ization, the solution of (4) is not unique. The uniqueness of the NMF relies
on the sparsity of the underlying latent variables. In particular, if either S

and/or A has only non-zero entries, the NMF factorization is not unique.
To reduce the size of the set of admissible solutions, we propose to impose

on the endmember matrix S̃
(k+1)

, a geometric regularization which forces the
simplex bounded by the endmembers to circumscribe the data as closely as

possible. For now, we denote this penalty by Vol
(

S̃
(k+1)

)

and integrate it

into the cost function as follows:

J
(k+1)
Vol

(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k) + (1− α)J̃ (k+1) + µ Vol
(

S̃
(k+1)

)

, (5)

where JVol becomes the volume regularized criterion and µ ≥ 0 controls
the trade-off between the data fitting term and the volume regularizer. The

choice of Vol
(

S̃
(k+1)

)

is discussed in the next section. Thus, the approach

proposed in this paper aims at solving the following optimization problem:

minimize
S̃
(k+1)

,Ã
(k+1)
J

(k+1)
Vol

(

S̃
(k+1)

, Ã
(k+1)

)

,

subject to S̃
(k+1)

≥ 0, Ã
(k+1)

≥ 0, Ã
(k+1)⊤

1 = 1, (6)

for a particular choice of the volume regularizer term.

3. Volume regularization

The classical measure for the minimum volume regularization is the de-

terminant, i.e. Vol
(

S̃
(k+1)

)

= det
(

S̃
(k+1)

)

[37]. However, this determinant

is defined only if S̃
(k+1)

is a square matrix. In the case where S̃
(k+1)

is a tall

matrix, a pertinent choice for Vol
(

S̃
(k+1)

)

is [15, 17]:

Vol
(

S̃
(k+1)

)

= det

(

S̃
(k+1)⊤

S̃
(k+1)

)

, (7)

or its variants presented in [13, 38]. The reason for considering expression

(7) is that

√

det
(

S̃
(k+1)⊤

S̃
(k+1)

)

/R! represents the volume of the convex hull
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of the columns of S̃
(k+1)

and the origin. Hence, (7) is, up to a constant factor,
the square of that volume.

3.1. Identifiability

A lot of work has been done in the last decade to understand the identifi-
ability of the NMF model. The results in [39, 40, 41] have shown that if the

matrices S̃
(k+1)

and Ã
(k+1)

both contain null elements, according to a certain
pattern, then the model is unique. However, in hyperspectral imaging, the

endmembers S̃
(k+1)

are likely to be strictly positive and thus, the model is
not identifiable. This is the case where volume minimization approaches can
be successfully used. By applying the recent results of [42, 43, 33] to our
on-line mixture model, the following sufficient identifiability conditions can
be formulated:

Sufficient identifiability conditions: if ∀ k, rank
(

S̃
(k)
)

= rank
(

Ã
(k)
)

=

R and Ã
(k)

is sufficiently scattered (it means that the columns of Ã are
spread enough in the non-negative orthant, i.e. at least every facet of the
non-negative orthant is touched by some columns of Ã and some points are
close enough to the pure pixel condition; see [33] for the exact definition of
sufficiently scattered), then the model (2) is identifiable under the minimum
volume regularization.

It is important to note that this condition stipulates that there is no rank
variation over the different slices of the hyperspectral image.

3.2. Volume regularizers

In this section, to simplify the notations, the upper indices indicating the
slice number are omitted. The use of the minimum volume regularization
in (7) makes the S̃ subproblem non-convex and therefore, more difficult to
solve. To tackle the difficulties due to determinant minimization, others
volume regularizer surrogates can be considered. An alternative formulation

for Vol
(

S̃
)

, proposed in [44] is:

log
(

det
(

S̃
⊤

S̃
))

. (8)

The choice of the logarithm of the determinant rather than the determi-
nant itself is mainly motivated by algorithmic reasons, since it drastically
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simplifies the update rule for S̃. To avoid strong negative values of (8) when

S̃ becomes close to singularity, i.e. det
(

S̃
⊤

S̃
)

→ 0, a modified version was

proposed in [18, 21]:

log
(

det
(

S̃
⊤

S̃+ ǫI
))

, (9)

where ǫ > 0 is a specified small value and I is the identity matrix. Let

{λ2
i , i = 1, ..., R} be the ordered eigenvalues of S̃

⊤

S̃, that is the λi’s are the
singular values of S̃. While, it is easy to check that (8) is a concave function
of λi’s, it appears that (9) has a stationary point in 0 and is convex in a
neighborhood of 0, as shown hereafter:

log
(

det
(

S̃
⊤

S̃+ ǫI
))

=

R
∑

i=1

log
(

λ2
i + ǫ

)

=

R
∑

i=1

f(λi),with f(λi) = log
(

λ2
i + ǫ

)

,

∂f(λi)

∂λi

=
2λi

λ2
i + ǫ

.

Clearly, lim
λi→0

∂f(λi)
∂λi

= 0. In addition ∂2f(λi)
∂λ2

i

=
2ǫ−2λ2

i

(λ2
i
+ǫ)2
≥ 0 if λ2

i ≤ ǫ. In fact,

in the neighborhood of λi = 0, we can write:

log
(

det
(

S̃
⊤

S̃+ ǫI
))

= R log(ǫ) +

R
∑

i=1

log

(

λ2
i

ǫ
+ 1

)

≈ R log(ǫ) +
1

ǫ

R
∑

i=1

λ2
i

= R log(ǫ) +
1

ǫ
trace

(

S̃
⊤

S̃
)

. (10)

In other words, in the neighborhood of λi = 0, log
(

det
(

S̃
⊤

S̃+ ǫI
))

behaves as trace
(

S̃
⊤

S̃
)

, the extent of the neighborhood being controlled by

the value of ǫ. This has an important consequence: while log
(

det
(

S̃
⊤

S̃
))

will favor rank deficiency as the regularization parameter µ increases [45],

log
(

det
(

S̃
⊤

S̃+ ǫI
))

will tend to preserve the full column rank of S̃ for a
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wider range of the regularization parameter.

Finally, a convex surrogate for Vol
(

S̃
)

was proposed in [10, 16] as:

R
∑

r=1

‖s̃r − s̄‖22 , s̄ =
1

R

R
∑

r=1

s̃r,

or equivalently in matrix form:

trace
(

S̃DS̃
⊤
)

, (11)

where D = I − 1
R
11⊤ (1 is an all-ones column vector of size R × 1).

As illustrated in Figure 5, geometrically speaking, expression (11) computes
the sum of the distances between each endmember and the endmembers’
centroid. It can be thus interpreted as a measure of the dispersion of the
endmembers around their centroid, and related indirectly to the volume of

conv
{

S̃
}

.

Figure 5: Geometric intuition of the minimum dispersion regularization for R = 3
endmembers

In the following, we will denote the regularizer log
(

det
(

S̃
⊤

S̃+ ǫI
))

by

MVR (for Minimum Volume Regularization), and trace
(

S̃DS̃
⊤
)

by MDR
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(for Minimum Dispersion Regularization).

In order to illustrate the difference between these two regularization func-
tions, consider a matrix S̃ composed of two unit column vectors:

S̃ =

[

1 cos(β)
0 sin(β)

]

,

with β is an angle varying between 0 et π
2
. If β = 0, the vectors are

collinear (the volume is zero); a contrario, if β = π
2
, the vectors become

orthogonal (the volume is maximal and equal to 1). We plotted in Figure
6 the two functions: MVR with varying ǫ and MDR, for increasing values
of β; the curves are normalized to set their minimum value to 0 and their
maximum value to 1. To promote rank-deficient solutions, ǫ should not be
chosen too large, say ǫ < 0.1. Meanwhile, ǫ should no be chosen too small

either (e.g. 10−9) to avoid bad conditioning of S̃
⊤

S̃+ ǫI. For large values of
ǫ (e.g. 0.1), rank deficiency is no longer promoted and both MDR and MVR
tend to preserve the full column rank of S̃ for a wider range of µ. This rank
preserving property is essential to ensure that the sufficient identifiability
condition of Section 3.1 is satisfied.

0 0.5 1 1.5

β

0

0.2

0.4

0.6

0.8

1

MVR, ǫ=10
-9

MVR, ǫ=10
-6

MVR, ǫ=10
-3

MVR, ǫ=0.1

MDR

Figure 6: Illustrations of MVR and MDR penalties as functions of the angle β
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4. OMDR-ADMM algorithm

In the following, we only consider MDR (rather than MVR) because of
its convexity which allows an efficient implementation of on-line ADMM.
In addition, according to the numerical experiments from the previous sec-
tion, MDR tends to preserve full column rank solutions, which allows us to
assume that the sufficient identifiability condition for our on-line mixture
model is satisfied. The resulting algorithm will be called On-line MDR-
ADMM (OMDR-ADMM).

4.1. Algorithm derivation

Let us define:

J
(k+1)
Vol

(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k)+(1−α)J̃ (k+1)+µ trace
(

S̃
(k+1)

DS̃
(k+1)⊤

)

.

(12)
By introducing two auxiliary variables Ũ and Ṽ, problem (6) is equivalent

to:

minimize
S̃
(k+1)

,Ã
(k+1)

,Ṽ
(k+1)

,Ũ
(k+1)
J

(k+1)
Vol

(

S̃
(k+1)

, Ã
(k+1)

)

+ IR+

(

Ṽ
(k+1)

)

+IR+

(

Ũ
(k+1)

)

,

subject to S̃
(k+1)

= Ũ
(k+1)

, Ã
(k+1)

= Ṽ
(k+1)

and Ã
(k+1)⊤

1 = 1, (13)

where IR+ is the indicator function of R+ ensuring the non-negativity
of the endmembers and abundances. For algorithmic convenience, we use
the scaled form of ADMM [46] in which the linear and quadratic terms are
combined in the augmented Lagrangian and the dual variables are scaled.
The augmented Lagrangian L for the problem (13) is given by:

L
(

Ã
(k+1)

, S̃
(k+1)

, Ṽ
(k+1)

, Ũ
(k+1)

, Π̃
(k+1)

, Λ̃
(k+1)

)

= J
(k+1)
Vol

(

S̃
(k+1)

, Ã
(k+1)

)

+
ρ

2

∥

∥

∥
Ã

(k+1)
− Ṽ

(k+1)
+ Π̃

(k+1)
∥

∥

∥

2

F
−

ρ

2

∥

∥

∥
Π̃

(k+1)
∥

∥

∥

2

F

+
ρ

2

∥

∥

∥
S̃
(k+1)

− Ũ
(k+1)

+ Λ̃
(k+1)

∥

∥

∥

2

F
−

ρ

2

∥

∥

∥
Λ̃

(k+1)
∥

∥

∥

2

F

+ IR+

(

Ṽ
(k+1)

)

+ IR+

(

Ũ
(k+1)

)

. (14)
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The parameter ρ > 0 controls the convergence rate of the method. Λ̃
(k+1)

and Π̃
(k+1)

are the scaled versions of the dual variables corresponding to

the equality constraints S̃
(k+1)

= Ũ
(k+1)

and Ã
(k+1)

= Ṽ
(k+1)

, respectively.
ADMM optimization alternately minimizes the augmented Lagrangian (14)

with respect to
(

Ã
(k+1)

, Ṽ
(k+1)

)

and
(

S̃
(k+1)

, Ũ
(k+1)

)

and then, updates the

dual variables Π̃
(k+1)

and Λ̃
(k+1)

. The updates at data slice k + 1 can be
expressed as:

Ã
(k+1)

← arg min

Ã
(k+1)⊤

1=1

(1− α)J̃ (k+1) +
ρ

2

∥

∥

∥
Ã

(k+1)
− Ṽ

(k+1)
+ Π̃

(k+1)
∥

∥

∥

2

F
, (15)

Ṽ
(k+1)

= max
(

0, Ã
(k+1)

+ Π̃
(k)
)

, (16)

Π̃
(k+1)

= Π̃
(k)

+ Ã
(k+1)

− Ṽ
(k+1)

, (17)

S̃
(k+1)

=
(

N(k+1) + ρ
(

Ũ
(k)
− Λ̃

(k)
))(

M(k+1) + 2µD+ ρI
)−1

, (18)

Ũ
(k+1)

= max
(

0, S̃
(k+1)

+ Λ̃
(k)
)

, (19)

Λ̃
(k+1)

= Λ̃
(k)

+ S̃
(k+1)

− Ũ
(k+1)

, (20)

where N(k+1) = α
∑k

l=1 X̃
(l)
Ã

(l)⊤

+ (1 − α)X̃
(k+1)

Ã
(k+1)⊤

and M(k+1) =

α
∑k

l=1 Ã
(l)
Ã

(l)⊤

+ (1− α)Ã
(k+1)

Ã
(k+1)⊤

.

Following [26], under the assumption S̃
(k+1)

≈ S̃
(k)
, we can write N(k) ≈

∑k
l=1 X̃

(l)
Ã

(l)⊤

and M(k) ≈
∑k

l=1 Ã
(l)
Ã

(l)⊤

. Thus, N(k+1) and M(k+1) can be
expressed as:

N(k+1) = αN(k) + (1− α)X̃
(k+1)

Ã
(k+1)⊤

, (21)

M(k+1) = αM(k) + (1− α)Ã
(k+1)

Ã
(k+1)⊤

. (22)

The update of Ã
(k+1)

in (15) has a closed-form solution as presented in
[19], which is computationally cheap2.

2A Matlab implementation of OMDR-ADMM is available at
https://github.com/LudivineNus/OMDR-ADMM
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Algorithm 1 summarizes the proposed OMDR-ADMM method. For
notation simplification, the indices k + 1 in the updates are omitted.

Algorithm 1 OMDR-ADMM

Inputs: X; D; R; α; µ; ρ; N1; N2;
Initialization: k = 0; N = zeros(L,R); M = zeros(R,R); S̃ = rand(L,R);
Ṽ = zeros(R,P ); Ũ = zeros(L,R); Π̃ = zeros(R,P ); Λ̃ = zeros(L,R); A = [ ];
S = [ ];
Outputs: A; S;

while New sample k + 1 available do

X̃ = X̃
(k+1)

;
t1 = 1;

while t1 < N1 do

t2 = 1;

while t2 < N2 do

Ã← arg min
Ã

⊤
1=1

1
2(1− α)

∥

∥

∥
X̃− S̃Ã

∥

∥

∥

2

F
+ ρ

2

∥

∥

∥
Ã− Ṽ+ Π̃

∥

∥

∥

2

F
;

Ṽ = max
(

0, Ã+ Π̃
)

;

Π̃← Π̃+ Ã− Ṽ;
t2 ← t2 + 1;

end while

Ñ = αN+ (1− α)
(

X̃Ã
⊤
)

;

M̃ = αM+ (1− α)
(

ÃÃ
⊤
)

;

S̃ =
(

Ñ+ ρ
(

Ũ− Λ̃
))(

M̃S̃+ 2µD+ ρI
)−1

;

Ũ = max
(

0, S̃+ Λ̃
)

;

Λ̃← Λ̃+ S̃− Ũ;
t1 ← t1 + 1;

end while

N = Ñ; M = M̃;

A←
[

A Ã
]

; S←
[

S S̃
]

;

end while

It includes three loops. The inner loop alternately estimates Ã, Ṽ and
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Π̃ using a fixed number of iterations N2. These estimates are iteratively re-
fined in an outer loop with N1 iterations, in which the parameters S̃, Ũ and
Λ̃ are cyclically updated. This procedure is repeated for each new sample

X̃
(k+1)

.The inner loop of N2 iterations ensures that the objective function
decreases between each iteration of the outer loop. In addition, and this was
unexpected, including this additional loop allows to accelerate the conver-
gence speed of the algorithm and consequently to reduce N1.

It can be shown, using a similar approach to [47, 36], that any stationary
point generated by a sequence of iterations of OMDR-ADMM satisfies the
Karush-Kuhn-Tucker conditions. This statement is valid only in the case of

our working assumption i.e. S̃
(k+1)

≈ S̃
(k)
, in other words, when the steady

state is reached. No theoretical claims can be made regarding the transient
behavior. This point will be addressed through numerical simulations in
Sections 5.3 and 5.4.

4.2. Computational complexity

In this section we evaluate the computational complexity of the pro-
posed algorithm; this is done by taking into account only the matrix mul-
tiplication operations, that dominate the algorithm complexity. By con-
sidering K slices of size (L × P ), N1 and N2 iterations and a decomposi-
tion rank R, the computational complexity for OMDR-ADMM algorithm
is of the order of KN1(2RPL + 2LR2 + 2R3 + PR2(1 + N2)). For com-
parison, we developed a batch version of OMDR-ADMM, that we called
BMDR-ADMM (for Batch MDR-ADMM), which processes the entire hyper-
spectral data cube at once; this algorithm has complexity of N1(2RPKL +
2LR2 + 2R3 + PKR2(1 +N2)). Moreover, the OMVR-NMF algorithm pre-
sented in [31], based on multiplicative update rules with the minimum vol-
ume regularization in (9), has a computational complexity of the order of
KN1(2RPL + R(L + PN2) + R2(6L + 2P )). For comparison, we have also
implemented the on-line algorithm based on multiplicative update rules with
MDR, which results in the OMDR-NMF algorithm; the latter has a complex-
ity of KN1(2RPL+ R(L+ PN2) +R2(3L+ 2P )). For an identical number
of iterations, it is easy to notice that OMDR-NMF has a lower complexity
than OMVR-NMF. Note that the complexity of OMDR-ADMM is compa-
rable to that of BMDR-ADMM, OMDR-NMF and OMVR-NMF. However,
as we show in the sequel, OMDR-ADMM requires fewer iterations to con-
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verge compared to the three other methods, and thus significantly reduces
the computational cost.

5. Experimental results

In order to evaluate the performance of OMDR-ADMM for hyperspectral
unmixing, we conducted several experiments on simulated and real hyper-
spectral images. For these experiments, we used Matlab (R2016a) on a 2.7
GHz Macbook Pro with 4-core processor and 16 GB of RAM. These experi-
ments have the following objectives:

1. Illustrating the rank preserving properties of MDR and MVR.

2. Showing the efficiency of OMDR-ADMM by examining its convergence
speed and comparing it to that of the OMVR-NMF algorithm [31].
The sensitivity of the convergence speed of the proposed method to
parameters α and ρ is also studied.

3. Comparing OMDR-ADMM to its batch counterpart BMDR-ADMM to
assess the advantages of on-line processing of hyperspectral images.

4. Studying the spectral tracking capability of OMDR-ADMM.

5. Validating the unmixing performance of our algorithm on real hyper-
spectral images of wood.

5.1. Performance criteria

Three performance criteria were used for these experiments: the residual
error, Spectral Angle Distance (SAD) and Root Mean Square Error (RMSE).

The residual error was calculated for each slice k as follows:

1

2

∥

∥

∥
X̃− ˆ̃

S
ˆ̃
A

∥

∥

∥

2

F
, (23)

where ˆ̃
S and ˆ̃

A are the estimated endmembers and abundances, respec-
tively.

The SAD measures the similarity between the original endmembers S̃ and

the estimated endmembers ˆ̃
S. For a given slice k, it is written as follows:

1

R

R
∑

r=1

cos−1

(

s̃⊤r
ˆ̃sr

||s̃r||2 ||ˆ̃sr||2

)

, (24)
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where R is the number of endmembers, ||.||2, the ℓ2-norm, S̃ = [s̃1, ..., s̃R]

and ˆ̃
S =

[

ˆ̃s1, ..., ˆ̃sR

]

. A low value of SAD indicates that the estimate is close

to the ground truth.

The RMSE measures the error between the original abundances A and
the estimated abundances Â and is computed as:

1

R

R
∑

r=1

√

√

√

√

1

KP

KP
∑

d=1

(ard − ârd)
2, (25)

where ard and ârd are the ground truth and the estimated abundance
respectively of the rth endmember at pixel d (d = 1, ..., KP ).

Note that expressions (24) and (25) are average values. For some experi-
ments, the SAD and the RMSE values are calculated independently for each
source r = 1, ..., R.

5.2. Rank preserving properties of MVR and MDR

We performed a numerical experiment to illustrate the rank preserving
properties of both volume regularizers, MVR (9) and MDR (11). We used,
for the simulations, the endmembers shown in Figure 10(d). None of the
three endmembers has any zero value, which results in a non-unique NMF
problem. In other words, without additional regularizations the model is
non-identifiable. We generated the three abundance maps of size 35 × 35,
following the uniform Dirichlet distribution. By doing so, we ensure that
the sufficiently scattered and full column rank conditions are verified with
high probability (see Section 3.1). To avoid the pure-pixel case scenario, we
discarded the realizations containing values greater than 0.9. Figure 7 shows
the projection of data points onto the ground-truth affine hull of s̃1, ..., s̃R.

For µ ranging from 0.0001 to 0.001, the quantities trace
(

ˆ̃
SD

ˆ̃
S⊤

)

and

log
(

det
(

ˆ̃
S⊤ ˆ̃S+ ǫI

))

were computed, where ˆ̃
S is the endmember matrix es-

timated by either OMVR-NMF or OMDR-ADMM at the last slice k of the
image. For MVR, we used four different values of ǫ: 10−9, 10−4, 10−3 and
10−1. The normalized curves (maximum value equal to 1, minimum value
equal to 0) are shown in Figure 8.
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Figure 8: The plots of MVR and MDR penalties as functions of µ

In Figure 8, several behaviors can be observed. For MVR with ǫ = 10−9,
the plot presents a staircase shape and, as the value of ǫ increases, the steps
tend to disappear. Actually, for low values of ǫ, MVR favors rank deficiency
as µ increases; this is reflected on the curves by abrupt staircase shape vari-
ations. When ǫ increases, the full column rank of S̃ tends to be better
preserved; the rank deficiency is observed only for very large value of µ.

In Figure 9, we compared the true and estimated simplexes (noted re-
spectively D and S) for different values of µ, for MVR (ǫ = 10−9, 10−3, and
10−1) and MDR. For ǫ = 10−9, as µ increases, the volume of the estimated
simplex tends to zero, meaning that the endmember matrix is rank deficient.
In the limit case (µ→ +∞), all endmembers become collinear and the sim-
plex is transformed into a point. On the other hand, as ǫ increases, the rank
of the decomposition is preserved for a larger interval of µ. For example, for
ǫ = 10−1 and µ = 0.03, although the estimated simplex is included in the
true simplex, the rank is preserved which avoids numerical instabilities; this
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shows the interest of the ǫ parameter in the context of on-line blind unmix-
ing. Similarly, for MDR (Figure 9(d)), the simplex decreases progressively,
while preserving the rank of the decomposition.
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Figure 9: Illustration of simulated and true simplexes for MVR and MDR as functions of
µ
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5.3. Convergence rate

The convergence speed of OMDR-ADMM and OMVR-NMF was numer-
ically studied on a synthetic hyperspectral image. A hyperspectral image of
size 119×35×35, composed of R = 3 endmembers not varying over time was
simulated. Here, 119 corresponds to the number of wavelengths and 35× 35
to the (spatial × time) dimensions. Each new time sample is a 119 × 35
slice of the hyperspectral image. The abundance coefficients in each pixel
are non-negative and they sum-to-one; the corresponding endmembers are
shown in Figure 10. The data were corrupted by a low-level noise.

We used for OMVR-NMF and OMDR-ADMM the same coefficient α =
0.99. The parameter ρ for OMDR-ADMM algorithm was set to 0.01 and ǫ
for OMVR-NMF to 1. For all experiments, the endmembers and abundances
were randomly initialized using a continuous uniform distribution on the in-
terval [0, 1].

One of the essential parameters for both algorithms is the hyperparameter
µ. The latter should usually be chosen small. In fact, a large µ forces
the vertices of the convex hull of the endmembers to be very close to each
other, making the endmember matrix ill-conditioned and/or rank-deficient.
In order to make the algorithm insensitive to scale variations and given the
sequential nature of the processing, we normalize µ in the following way:

µ = µ̃ ×
∥

∥

∥
X̃

(1)
∥

∥

∥

2

F
, where X̃

(1)
is the first slice of the hyperspectral image. µ̃

is a tuning parameter that we choose from a fixed search interval in order to
minimize the performance criterion (24) (see Figure 17 for more details).

To compare the convergence speeds of the two algorithms, the residual
error vs. time sample (from 1 to 35) was evaluated for different values of
N1. N2 was set to 10 and µ̃ to 10−5. The results are shown in Figure 11.
Note that a logarithmic scale was used for the vertical axis. In Figure 11, we
observe that for all the considered values of N1, OMDR-ADMM has a faster
convergence rate than OMVR-NMF. The latter reaches asymptotically an
error close to OMDR-ADMM for approximately N1 = 400 iterations.
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Figure 10: Simulated abundances and endmembers (End)

In order to quantify the estimation quality of the endmembers and of
the abundances for different values of N1, we computed the SAD and the
RMSE performance criteria. For a given value of N1, the SAD was cal-
culated at each slice k of the hyperspectral image and then averaged over
the entire dataset. For this simulation, we compared OMDR-ADMM and
OMVR-NMF to OMDR-NMF algorithm. The results obtained by averaging
over 20 trials are illustrated in Figure 12. First of all, we note that the use of
MDR, compared to MVR, makes it possible to reach good quality estimates
with fewer iterations. Moreover, OMDR-ADMM has the fastest convergence
rate; the slow convergence rate of OMDR-NMF and OMVR-NMF can be
attributed to the use of multiplicative update rules.
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Figure 11: The residual error for OMVR-NMF and OMDR-ADMM as functions of
number of slices (for the data represented in Figure 10)
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Figure 12: SAD and RMSE convergence speeds for OMDR-ADMM, OMDR-NMF and
OMVR-NMF as functions of N1 (for the data represented in Figure 10)

Table 1 gives the values of N1 for which the algorithms reach approxi-
mately the same asymptotic SAD and RMSE, as well as the associated pro-
cessing time. In terms of accuracy, MDR performs slightly worse in terms
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of SAD and RMSE than MVR, because it is a coarse approximation of the
simplex volume. However, OMDR-ADMM requires the lowest number of it-
erations which makes it the algorithm with the lowest processing time. These
results show that there is a real interest in terms of rapidity and accuracy in
using OMDR-ADMM for fast on-line blind unmixing.

SAD RMSE N1 Time (s)
OMDR-ADMM 0.0025 0.0004 100 0.52
OMDR-NMF 0.0025 0.0004 300 0.63
OMVR-NMF 0.0023 0.0003 700 1.32

Table 1: Asymptotic SAD and RMSE values for OMDR-ADMM, OMDR-NMF and
OMVR-NMF, related to the processing time and the number of iterations (for the data

represented in Figure 10)

To study the influence of N2, the SAD and the processing time were
evaluated for OMDR-ADMM, for different values of the couple (N1, N2). The
results are illustrated in Figure 13 as a bar graph. We note that the couples
which minimize the SAD are (100, 10) and (300, 1). However, they result
in different processing times, 0.52 s and 0.82 s respectively, meaning that
iterating in the second loop (N2) is essential for speeding up the algorithm.
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Figure 13: SAD and processing time for OMDR-ADMM as functions of different values
of the couple (N1, N2) (for the unmixing of the data represented in Figure 10)

Another interest of the sequential algorithm for hyperspectral unmixing
is the processing of large hyperspectral datasets. To illustrate this aspect,
we compared the performance of OMDR-ADMM algorithm with its batch
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counterpart BMDR-ADMM. We used the same synthetic hyperspectral im-
age (corrupted by a low-level noise) presented in Figure 10. Both algorithms
used the same ρ = 0.01 and N2 = 10; for the minimum dispersion regular-
ization, µ̃ was set to 10−4 for the batch version, for optimum performance.
The BMDR-ADMM method was applied to the unfolded version of the hy-
perspectral image, of size 119× 1225, while the on-line version processed the
image slice by slice. To study the convergence speeds of both algorithms,
the SAD was evaluated for different values of N1, ranging from 1 to 3000.
The results obtained by averaging over 20 trials are illustrated in Figure
14. One can see that our on-line algorithm converges much faster than its
batch counterpart. Indeed, 100 iterations are enough for OMDR-ADMM to
yield accurate estimates, while BMDR-ADMM requires at least 2000 itera-
tions to achieve the same SAD value. This has strong consequences on the
computational cost. Consider the computational complexity of the on-line
and batch versions established in Section 4.2; if R = 3, P = 35, L = 119,
K = 35, N1 = 100 for the on-line version, N1 ≈ 2000 for the batch ver-
sion and N2 = 10, the computation complexity of OMDR-ADMM is about
ten times lower than its batch counterpart. For the considered dataset, the
processing time by BMDR-ADMM was of about 1.50 s.

0 1000 2000 3000

N1

0

0.1

0.2

0.3

0.4

0.5

S
A

D

OMDR-ADMM

BMDR-ADMM

Figure 14: SAD for BMDR-ADMM and OMDR-ADMM as functions of N1 (for the
unmixing of the data represented in Figure 10)

We also examined the influence of parameters α and ρ on the convergence
speed of OMDR-ADMM, using the same synthetic dataset in the noise-free
case. We first varied α from 0.99 to 0.8 while fixing the values of ρ = 0.01,
µ̃ = 10−5 and N2 = 10. The values of SAD as functions of N1, for different
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values of α, are illustrated in Figure 15. As α increases, fewer iterations are
required to converge to the correct solution; this can be explained by the
fact that α and µ parameters are strongly linked. Actually, if α changes, the
value of µ must also be modified, in order to obtain optimum performance.
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Figure 15: SAD for OMDR-ADMM as functions of N1 for different values of α (for the
unmixing of the data represented in Figure 10)

Next, we varied ρ while keeping the value of α = 0.99, µ̃ = 10−5, N1 = 100
and N2 = 10. Figure 16 shows that, when ρ decreases, the asymptotic SAD
decreases, while the convergence speed does not seem to be affected. As
soon as the value of ρ becomes too low (e.g. 5 × 10−6), we notice that the
SAD increases, a sign that the algorithm becomes unstable. For the proper
functioning of OMDR-ADMM, there is a range of suitable values for the pa-
rameter ρ; for this experiment, a value of ρ between 0.01 and 10−5 ensures
the stability of the algorithm.

The last aspect studied by numerical simulations is the sensitivity of
OMDR-ADMM to initial conditions. For the hyperspectral image (corrupted
by a low-level noise) presented in Figure 10, we used 20 different random
initializations for the endmember and abundance matrices.
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Figure 16: SAD for OMDR-ADMM as functions of number of slices for different values
of ρ (for the unmixing of the data represented in Figure 10)

The SAD and the RMSE were computed for each initialization, using
N1 = 100, N2 = 10 and µ̃ = 0, 10−6, 10−5, 10−4 and 10−3. The results
are shown in Figure 17 as box plots. When µ̃ is too small, different initial-
izations are likely to produce different estimates of the endmembers and of
the abundances. When the value of µ̃ is adequately chosen, the algorithm
is not sensitive to initialization. Finally, when the value of µ̃ is too high
(> 10−4), the SAD and the RMSE increase, indicating that the problem is
over-regularized.
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Figure 17: SAD and RMSE for OMDR-ADMM as functions of µ̃ for different
initializations (for the unmixing of the data represented in Figure 10)
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5.4. Tracking the spectral variability

In hyperspectral imaging, the spectral signature of a component may
present intra-class variability [48, 49]. Thus, studying the evolution of the
endmembers between successive samples is sometimes crucial in understand-
ing the underlying physical phenomenon. Integrating a tracking capability
(via the parameter α) allows the tracking of dynamic spectral changes. To
address this point, a hyperspectral image of size 119 × 35 × 100 with non-
stationary endmembers was simulated. The abundance maps were identical
to those in Figure 10, but the endmembers evolved at each slice, according

to the following model: S̃
(k+1)

= S̃
(k)

+T(k), where T(k) is a low-level random
noise matrix initialized from the standard normal distribution. The simu-
lated data were corrupted by noise with an SNR = 26 dB. The parameters
µ̃ and ρ were set to 10−4 and 0.01 respectively. In order to assess the abil-
ity of our algorithm to follow the evolution of the endmembers, we varied α
from 0.99 to 0.5 and, for each slice k, we computed the SAD. The results are
shown in Figure 18. As α decreases, both convergence speed and asymptotic
SAD (k → +∞) increase. Note that for very large values of α (e.g. 0.99), an
increase of the asymptotic SAD is observed. This indicates that there exists
an optimal value of α mitigating at best the transient error and tracking
error.
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Figure 18: SAD for OMDR-ADMM as functions of number of slices for different values
of α (in the case of non-stationary endmembers)
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5.5. Real data application: on-line analysis of wood surface

In this section, the performance of OMDR-ADMM is tested on two real
hyperspectral images of wood, recorded by a pushbroom acquisition sys-
tem (which is the target application of our method) at CRAN (Centre de
Recherche en Automatique de Nancy) laboratory. Wood is a natural mate-
rial whose rendering is appreciated in many applications. However, its surface
heterogeneity and variability makes it difficult to control the quality of the
final product. These technical difficulties generate significant non-quality
costs and manual sorting in wood industries. Current industrial technical
solutions only detect very pronounced defects, such as knots, using color vi-
sion systems. There are other types of defects, which have high colorimetric
variability, and thus, are not systematically detected by the existing systems;
this is the case of the sapwood (material located between the bark and the
heartwood) and of the dark grain (dark color wood fibers), for example. The
sapwood is generally undesirable in many applications due to its porosity,
while dark grain-type defects are undesirable, particularly in the parquet in-
dustry, because they degrade the aesthetic appearance of the product. Thus,
the detection of these defects represents an important economical issue, in
many wood industry branches. A relevant technique to overcome the lim-
itations of color vision systems is NIR hyperspectral imaging, which is the
target application of this work. For the next experiment, we considered the
wood samples shown in Figure 19, measuring 120 cm × 15 cm.

(a) Sample 1

(b) Sample 2

Figure 19: Selected wood samples (visible range color image)
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The sample 1 had a sapwood-type defect in the bottom left corner. The
sample 2 had a dark grain area in the middle, over its entire length. These
defects were hardly distinguishable by the colorimetric systems and were
manually labeled by experts. The two pieces of wood were scanned by a
NIR pushbroom imager working in the spectral range of 900-1600 nm, re-
sulting in hyperspectral images of dimension 224 × 270 × 1514 (for sample
1) and 224 × 200 × 1100 (for sample 2), where 224 represents the number
of wavelengths and the other two numbers, the (spatial × time) dimensions.
The acquired images were processed sequentially by OMDR-ADMM, slice by
slice. The number of endmembers to be extracted was set to R = 3, after
several preliminary tests. The parameters of the algorithm were set as fol-
lows: µ̃ = 10−5, α = 0.99, ρ = 0.01, N1 = 15 and N2 = 10. The endmember
and abundance matrices were randomly initialized from a continuous uniform
distribution on the interval [0, 1].

The three abundance maps generated by OMDR-ADMM for the samples
1 and for the sample 2 are presented in Figure 20 and 21, respectively. On
the first abundance map, we observe that the areas corresponding to the sap-
wood and to the dark grain are much more contrasted than the rest of the
image. Moreover, it is interesting to highlight, particularly for sample 1, that
all of the knots present on its surface are grouped on the third abundance
map. These are very promising results, as, for the considered samples, the
color of the sapwood/dark grain was very close to the color of heartwood,
and therefore, the wood planks were considered as compliant with industrial
quality standards by color vision systems. For the considered datasets, the
processing time by OMDR-ADMM was of about 3.22 s, for the sample 1,
and 2.24 s, for the sample 2. The processing time can be largely reduced by
low-level implementation of our algorithm directly on the production line to
satisfy the real-time industrial constraint of 1 linear m of wood /s.

We compared the results generated by OMDR-ADMM with the state-
of-the-art volume-regularization algorithm RVolMin [18]. For the latter, we
used the same initialization as for our algorithm, the same approach to select
the value of the regularization parameter and the number of iterations was
set to 500. The abundance maps obtained are presented in Figure 22 and 23
and the estimated endmembers (for sample 1) in Figure 24.
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Figure 20: Abundance maps estimated by OMDR-ADMM (for the wood sample 1)

Figure 21: Abundance maps estimated by OMDR-ADMM (for the wood sample 2)
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Figure 22: Abundance maps estimated by RVolMin (for the wood sample 1)

Figure 23: Abundance maps estimated by RVolmin (for the wood sample 2)
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Figure 24: Estimated endmembers (for the wood sample 1)

With a few differences, the abundance maps and the endmembers gen-
erated by RVolMin are very similar to those generated by OMDR-ADMM,
which validates the effectiveness of the proposed approach. However, the
major difference between the two methods is the processing time; e.g., for
sample 1, RVolMin processed the entire hyperspectral image in 2 min 15 s
(compared to 3.22 s for OMDR-ADMM). This shows that there is a real
interest in performing on-line blind hyperspectral unmixing.

To further assess the performance of the proposed OMDR-ADMM
algorithm, we also applied it to a real dataset, called Jasper
Ridge (http://lesun.weebly.com/hyperspectral-data-set.html) with
the available endmember and abundance references provided in [50]. This
image is commonly used in hyperspectral unmixing community for bench-
marking purposes. The results are given in the AppendixA.

6. Conclusions

We proposed a new algorithm, OMDR-ADMM, specially designed for the
on-line unmixing of pushbroom hyperspectral images. Tests on simulated
data have shown that this new algorithm outperforms the state-of-the-art
methods based on multiplicative update rules in terms of convergence speed.
In addition, we have shown that the algorithms using the minimum dispersion
regularization yield results similar to the minimum volume one, but for a
much smaller number of iterations, which demonstrates the interest of this
type of penalty for fast on-line hyperspectral unmixing. These experiments
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also revealed that OMDR-ADMM allows to track the spectral variability of
the endmembers over time and significantly reduces the processing burden
compared to its off-line counterpart, which is a crucial feature for real-time
data processing. Finally, OMDR-ADMM proved to be an interesting solution
for on-line unmixing of pushbroom hyperspectral images, compliant with the
real-time constraints of the industrial wood sorting systems.

AppendixA. Test of OMDR-ADMM on Jasper Ridge hyperspec-

tral image

In this part, we used a hyperspectral image with the available endmember
and abundance references provided in [50], to compare the performance of
OMDR-ADMM to its batch version (BMDR-ADMM) and to other state-
of-the-art volume-regularization algorithms: RVolMin [18] and VRNMF
[20]. Note that there are three versions of the VRNMF algorithm: the first
uses the minimum volume regularization based on the determinant, the sec-
ond uses the logarithm of the determinant and the last uses the nuclear norm.

The Jasper Ridge image has a spatial size of 100 × 100 pixels. Each
pixel is recorded at 198 wavelengths ranging from 380 nm to 2500 nm.
There are four latent endmembers in this data, corresponding to tree, water,
soil and road. In order to respect the pushbroom acquisition scheme that
we consider, the image was processed by OMDR-ADMM sequentially, by
slice of dimension 198 × 100, and along the vertical axis. Note that the
sequential processing along the horizontal axis was not possible since the
rank preservation was not guaranteed from one slice to another. The batch
methods were applied to the unfolded version of the hyperspectral image, of
size 198× 10000.

For OMDR-ADMM, the parameters were set as follows: R = 4, µ̃ = 10−5,
α = 0.99, ρ = 0.01, N1 = 100 and N2 = 10. For the batch algorithms, N1 was
set to 500 and we have tuned the regularization parameter of each method
in the same way as for the on-line setup. The endmember and abundance
matrices was randomly generated and we kept the same initialization for all
methods. In order to evaluate the quality of the estimated endmembers and
abundances, the SAD and the RMSE for all methods were computed. The
results are provided in Table A.2.

36



OMDR-ADMM BMDR-ADMM RVolMin
Endmembers SAD RMSE SAD RMSE SAD RMSE
Tree 0.0757 0.1179 0.1630 0.1448 0.1379 0.1520
Water 0.0611 0.1800 0.1931 0.1565 0.2622 0.1659
Soil 0.0570 0.1221 0.0650 0.1010 0.0521 0.1234
Road 0.0514 0.0843 0.0664 0.0831 0.0837 0.0770
Average 0.0613 0.1261 0.1219 0.1213 0.1340 0.1296
Time (s) 2.38 5.28 10.64

VRNMFdet VRNMFlogdet VRNMFnuclear

Endmembers SAD RMSE SAD RMSE SAD RMSE
Tree 0.1682 0.2181 0.1227 0.1259 0.1524 0.1452
Water 0.2800 0.1270 0.2368 0.0862 0.2848 0.2241
Soil 0.1384 0.1333 0.0735 0.1554 0.1981 0.2174
Road 0.0451 0.1102 0.0482 0.0671 0.0744 0.1372
Average 0.1579 0.1471 0.1203 0.1086 0.1774 0.1810
Time (s) 13.37 11.45 8.20

Table A.2: SAD and RMSE for all methods (for the benchmarking image Jasper Ridge)

First of all, it can be seen, from Table A.2, that VRNMFlogdet, BMDR-
ADMM and RVolMin yield lower SAD and RMSE that VRNMFdet, although
the regularization terms used in these algorithms are not an exact mea-
sure of simplex volume (such as the determinant regularizer). VRNMFlogdet

outperforms the state-of-the-art batch methods as it yields the lowest SAD
and RMSE values. We note that BMDR-ADMM presents similar perfor-
mances to VRNMFlogdet. However, the processing time is considerably re-
duced compared to the latter (5.28 s vs. 11.45 s). RVolMin generates slightly
worse estimates than BMDR-ADMM, for twice the processing time, while
VRNMFnuclear has the worst performance. Interestingly, we observe that the
algorithm that best estimates the endmembers is OMDR-ADMM, while ex-
hibiting the lowest processing time (2.38 s). This difference, compared to
the batch methods, can be explained by the fact that, unlike the off-line ap-
proaches, it can account for the spectral variability, that modifies locally the
spectrum of pure materials.

The causes of this variability can be diverse, e.g., the changing illumina-

37



tion conditions during the acquisition, the intrinsic variability of the compo-
nents or the atmospheric effects. This aspect is illustrated in Figure A.25
which plots the spectra for all estimated endmembers slice by slice for the
on-line algorithm. Thanks to its tracking capability, OMDR-ADMM offers
the possibility to study the dynamic content changes over time. We note
that the spectral signature of water evolves strongly between slices. In Ta-
ble A.2, the SAD, for OMDR-ADMM, was calculated using the average over
the K time samples of the estimated spectra. For the batch algorithm, this
spectral variability is not explicitly taken into account, and the estimated
endmembers can be interpreted as the average spectra for the entire image.
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Figure A.25: Estimated endmembers slice by slice for OMDR-ADMM (for the
benchmarking image Jasper Ridge)

The endmembers and the abundance maps estimated by all methods,
along with the references, are represented in Figure A.26 and A.27. For
OMDR-ADMM, the average values of the endmembers are plotted.
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Figure A.26: References and estimated endmembers by all methods (for the
benchmarking image Jasper Ridge)
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benchmarking image Jasper Ridge)
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