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Quaternion-MUSIC for Vector-Sensor
Array Processing

Sebastian Miron, Nicolas Le Bihan, and Jérôme I. Mars

Abstract—This paper considers the problem of direction of ar-
rival (DOA) and polarization parameters estimation in the case of
multiple polarized sources impinging on a vector-sensor array. The
quaternion model is used, and a data covariance model is proposed
using quaternion formalism. A comparison between long vector or-
thogonality and quaternion vector orthogonality is also performed,
and its implications for signal subspace estimation are discussed.
Consequently, a MUSIC-like algorithm is presented, allowing es-
timation of wave’s DOAs and polarization parameters. The algo-
rithm is tested in numerical simulations, and performance analysis
is conducted. When compared with other MUSIC-like algorithms
for vector-sensor array, the newly proposed algorithm results in
a reduction by half of memory requirements for representation of
data covariance model and reduces the computational effort, for
equivalent performance. This paper also illustrates a compact and
elegant way of dealing with multicomponent complex-valued data.

Index Terms—Polarization, Q-MUSIC, quaternion eigenvalue
decomposition (QEVD), quaternion spectral matrix (QSM),
quaternion vector orthogonality, vector-sensor array.

I. INTRODUCTION

HAMILTON’S quaternions , as a nontrivial generaliza-
tion of complex numbers , have been considered for a

long time of pure theoretical interest. In signal processing, it
is only in the last decade that quaternion-based algorithms were
proposed [1]. More recently, hypercomplex spectral transforma-
tions and color images processing techniques have been intro-
duced by Ell and Sangwine in [2]–[5] and Pei and Cheng in
[6]. A hypercomplex version of the multidimensional complex
signals [7] was also proposed by Bülow and Sommer [8]. In
seismic data processing, as multicomponent acquisitions fit per-
fectly with the quaternion model, quaternion algebra has been
used to extract seismic attributes [9], [10], to enhance signal-to-
noise ratio (SNR) and to separate sources on multicomponent1

seismic data set [11], [12]. Most of these methods encode a
real-valued three-component signal on the three imaginary parts
of a pure quaternion (see Subsection II-A). In this paper, we pro-
pose a data model allowing to deal with multicomponent mod-
ulus-phase information by means of quaternions. The resulting
data model is then used to illustrate an eigenstructure-based al-
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1In this paper, the terms multicomponent data and polarized data are used to
designate the data set recorded on a vector-sensor array.

gorithm for vector-sensor array processing yielding direction of
arrival (DOA) and polarization parameters estimation.

Scalar-sensor array processing algorithms and the high-res-
olution methods for DOA estimation are well documented in
the literature (see [13]–[16] and references therein). In the last
decade, as vector-sensors became more and more reliable, po-
larization has been added to estimation process as an essential
attribute to characterize sources, in addition to their DOAs. Con-
sequently, multiple authors have proposed algorithms for multi-
component data processing. MUSIC-like methods for polarized
arrays are presented in [17] and [18] and ESPRIT techniques
in [19]–[21]. The Cramer–Rao bound for the vector-sensor case
has been studied by Weiss and Friedlander in [22] and Nehorai
and Paldi in [23]. A multilinear model for polarized seismic data
and an eigenstructure-based algorithm (Vector-MUSIC) were
also introduced in [24], yielding DOA and polarization param-
eters (intersensor amplitude ratio and intercomponent phase-
shift) for sources impinging on a linear, uniform array. How-
ever, these approaches assume that the data are complex-valued,
representing frequency domain samples of the recorded signals.
Data covariance model is then defined as the set of second-order
auto-moments and cross-moments between all components of
all sensors. In this paper we propose a quaternion model for
the multicomponent data that reduces by half the memory size
required for data covariance model representation resulting in
a increased rapidity of the algorithm (see Section V). Further-
more, we show that the orthogonality constraint imposed by the
quaternion spectral matrix diagonalization is stronger that the
one used for the classical spectral matrix (see Section III-B-2)),
and it provides a more accurate estimation of the signal sub-
space.

This paper is structured as follows. In Section II, a short de-
scription of quaternions is given and polarization model is in-
troduced. Section III presents the quaternion spectral matrix
(QSM) and discusses quaternion-valued vectors orthogonality.
A description of the new Quaternion-MUSIC (Q-MUSIC) algo-
rithm is given in Section IV, and its computational complexity
is compared to long-vector algorithm complexity in Section V.
The performances of Q-MUSIC algorithm evaluated in simula-
tions are described in Section VI. Finally, Section VII presents
the conclusions of this work.

II. QUATERNION MODEL OF A POLARIZED SOURCE

A. Quaternions

Quaternions are a four dimensional hypercomplex numbers
system. Discovered by Hamilton in 1843 [25], they are an ex-
tension of complex numbers to four-dimensional (4-D) space.
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A quaternion is described by four components (one real and
three imaginaries). It can be expressed in its Cartesian form as

(1)

where

Many books discuss about quaternions and their properties.
Basics about hypercomplex numbers systems can be found in
[26], while a thorough review about quaternions can be found
in Ward’s book [27].

Several properties of complex numbers can be extended to
quaternions. Some of them are as follows:

• the conjugate of , noted , is given by
;

• a pure quaternion is a quaternion which real part is null:

• the modulus of a quaternion is
and its inverse is given by

(2)

• a quaternion is said to be null iff ;
• the set of quaternions, denoted by , forms a noncommu-

tative normed division algebra, that means that given two
quaternions and

(3)

• conjugation over is an anti-involution

(4)

It is well known [28] that a quaternion is uniquely expressed
as: , where and .
This is known as the Cayley–Dickson form. It is also possible
to express in an alternate Cayley–Dickson form. Thus, any
quaternion can be written as

(5)

where and . This notation will be
used in the polarized signal quaternion model proposed in the
following section.

B. Polarization Model

Consider a scenario with one polarized source, assumed to
be a centered, stationary stochastic process, emitting a wave-
field in an isotropic, homogeneous medium. This wavefield is
recorded on a two-component noise-free sensor, resulting in two
highly correlated temporal series . After
performing a discrete Fourier transform along time dimension

on each of the two components, the expression for the two com-
ponents in frequency domain becomes

and

(6)

where is the discrete Fourier frequency,
, and are the amplitudes and phases of the two

components of the signal at the given frequency .
Using the imaginary operator instead of as Fourier trans-

formation axis, does not alter the physical meaning of Fourier
phase and modulus. To simplify the notation, we shall ignore the
frequency argument in these expressions and consider working
at a given frequency . As we do not have access to the
exact amplitude and the initial phase of the source, the first com-
ponent is considered as a reference and relative phase and am-
plitude are estimated. The statistical relationship between com-
ponents can be expressed as a constant complex ratio between

and or as a constant modulus ratio and a con-
stant phase shift . These two parameters and
must be estimated in order to describe the polarization ellipse
orientation and eccentricity [29].

Using notations given in (6), we construct the quaternion
signal , describing a 2C signal on one sensor

(7)

where

(8)

Expression (7) can be written in extended form as

(9)

In this way, a new transformation is defined mapping the
two-component complex-valued signal space to the quaternion-
valued signal space. This transformation maps the even parts
of the 2C signal on scalar and imaginary fields of a quater-
nion while the odd parts are mapped to the two others remaining
imaginary fields ( and ).

Replacing and in (7) by:

(10)

observation is written as the product between a quaternionic
expression describing the polarized wave behavior on
the two components ( is the amplitude ratio and is the phase
shift) and the complex amplitude of this wave on the first com-
ponent

(11)

where

(12)

In order to extend this model to the multisensor case and to
introduce the new Q-MUSIC algorithm, we consider a linear,
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Fig. 1. Acquisition scheme.

uniform vector-sensor array of sensors (Fig. 1). Assume that
far-field waves from sources ( -known, ) impinge
on this antenna. Sources are supposed to be decorrelated, spa-
tially coherent and confined in the array plane. Their polariza-
tions are also stationary in time and space (distance). Noise is
spatially white and not polarized.2

To describe wavefield propagation along the array, it is neces-
sary to model a time delay between sensors. In the far-field hy-
pothesis, this delay is simply described as an intersensor phase
shift . The source DOA can then be calculated using the fol-
lowing formula:

(13)

where is the intersensors distance, is the wave propagation
velocity and is the working frequency. Taking the first sensor
(on the antenna) as reference, th source propagation along the
antenna is described by a vector

(14)

Thus, the output of the vector-sensor array is given by a
column quaternion vector , equal to the sum of the
sources contributions (added with a noise term)

(15)

In (15), contains noise contribution on all sensors
and components, and are given by (7) and
is a quaternion vector describing th source behavior on the
vector-sensor array as

(16)

thus

(17)

2Consider a two-component centered noise b(m) = [b (m); b (m)]
recorded on a single vector-sensor, where b (m); b (m) are Gaussian noise
with variances � ; � . Such a noise is not polarized if its covariance matrix
�fbb g = diag(� ; � ).

An unitary quaternion vector can be obtained dividing by
its norm.3 Thereafter, will refer to the unitary vector

(18)

and to its norm.

III. QUATERNION SPECTRAL MATRIX

This section introduces a novel data covariance model for the
polarization model presented in Section II.

A. Quaternion Spectral Matrix

For scalar-sensor arrays, the spectral matrix [30], [31] is given
by the set of second order auto-moments and cross-moments of
all sensors on the antenna. We introduce the equivalent second-
order representation for a vector-sensor array using quaternion
formalism. Quaternion spectral matrix (QSM) is
defined as

(19)

where is the mathematical expectation operator and
is the quaternionic observation vector introduced in (15). If

we replace (15) in (19) and using relation (4), can be written
as

(20)

Assuming the decorrelation between the noise and the
sources and between sources themselves, the expression of the
quaternion spectral matrix becomes

(21)

where

(22)

and is a matrix containing noise second-order
statistics. In (21), is the signal part of QSM and

represents th source power on
the antenna.

In order to understand the statistical meaning of QSM, the
links between quaternions and complex numbers statistics must
be studied. Therefore, the output of the vector-sensor array

can be written according to the complex-valued outputs
of the two components of the array as

(23)

3The norm of a quaternion vector q is defined as kqk =
p
q q, where /

represents the quaternionic transposition-conjugation operator.
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The transpose-conjugate of the quaternion vector can be
expressed using transpose-conjugates of the complex vectors

as

(24)

with the complex transposition-conjugation operator.
Substituting (23) and (24) in (19), the representation of

becomes

(25)

When considering (25), the reader must keep in mind that
are -complex vectors and multiplication by of a

-complex number is not commutative. One can identify in
(25) the expressions of auto-covariance and cross-covariance
matrices for the two components of the vector array, meaning
that QSM contains intrinsically all the second-order infor-
mation available on the antenna. The fact that none of these
matrices is explicitly calculated when estimating QSM reduces
the computational time of the algorithm and saves memory.

Property: The noise-free part of QSM is a Toeplitz ma-
trix.

Proof: Consider the signal part of

(26)

where is given by (16). Thus, introducing (16) in (26) and
using quaternion product conjugate expression

(27)

in which is given by (12) and is a complex-
Hermitian matrix presenting a Toeplitz form

...
. . .

(28)

Multiplication of on the left by and on the right by
conserves the Toeplitz structure: . Thus, can
be written as a weighted sum of quaternion Toeplitz matrices

.
As the noise component of the signal (see (15)) is assumed

spatially white and nonpolarized, the noise part of QSM,
, is a real diagonal matrix for which the diagonal entries

represent the noise power on the sensors.

B. Subspace Method

Eigenstructure methods are based on the decomposition of
the vector space spanned by the observation vector in orthog-
onal subspaces using an energy criteria.

1) Quaternion Eigenvalue Decomposition: Researchers in
areas such as quantum mechanics [32], vector-signal processing

[11], [12], and color image processing [33] took interest re-
cently in computation of eigenvalue decomposition (EVD) and
the singular value decomposition (SVD) of quaternion matrices.
Due to the noncommutativity of quaternions, there are two types
(right and left) of quaternion eigenvalues. Theory about the right
quaternionic eigenvalues is well established [28], [34]. How-
ever, this is not the case for the left eigenvalues of quaternion
matrices, as their existence is still problematic [35]. Therefore,
in this paper, the terms quaternion eigenvalues and quaternion
eigenvectors are used for right eigenvalues and right eigenvec-
tors.

In practice, we have only access to an estimation of the quater-
nion spectral matrix (obtained by classical statistical average
or some other averaging technique). By construction, QSM is
quaternion Hermitian . It can be shown that the eigen-
values for a quaternion Hermitian matrix are real-valued (see
[36]). Quaternion spectral matrix can thus be written as

(29)

where are the real eigenvalues and are the orthonormal
quaternion-valued eigenvectors.

2) Quaternion Vectors Orthogonality: In order to define or-
thogonality for quaternion-valued vectors, we have to generalize
the definition of scalar product to the quaternionic case. For
two quaternion-valued column vectors , the scalar
product is defined as

(30)

We say that two quaternion vectors are orthogonal if their
scalar product is null. Thus, the vectors in (29) form a quater-
nionic orthonormal basis in the observation space spanned by

. To better understand how quaternionic orthogonality works,
consider two quaternion-valued vectors , having
Cayley–Dickson representations, such as

(31)

In (31), are complex-valued vectors
that can be assimilated to the components of a 2C vector-sensor
array (see (23)). If the two components are processed separately
as scalar data sets (as in the case of MUSIC for scalar-sensor
array), the orthogonality relationships for the vectors of the or-
thogonal basis can be written as

(32)

The classical subspace methods in vector-sensor array pro-
cessing use long-vector orthogonality, which is in fact the or-
thogonality for the complex vectors obtained by
concatenating the two components

and (33)

In the first case, the quaternionic orthogonality implies
, while in the long-vector case, complex vectors

orthogonality implies: . From (30) and (31),
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orthogonality between the two vectors of quaternions is equiv-
alent to

(34)

which leads to the two equalities

(35)

and

(36)

Similarly, using the long-vector representations (33), com-
plex orthogonality leads to

(37)

which is equivalent to (35).
It must be noticed that quaternion orthogonality induces one

more constraint (36) on the relationship between the two com-
ponents than does the complex orthogonality. The question is
whether the second constraint is incompatible with the first one
((35) excludes (36)) or it is trivial ((35) implies (36)). Two nu-
merical examples are given to answer these questions.

Exemple 1: Consider given by

For this set of complex vectors, both relations (35) and (36)
are fulfilled, proving the existence of quaternionic orthogo-
nality and implying the compatibility of the two constraints.

Exemple 2: A second example is considered with the fol-
lowing numerical values:

By calculation, it can be shown that in this case (35) is veri-
fied while (36) is not, meaning that the second constraint is not
trivial. These vectors are complex orthogonal (long vector), but
they are not quaternion orthogonal.

Exemple 3: We have shown that (35) does not imply (36). In
order to prove that the two constraints are completely indepen-
dent, it is necessary to show that (36) does not imply (35) either.
The numerical example presented next illustrates this statement:

For described above, relation (36) is verified
while (35) is not.

These three numerical examples prove that the two condi-
tions imposed on the complex components are compatible and
independent. This signifies that quaternion orthogonality is a
“stronger” constraint compared with the complex one

(38)

The reciprocal expression is not always true.
We show under which conditions long vector orthogonality

and quaternion orthogonality are equivalent. Assimilating
, and to the components of two polarized sources

on a 2C sensor array, the following relations can be written:

(39)

where and are the polarization parameters of the
sources (see (12)). Replacing (39) in (36) leads to

(40)

By imposing this relation to be true for any ,
we get and , meaning that sources polar-
izations are identical. Thus, theoretically (if we do not take into
account the statistical aspect in the covariance matrix) the vector
basis obtained by imposing quaternion orthogonality or long
vector orthogonality are identical only if sources contained in
the signal part have identical polarizations or if there is only one
source present in the signal. Otherwise, these two methods yield
different results. Equations (32), (35), and (36), can be rewritten
using the complex scalar product as

(41)

(42)

(43)

where represents the complex conjugate of a vector. Tables I
and II summarize the discussion on vector orthogonality in
terms of scalar product between the components. Each cell of
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TABLE I
RELATIONSHIPS BETWEEN THE COMPONENTS WHEN

PROCESSING EACH COMPONENT SEPARATELY

TABLE II
RELATIONSHIPS BETWEEN THE COMPONENTS FOR

LONG VECTOR AND QUATERNION ORTHOGONALITY

the tables corresponds to the scalar product of the associated
complex vectors.

The identically shaped arrows indicate which scalar products
are forced to be equal (in absolute value). The direction of
the arrow designates the sign (right arrow for positive and
left arrow for negative) of the product in relationship with the
corresponding equal quantity. The double arrows represent the
long vector constraint and an empty cell indicates that there is
no constraint between the considered vectors. When processing
one component at a time (Table I), one can see that there are
no links between the scalar products of the components. Each
couple of components is forced to orthogonality independently,
representing two different self-sufficient estimation problems.
The long vector orthogonality imposes a constraint between
the corresponding components of the vectors (see Table II—the
double arrows) ( and ) and the quaternion
orthogonality restrains even more the freedom of the com-
ponents forcing an additional cross-component relationship
(Table II—the simple arrows).

An evident question arising after this discussion on orthogo-
nality is what would be the effect of this stronger orthogonality
constraint on subspace-based algorithms. We show in the next
part that for a two-component complex-valued data set, quater-
nion vector orthogonality provides a more accurate estimation
of the signal subspace than the long vector orthogonality con-
straint.

Consider two square complex-valued matrices
, whose entries are generated using a random uniform

number generator. and could be assimilated to data sets
(in the frequency domain) recorded on a two-component array
of 20 sensors. Starting from these two matrices, we create a
long vector complex matrix by concatenation of

, as follows:

(44)

and a quaternion matrix as

(45)

After performing the SVD of and the quaternion singular
value decomposition (QSVD) of , the matrices can be written
as a sum of 20 rank-1 terms

where (46)

where (47)

The complex-valued vectors in (46) and the quaternion
vectors in (47) form a long vector and a quaternion orthog-
onal basis respectively in the vector space defined by the two
components. Rank-R approximations of and are con-
structed as

(48)

(49)

with .
In order to estimate the rank-R approximation error for the

long vector and quaternionic decompositions, the two following
error functions are computed:

(50)

(51)

where is the Frobenius norm4 of a complex or quaternion
matrix.

Fig. 2 plots and versus the approximation rank .
These two curves are obtained by averaging the error functions
computed for 100 independent realizations of . One can
see that for a rank-1 approximation, the long vector and the
quaternion approaches yield the same estimation error. This is
a confirmation of the theoretical result (that we saw earlier in
this section) stating that in the case of one source present in the
signal (or if sources have identical polarizations) the two kinds
of orthogonality are equivalent. For all the other ranks, the ap-
proximation error obtained using the quaternionic approach is
smaller than the long vector one

.
In conclusion, we can state that the use of quaternion vector

orthogonality to estimate the signal subspace on a two com-
ponent vector-sensor array improves estimation accuracy, com-
pared to the long vector method. The explanation is that the en-
ergy of the signals on a 2C section can be more precisely con-
centrated on a quaternion vector orthogonal basis than on a long
vector one.

4The Frobenius norm of aM �N matrixA is defined as the square root of

the sum of the squared norm of its elements kAk = ja j .
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Fig. 2. Rank approximation error for the long vector and quaternionic
approaches.

IV. QUATERNION-MUSIC ESTIMATOR

Using the data covariance model illustrated in Section III, we
propose a MUSIC-like algorithm allowing estimation of DOA
(by intersensor phase-shift ) and polarization parameters
(see (16) and (17)). By identification of (21) with (29), we asso-
ciate the first eigenvalues to the signal part of the observation
and the rest , to the noise part. The choice of is made by
studying the gaps in the quaternionic eigenvalues curve. Statis-
tical criteria such as the Akaike information criterion (AIC) [37]
and the minimum description length (MDL) [38] can also be ap-
plied, but they are little robust when noise is considered. In the
sequel, we consider that is a priori known and encourage the
interested reader to examine the bibliographic references men-
tioned here.

The quaternion spectral matrix defined in Section III-A can
be written in a matrix form as

(52)

with containing the source vectors
(18) and a diagonal

matrix containing the sources powers on the antenna, . If
noise is not polarized, its covariance matrix is real, diagonal:

, where represents noise power on a sensor. Let
the EVD of be given by

(53)

with containing the quaternion-
valued eigenvectors of and , the diagonal matrix
of its eigenvalues.

We define two matrices and ,
such as

(54)

(55)

contains the eigenvectors corresponding to signal subspace
and the eigenvectors corresponding to noise subspace. By
multiplying (52) on the right by , we get

(56)

QSM can also be expressed according to et as

(57)

where . If noise power is equal on all
sensors of the array, the last eigenvalues of are all
equal to . Replacing (57) in (56), and using the orthogonality
between the vectors of and , the following relation is ob-
tained:

(58)

implying

(59)

If (59) is multiplied on the right by , (59) can be
expressed using columns of as

(60)

for all sets of corresponding to parameters of
sources present in the signal. represents
the noise subspace projector. In reality, we only have access to
an estimation of this projector, , resulting from the EVD of
the estimated spectral matrix, .

Quaternion-MUSIC estimator (Q-MUSIC) is then computed
by projecting the quaternion steering-vector

...

(61)

on the noise subspace as:

(62)

We find this way, an expression for Q-MUSIC estimator
similar to the well-known form of MUSIC algorithm for
scalar-sensor array. The functional in (62) has maxima for sets
of corresponding to sources present in the signal. By
varying within a given domain with a chosen step, a
three-dimensional (3-D) surface is computed. The estimated
values of , and are the coordinates of the most important
local maxima on this surface. Assuming that the iteration step
is sufficiently small for a correct sampling of the hypersurface,
the search for local maxima is automatically done by com-
paring each point on this surface with its neighbors. The first

maxima correspond to the sources present in the signal.



MIRON et al.: QUATERNION-MUSIC FOR VECTOR-SENSOR ARRAY PROCESSING 1225

TABLE III
COMPUTATIONAL EFFORT FOR COVARIANCE MATRIX ESTIMATION

This way, the estimation process of , and is quasi-unsu-
pervised.

V. COMPUTATIONAL ISSUES

This section addresses the problem of computational com-
plexity for long-vector and quaternion algorithms. A full estima-
tion of the computational complexity of the methods is difficult
and is little relevant as it is hardware and software dependent. In
the sequel we only focus on one aspect of the algorithm: the es-
timation of the covariance matrix. This procedure, as it implies
repetitive operations, best illustrates the complexity difference
between the two algorithms. The complexity of the methods are
evaluated in terms of memory requirements, memory traffic and
basic arithmetical operations: real numbers addition (A), multi-
plication (M), and division (D).

Let us consider a vector-sensor array composed of
two-component sensors. In frequency domain, a snapshot of the
array is given by two complex-valued vectors .
The quaternion representation and the long-vector
representation of the observation vector have the
expressions given by (31) and (33). The corresponding covari-
ance matrices are as it follows: and

. If averaging over particular
realizations of the covariance matrix is used for estimation,
we can write
and . Each one
of the matrices has quaternionic entries and can be
represented at machine memory level on real fields, while
the matrices have complex entries each, corresponding
to real values. This way, quaternion algorithm reduces
by half the memory requirements for representation of data
covariance model, resulting also in a total diminution by a
factor of of memory traffic operations (data retrieving and
writing) and a proportional gain in speed.

Let us evaluate now the total number of basic arithmetical
operations needed for covariance matrix estimation. Each of the
quaternion entries of is the result of the multiplication of two
quaternions. Multiplication of two quaternions implies 16 real
multiplications (M) and 12 real additions (A), that is a total of

(M) and (A) for the whole matrix. For the complex
matrix we have (M) and (A). Thus, the sum-
mation needs a total of (M) and

(A) while requires
(M) and (A).

These results take into account the observation vectors multi-
plications as well as matrices additions. The final division by
means another real numbers divisions (D) for the quater-
nion algorithm and (D) for the long-vector one. Table III
recapitulates the covariance matrix computational effort for the
two algorithms.

As we can see in Table III, the quaternion algorithm reduces
the memory requirements for data covariance model represen-
tation by a factor of two. Consequently, he memory traffic is
reduced by approximately the same factor, resulting in an im-
portant gain in rapidity, especially for large data size. Regarding
the number of elementary operations on real values, the quater-
nionic approach demands additions moreover and
divisions less than the long-vector method. The computational
complexity for division is several times more important than for
addition, implying higher computational cost for long-vector.

The computation of the quaternionic eigenvectors of the es-
timated matrix can be performed using algorithms
dealing with complex numbers or quaternions. The methods
based on complex numbers come down to diagonalizing the
complex adjoint matrix of , that is a complex-valued matrix of
size (see [28] and [34]). In this case, the computational
complexity of the eigenvalue decomposition of the quaternionic
matrix is equivalent to the decomposition complexity of the
complex matrix . The advantage of this approach is the possi-
bility of using complex matrix diagonalization routines already
existing in the literature (e.g., LAPACK), that are computation-
ally optimized.

Nevertheless, it was shown (see [39]) that working directly
in quaternionic domain improves the convergence speed of the
algorithms compared to complex approach. This reinforces the
idea that the use of quaternions can enhance the performance of
algorithms.

Generally, the use of quaternions in algorithms reduces the
computational effort, due to the compact handling of the data.

VI. SIMULATION RESULTS

The performances of Q-MUSIC estimator are compared to its
scalar version [13] and to Vector-MUSIC (V-MUSIC) [24] for
vector-sensor array processing. For the multicomponent algo-
rithms (Q-MUSIC and V-MUSIC), 3-D surfaces (functions of
parameters ) are computed. The presented figures are cuts
of this hypersurfaces for fixed values of one or two parameters.

First, we consider a scenario with one polarized source im-
pinging on a 2C-sensor array composed of 10 identical equally-
spaced sensors. The source has the DOA 0.93 rad, polariza-
tion parameters: 0.27 rad and random initial phase.
Gaussian noise has been added to this signal up to a SNR5 of
0 dB. A computation step of 0.001 rad has been used for and
0.05 for and .

5If S (�) and N (�) are the frequency values for the signal and
noise part of the signal on the kth sensor of the cth component, the SNR
for a 2C data set recorded on K sensors is defined as SNR(� ) =
( (S (� )) = (N (� )) ) for the working fre-
quency � .
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In Fig. 3, we have represented the DOA (intersensors phase
shift) estimation for the proposed algorithm compared to
V-MUSIC and its scalar version, in three different runs for
different numbers of snapshots. The curves have been plotted
for 3 and 0.27 rad (the polarization parameters of the
source). The performance of the new algorithm is comparable
to Vector-MUSIC as one can see in Fig. 3(a)–(c). For a large
number of samples (a good covariance estimation) [Fig. 3(a)],
the 3-dB detection lobe width for Q-MUSIC is even narrower
compared with the other vectorial algorithm. This means that
for an accurate estimation of QSM, the quaternion algorithm
yields better resolution power than V-MUSIC. Fig. 3 shows
also that multicomponent information improves considerably
the detection resolution; for a poor number of samples scalar
detection fails badly [Fig. 3(c)]. Fig. 4(a) and (b) plots the de-
tection curves for polarization parameters ( and ) computed
by the multicomponent algorithms. This time, a computation
step of 0.02 was used for and in order to improve resolution.

Fig. 4(a) and (b) also shows that for a one source scenario,
the Q-MUSIC estimation of polarization parameters is equiva-
lent (and sometimes even more performant) to Vector-MUSIC
algorithm.

Next, we study the case of two equally powered sources,
under the same assumptions. The simulated parameters for the
impinging waves are 0.48 rad, 2.5 0.18 rad,
and 0.25 rad, 0.15 rad. In Fig. 5(a),
the values of the two three-parameter surfaces, Q-MUSIC
and V-MUSIC, are plotted for two fixed values corre-
sponding to polarization parameters of the first source
( 2.5 0.18 rad). One can observe that both
algorithms present an expected strong answer for the DOA
of the first source ( 0.48 rad) and a residual answer for

0.25 rad corresponding to second source. This residual
answer is due to incomplete decorrelation of the two sources.
The main detection lobes for Q-MUSIC and V-MUSIC are
completely superposed, while the secondary one is slightly
stronger for the quaternion method. The explanation is the
reduction of data covariance space dimension for Q-MUSIC al-
gorithm (see Section I), resulting in a more important sensitivity
of the algorithm to sources correlation. The same phenomenon
can be observed for the second source [Fig. 5(b)]; this time,
the curves were plotted for two fixed values corresponding to
second source polarization parameters.

The polarization parameters plan corresponding to the first
source ( 0.48 rad) is represented for Vector-MUSIC esti-
mator in Fig. 6(a) and for Q-MUSIC in Fig. 6(b). In the studied
case, both algorithms perform a correct detection; the difference
is that detection lobe (cone) is slightly wider for the quater-
nionic version of the method [Fig. 6(b)] compared with Vector-
MUSIC. The situation is similar for the second source polariza-
tion parameters. This widening in the polarization domain can
be explained by the fact that data covariance compression is per-
formed along the polarization dimension of the data set.

Thus, even in a multiple emitter scenario, the proposed al-
gorithm yields performances comparable to similar techniques
(Vector-MUSIC), using less computational resources.

In order to have a statistical characterization of Q-MUSIC
estimator, its performance is compared to Vector-MUSIC

Fig. 3. Q-MUSIC, Vector-MUSIC and Scalar-MUSIC in three runs for
different numbers of samples: (a) 1000 ; (b) 100; and (c) 10.
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Fig. 4. Q-MUSIC and Vector-MUSIC estimation for (a) � and (b) ' for 1000
snapshots.

and Scalar-MUSIC estimators in Monte Carlo runs. Two
equal-power uncorrelated polarized sources, with random
initial phases, impinge on a two-component sensor-array com-
posed of ten equally spaced sensors. The sources DOAs are

0.7 rad, 0.5 rad, and they have the following
polarization parameters: 2.5 0.18 rad, and

3 0.15 rad. Fig. 7 plots the DOA root-mean-square
(rms) estimation error for the estimators mentioned bellow.
One hundred snapshots are used in each Monte Carlo run.
Three hundred independent runs contribute to each number
in the figure. Additive white Gaussian noise is present in
different signal to noise proportions. The rms error of is
defined as the rms of the rms estimation error of and

rms rms rms . For Scalar-MUSIC, a
mean is operated over the two components.

Fig. 5. DOA estimation using Q-MUSIC and Vector-MUSIC: (a) Cut for � =

2.5; ' = �0.18 rad (source 1) and (b) cut for � = 3; ' = 0.15 rad (source
2).

Fig. 7 shows that the two algorithms, Q-MUSIC and
V-MUSIC, present equivalent performance, their rms error
curves are almost totally superposed. Nevertheless, their esti-
mation error is clearly inferior to scalar version of the algorithm.

VII. CONCLUSION

In this paper, we have illustrated a compact and elegant way
of dealing with two-component complex-valued data sets in
vector-sensor array processing, using quaternions. A new data
model and data covariance model (QSM) was proposed and a
new direction-finding method (Q-MUSIC) exploiting spatial
and polarization diversity was introduced. This algorithm
allows DOA and polarization estimation for multiple sources
on a vector-sensor array.
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Fig. 6. Polarization estimation for the first source using (a) Vector-MUSIC and
(b) Q-MUSIC .

We showed that the quaternion vector orthogonality allows a
more accurate estimation of the noise subspace for a two-com-
ponent data set, compensating for the loss of performance due
to the reduction of data covariance representation (QSM) size.

The proposed method has been compared to the classical
MUSIC algorithm for scalar-sensor array and to another
MUSIC-like algorithm for vector-sensor array processing.
Q-MUSIC is clearly more accurate than classical (scalar)
MUSIC and yields equivalent results compared with the
Vector-MUSIC algorithm, reducing the computational burden
and dividing by half the memory space required. The method
has a better resolution power for an accurate estimation of
the QSM, but it is more sensitive to sources correlation than
Vector-MUSIC algorithm. An extended analysis of Q-MUSIC
behavior (Cramer–Rao bound, robustness to colored or corre-
lated noise, etc.) is beyond the scope of this paper and should
be included in a subsequent paper.

Fig. 7. RMS estimation error (in decibels) for ^� versus SNR (in decibels).

The presented results emphasize the potential of quaternions
to model polarized signals and put into perspective the pos-
sibility of describing signals having more than two complex-
valued components using higher dimensional hypercomplex al-
gebras.
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