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Abstract

We introduce a novel binary matrix factorization (BMF) approach based on a post-nonlinear mix-

ture model. Unlike the existing BMF methods, which are based on the classical matrix product, the

proposed mixture model is equivalent to the Boolean matrix factorization model when the entries

of the factor matrices are exactly binary. Consequently, our approach yields interpretable results

in the case of overlapping sources and more accurate low-rank binary matrix approximations com-

pared to the state-of-the-art. We propose a simple yet efficient algorithm for solving the proposed

BMF problem based on multiplicative update rules. In addition, we provide for the first time in

the binary data literature, a necessary and sufficient condition for the uniqueness of the Boolean

matrix factorization, as well as several other uniqueness results. The interest of this new approach

is illustrated in numerical simulation and on real datasets.

Keywords: Binary source separation, Boolean factorization, post-nonlinear mixture, Boolean

rank, uniqueness

1. Introduction

Categorical data in general, and binary data in particular, are increasingly present in various

domains. Binary data can be either generated by two state processes/phenomena (and naturally

encoded on the binary {0, 1} values), e.g. proximity sensors, push buttons, electric switches,

yes/no answers in surveys, etc., or artificially obtained by high (1-bit) quantization of real-valued

data. 1-bit quantization and 1-bit compressive sensing techniques have been initially developed to

speed up the digital converters (see e.g., [1, 2]) but they represent nowadays a highly interesting

solution to the data deluge problem encountered in the last years in many application fields. In

spectroscopy, for example, an expert may be more interested in the presence/absence of a peak

in a recorded (or unmixed) spectrum at a given wavelength, rather than in the actual magnitude

of this peak. Therefore, binary matrix factorization (BMF) (or binary matrix decomposition)
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gained a lot of interest lately and have already been successfully used in many domains such as

digital telecommunications [3, 4], role mining [5], phenotype identification from gene expression

data [6, 7], protein complex prediction [8], document classification [9], feature reconstruction in

images [6], pattern discovery for gene expression images [10] or recommendation systems [11].

Over the last two decades, the majority of results and algorithms for BMF came from statistics,

data science and machine learning communities. Meanwhile, surprisingly, two of the first algorithms

for matrix factorization in binary factors are originating from signal processing [3, 4], and were

developed for source separation in digital telecommunications. However, these algorithms consider

the case where only one of the two factors (the source matrix) has binary {−1,+1} entries, while
the data and the other factor are complex-valued. Another early method for the decomposition

of binary-valued matrices is the Logistic Principal Components Analysis (LPCA) [12] which uses

a probabilistic model for the data. However, this method factorizes an element-wise probability

distribution and does not produce binary factors. This algorithm served as inspiration to several

other similar methods, such as the ones proposed in [13, 14, 15, 16, 17]. A problem closely related

to LPCA, that concentrated some research efforts lately, is the 1-bit matrix completion, where only

a subset of the entries of the observed binary matrix is supposed known ([18, 19, 20, 21]). Using

the same probabilistic framework, variants of these algorithms, with different specificities, have

been proposed (see e.g., [22, 23, 24, 25]).

Parallelly to the up-mentioned methods, a class of greedy-like approaches ([26, 27, 28, 29, 30, 31])

has been introduced for solving the BMF problem. As the binary matrix factorization problem

is NP -hard [29], these methods employ various strategies to iteratively estimate and extract the

binary rank-1 terms (sources) from the observation matrix.

Another way to tackle the NP -hardness of the BMF problem is its relaxation over the real

nonnegative orthant ([32, 7, 33]). This way, the discrete problem is casted into a continuous

optimization problem, with constraints forcing the “binarity” of the results.

A family of methods related to BMF is formed by the co-clustering (or block clustering) al-

gorithms for binary data. The co-clustering aims at partitioning an objects-attributes matrix

in low-rank homogenous structures; these low-rank binary structures are sought using BMF-like

approaches (see e.g., [34, 35, 36, 37]).

While the BMF methods mentioned above use fundamentally different algorithmic approaches,

they are all based on a mixture model defined using the classical real-matrix product. This implies

(as explained in the following section) that these decompositions have the tendency to generate

“decorrelated” factors (sources), as they strongly penalize the factors having overlapping supports.

This represents a major drawback in a large class of applications where common behaviors of

different “populations” are sought. Moreover, by forcing the non-overlapping of the factors, these

methods yield an increased rank of the BMF decomposition, which is an undesired feature in

low-rank approximation and data compression applications.
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Contributions: In this paper we take a fresh look at the binary matrix factorization from

a signal processing (source separation) perspective. We propose a BMF approach based on a

relaxation over the real field of the Boolean matrix product. Unlike the approach in [32], by using a

post-nonlinear mixture model, the binary matrix product used by our method is equivalent to the

Boolean matrix product in the exact binary case, and therefore, the correlation of the underlaying

factors does no longer affect the algorithm performance. Another major contribution of this work

is represented by the results on the uniqueness of the Boolean decomposition of a binary matrix;

we provide a necessary condition, a sufficient condition and a necessary and sufficient condition

for the uniqueness of the Boolean decomposition of a binary matrix. As far as we know, it is

the first that this type of conditions are provided in the binary data literature. The performance

of the proposed algorithm is illustrated on synthetic and real data, and compared with similar

state-of-the-art algorithms.

The paper is organized as follows. In Section 2 we illustrate and discuss the binary matrix

decompositions models and their features. Section 3 introduces the uniqueness conditions for the

Boolean matrix decomposition.The proposed post-nonlinear mixture BMF approach is introduced

in Section 4 and is tested on synthetic and real data in Section 5. The last section, i.e., Section 6,

presents the conclusions of this work.

Notation: A bold-face capital letter X denotes a matrix, vectors are written in bold-face lower-

case x and xk indicates the kth column of matrix X. Scalars are lower-case x or upper-case X .

The element on the ith column and the jth row of matrix X is denoted Xij . X(k) denotes the

kth rank-1 term in the decomposition of X. The all-ones matrix of size N ×M is symbolized

by 1N×M . The Frobenius norm of a matrix is denoted ‖ · ‖F, (.)T is the matrix transposition

operator and “∗” denotes the Hadamard (element-wise) product of two matrices; | · | symbolizes

the cardinality of a set.

2. Binary Matrix Decompositions (Factorizations)

The decomposition of a N ×M matrix X with binary entries (Xij ∈ {0, 1}), into a sum of K

(generally K � min{M,N}) rank-1 terms:

X = X(1) + · · ·+X(K), (1)

with X(k) = wkhk
T, (k = 1, . . . ,K) is generally known as Binary Matrix Decomposition or

Binary Matrix Factorization (BMF). The vectors wk and hk are oftenly termed as factors. The

smallest K for which (1) holds exactly is called the rank of the decomposition.

If we adopt a source separation point of view, X represents the observed source mixtures

(the measurements), while the rank-1 matrix X(k) is the kth source, with the two dimensions

corresponding to the two observed diversities; K is the number of sources that we seek to separate

from the mixture.
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Depending on the set over which this factorization is performed, several BMFs and decompo-

sition ranks can be defined:

• If the entries of wk and hk are real values, the rank of the decomposition (1) is the familiar

real rank, denoted by rankR{X}. The real BMF of X as well as the real rank can be easily

obtained by well-known algebraic methods such as the Singular Value Decomposition (SVD).

While this decomposition may seem algorithmically very appealing, it does not preserve

binarity and therefore its results are difficult to interpret in binary data applications.

• If the entries of wk and hk are constraint to be real nonnegative, the BMF (1) boils down

to the Nonnegative Matrix Factorization (NMF) [38], and its rank is the nonnegative rank,

rankR+{X}. Many algorithms exist for the computation of the NMF decomposition of X,

e.g., [39]. This decomposition is not well-adapted either to analyze binary data (although it

has already been used to this end), as it does not preserve binarity of the results.

• If the entries ofwk and hk are restricted to the {0, 1} set, the decomposition of (1) is generally

known as the binary decomposition of X and the associated rank is the binary rank (see e.g.,

[40]), denoted rank{0,1}{X}. The binary rank can be interpreted as the minimum number

of disjoint all-ones (rank-1) rectangles needed to cover all the 1’s of X (after some row and

column permutations).

• If we keep the restriction of wk and hk to the {0, 1} set and replace the “+” in (1) by the

logical OR operator “∨”, than eq. (1) can be seen as a decomposition of X over the Boolean

semiring (B,∨,∧). The symbol “∧” denotes the AND logical operator, which is the same as

the real multiplication for binary values. This decomposition is oftenly termed as the Boolean

factorization of the binary matrix X, and the rank of the decomposition is known as the

Boolean rank [41] or the Schein rank [42], and denoted rankB{X}. The Boolean rank of X

can be understood as the minimum number of all-ones (not necessarily disjoint) rectangles

needed to cover all the 1’s of X (after some row and column permutations). The problem of

determining the Boolean rank of a binary matrix is NP -complete [43].

Table 1 summarizes the different decompositions of a binary matrix presented above.

Set of values for wk, hk sum operator Decomposition rank

real field (R) real sum (“+”) Real BMF rankR

real nonnegative (R+) real sum (“+”) Nonnegative Matrix Factorization (NMF) rankR+

{0,1} real sum (“+”) Binary Decomposition rank{0,1}

{0,1} logical OR (“∨” ) Boolean Decomposition rankB

Table 1: Binary matrix decompositions
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It is known that the Boolean rank of a binary matrix is a lower bound for the other nonnegative

ranks [40], but to the best our knowledge there is no proven relationship between the real rank and

the Boolean rank:

rankB{X} ≤ rankR+{X} ≤ rank{0,1}{X}, (2)

rankR{X} ≤ rankR+{X}. (3)

We propose next two toy examples to illustrate the the difference between the binary and the

Boolean ranks.

Consider the 3× 3 binary matrix of rankR equal to 3:

X =




1 1 0

1 1 1

0 1 1


 . (4)

The binary rank of X is also rank{0,1}{X} = 3 and two possible binary decompositions are:

X =



1 0 0

1 0 0

0 0 0




︸ ︷︷ ︸
X(1)

+



0 1 0

0 1 0

0 1 0




︸ ︷︷ ︸
X(2)

+



0 0 0

0 0 1

0 0 1




︸ ︷︷ ︸
X(3)

=



1 1 0

0 0 0

0 0 0




︸ ︷︷ ︸
X(1)

+



0 0 0

1 1 1

0 0 0




︸ ︷︷ ︸
X(2)

+



0 0 0

0 0 0

0 1 1




︸ ︷︷ ︸
X(3)

.

This decomposition preserves the binary nature of the results, but it suffers from non-uniquness.

By replacing the arithmetical sum by the logical disjunction “∨” the following Boolean decom-

position of X is obtained:

X =



1 1 0

1 1 0

0 0 0




︸ ︷︷ ︸
X(1)

∨



0 0 0

0 1 1

0 1 1




︸ ︷︷ ︸
X(2)

.

The Boolean rank of this decomposition is rankB{X} = 2. Moreover, this decomposition seems to

be unique unique, i.e. we could not find another rank-2 decomposition that allows to recover X

exactly.

In the example considered above it can be seen that the Boolean decomposition of a binary

matrix seems to have more interesting features compared to the binary decompositions, such as

lower rank and uniqueness. This makes it an interesting tool for binary data analysis and binary

data compression applications. Nevertheless, at this point it is not clear whether these advantages

hold in general or only in some particular cases. The next example brings more insights into these

aspects.

Consider the 4× 4 binary matrix:

X =




1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


 . (5)
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The decomposition of X in a minimum number of rank-1 terms can be expressed as:

X =




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
X(1)

+




0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1




︸ ︷︷ ︸
X(2)

=




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0




︸ ︷︷ ︸
X(1)

∨




0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1




︸ ︷︷ ︸
X(2)

In this case, all the decompositions are equivalent and we have rankB{X} = rankR{X} =

rankR+{X} = rank{0,1}{X} = 2. Moreover, the two decompositions that preserve the binary

nature of the data, i.e., the binary and the Boolean decompositions, are unique (according to

uniqueness results presented in Section 3).

If we take a closer look at these two examples, we see that the Boolean decomposition is advan-

tageous over the binary decomposition when the rank-1 terms X(k) have overlapping supports1,

i.e., in the case of correlated sources2, as illustrated by the first example. When the sources are

uncorrelated, i.e., the supports of the rank-1 terms are disjoint (this is the case for the second

example), the binary and the Boolean decompositions are equivalent.

We illustrate next, on a practical example, the utility of the Boolean factorization in data

analysis. We consider a subset of the UCI zoo dataset3, composed of a list of five animal species

and five Boolean-valued attributes, as shown in Table 2.

airborne backbone toothed aquatic milk

crow 1 1 0 0 0

hawk 1 1 0 0 0

carp 0 1 1 1 0

dolphin 0 1 1 1 1

elephant 0 1 1 0 1

Table 2: The considered subset of the UCI zoo dataset. Each row corresponds to a species and each column to an

attribute.

The presence/absence of an attribute for a species is encoded by “1”/ “0”, respectively. This

results in a 5 × 5 binary-valued matrix X, as shown in Table 2. The objective is to find classes

of similar species, i.e., species sharing the same attributes. This comes down to decomposing the

binary attributes matrix into a sum of rank-1 binary terms X(k) = wkh
T
k . For each rank-1 term,

wk will have “1”s in the positions corresponding to the similar species and hi will have “1”s in

the positions corresponding to the shared attributes. For the data considered here, we obtain a

1We define the support of a vector x as supp{x} = {i,xi �= 0} and the support of matrix X as supp{X} =

{(i, j),Xij �= 0}.
2The correlation of two binary sources X(i) and X(j) is defined as the cardinality of the intersection of their

supports, i.e., corr{X(i) ,X(j)} =| supp{X(i)} ∩ supp{X(j)} |.
3Available on the UCI Machine learning repository website: https://archive.ics.uci.edu/ml/datasets/Zoo .
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rank-3 Boolean decomposition; the three rank-1 terms are highlighted in Table 2. Interestingly,

one can see that, according to the decomposition, the dolphin belongs to two classes, as it has

common features both with the carp and the elephant. This a reasonable result, as the dolphin

is an aquatic mammal. This result is possible thanks to the fact that the Boolean decomposition

allows overlapping supports of the rank-1 terms, as illustrated in Table 2.

The examples above illustrate the fact that the Boolean factorization of a binary matrix has

interesting properties in terms of rank and uniqueness, which makes it an interesting tool for

binary data analysis and signal processing applications. In this paper we focus on this particular

decomposition, study its uniqueness and propose an efficient algorithm to achieve the Boolean

BMF.

3. Uniqueness of the Boolean BMF

In the previous section we have seen that Boolean decomposition seems to present interesting

uniqueness features. We prove in this section a necessary and sufficient condition for the unique

Boolean decomposition of a binary matrix, and some other uniqueness results. Consider the Boolean

decomposition of a binary matrix X given by:

X = X(1) ∨ · · · ∨X(K) =

K∨
k=1

X(k), (6)

with X(k) = wkh
T
k , and the entries of wk and hk restricted to the set {0, 1}.

Definition 3.1 (Full uniqueness). We say that the decomposition (6) is fully unique if, for any

other set of K rank-1 binary matrices
{
X̄(1), · · · , X̄(K)

}
satisfying (6), we have X(k) = X̄(k), for

all k = 1, · · · ,K, up to some permutation of the superscripts (1, · · · ,K).

This permutation of the superscripts is also known in the literature as the order indeterminacy.

It is worth noting that, for the decomposition in binary terms there is no scaling indeterminacy,

contrary to the real-value decompositions.

The condition for the full uniqueness of (6) as well as its proof, is based on an intermediary and

more relaxed notion which is the partial uniqueness. Let us consider the Boolean decomposition of

the rank-K binary matrix X given by (6), and re-write it as:

X =
∨
k �=i

X(k) ∨X(i) = X(\i) ∨X(i), (7)

where X(\i) =
∨
k �=i

X(k) is a binary matrix of Boolean rank K − 1.

Definition 3.2 (Partial uniqueness). We say that the decomposition (7) is partially unique with

respect to X(i) if, for a given X(\i), the only rank-1 binary matrix satisfying (7) is X(i).
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We study next under which conditions the partial uniqueness of a Boolean decomposition can

be achieved. First we prove a simple yet insightful necessary condition for partial uniqueness.

Theorem 3.1 (Partial uniqueness: a necessary condition). The decomposition (7) is not partially

unique with respect to X(i) = wih
T
i if there exists j ∈ {1, · · · ,K} \ {i} such that supp{wi} ⊆

supp{wj} or supp{hi} ⊆ supp{hj}.

Proof. Let us consider the case supp{wi} ⊆ supp{wj} (the proof for the case supp{hi} ⊆ supp{hj}
is similar). If, at the same time, supp{hi} ⊆ supp{hj}, then supp{X(i)} ⊆ supp{X(j)}, meaning

that X(i) ∨X(j) = X(j) and consequently X is of rank K − 1, which contradicts the assumption.

If supp{hi} � supp{hj}, then hi can be expressed as hi = h⊆
i ∨ h

�
i , with supp{h⊆

i } ⊆ supp{hj},
supp{h�

i } � supp{hj} and supp{h�
i } 	= ∅. Let h be a M × 1 binary vector such that supp{h} ⊆

supp{hj} and h 	= h⊆
i . Decomposition (7) can then be expressed as X =

∨
k �=i,j

X(k)∨X(j)∨X(i) =

∨
k �=i,j

X(k) ∨ wjh
T
j ∨ wi(h

⊆
i ∨ h

�
i )

T =
∨

k �=i,j

X(k) ∨ wjh
T
j ∨ wi(h

⊆
i )

T ∨ wi(h
�
i )

T. Under the given

assumptions, wjh
T
j ∨wi(h

⊆
i )

T = wjh
T
j and wjh

T
j = wjh

T
j ∨wih

T, which, after substitution in the

considered decomposition and some simple algebraic manipulations, yields X =
∨
k �=i

X(k)∨wi(h
�
i ∨

h)T =
∨
k �=i

X(k) ∨ X̄(i), with X̄(i) = wi(h
�
i ∨ h)T. As h 	= h⊆

i and supp{h�
i } ∩ supp{h} = ∅, it

means that X(i) 	= X̄(i), i.e, decomposition is not partially unique.

An illustration of this necessary condition is given on Figure 1. The gray and the dark gray

rectangles represent the supports of X(j) and X(i), respectively, as defined in Theorem 3.1. One

can observe that supp{wi} ⊂ supp{wj}. The dashed lines represent the bounds of three different

possible support configurations for the rank-1 term X(i), illustrating the non-uniqueness of this

term in the decomposition. A key point for understanding the uniqueness results presented in this

section is the fact that all these admissible configurations of X(i) include the rank-1 term wi(h
�
i )

T,

which is outside the support of X(j). This term represents the X(i) with the minimum support,

satisfying (7).

X(j)

X(i)

(h
�
i )

T

wi

hT
j

wj

(h⊆
i )

T

Figure 1: Illustration of the necessary condition for partial uniqueness given by Theorem 3.1

Based on these observations, we prove next a necessary and sufficient condition for partial

uniqueness.
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Theorem 3.2 (Partial uniqueness: a necessary and sufficient condition). Consider the decompo-

sition (7) and define the following subsets:

• Ωwi : the smallest subset of {1, · · · ,K} \ {i} such that supp{wi} ⊆
⋃

k∈Ωwi

supp{wk}

• Ωhi : the smallest subset of {1, · · · ,K} \ {i} such that supp{hi} ⊆
⋃

k∈Ωhi

supp{hk}

The decomposition is partially unique with respect to X(i) = wih
T
i iff:

⋂
k∈Ωhi

supp{wk} = ∅ and

⋂
k∈Ωwi

supp{hk} = ∅.

Proof. The sufficient condition. Suppose that
⋂

k∈Ωhi

supp{wk} 	= ∅ and let w∩ be a N × 1 binary

vector such that: supp{w∩} = ⋂
k∈Ωhi

supp{wk} ∩ supp{wi}. Then, wi can be expressed as wi =

w∩
i ∨ w∗

i , where w∩
i and w∗

i have disjoint supports. As supp{hi} ⊆
⋃

k∈Ωhi

supp{hk} it implies

supp{w∗
i } 	= ∅ (otherwise supp{wih

T
i } ⊆

⋃
k∈Ωhi

supp{wkh
T
k}, resulting in a rank loss of X). Now,

let us write X = X(\i) ∨ X(i) =
∨

k/∈Ωhi

X(k)∨ ∨
k∈Ωhi

X(k) ∨ X(i) =
∨

k/∈Ωhi

X(k) ∨ ∨
k∈Ωhi

wkh
T
k ∨

(w∩
i ∨ w∗

i )h
T
i . Let w be a N × 1 binary vector such that supp{w} ⊂ supp{w∩

i }, which implies

w∩
i ∨ w = w∩

i . Then we have X =
∨

k/∈Ωhi

X(k) ∨ ∨
k∈Ωhi

wkh
T
k ∨ (w∩

i ∨ w ∨w∗
i )h

T
i =

∨
k/∈Ωhi

X(k) ∨
∨

k∈Ωhi

wkh
T
k ∨w∩

i h
T
i ∨ (w∨w∗

i )h
T
i =

∨
k/∈Ωhi

X(k) ∨ ∨
k∈Ωhi

wkh
T
k ∨ (w∨w∗

i )h
T
i =

∨
k �=i

X(k) ∨X̄(i), with

X̄(i) = (w∨w∗
i )h

T
i . As supp{w} ⊂ supp{w∩

i }, it means that X(i) 	= X̄(i), i.e, the decomposition

is not partially unique, which contradicts the assumption.

The necessary condition. Suppose that the decomposition X = X(\i) ∨ X(i) is not par-

tially unique, i.e., there exists a rank-1 binary matrix X̄(i) = w̄ih̄
T
i , X̄(i) 	= X(i) such that:

X = X(\i) ∨ X(i) = X(\i) ∨ X̄(i). X̄(i) 	= X(i) implies w̄i 	= wi or h̄i 	= hi. To pre-

serve the rank K of X, the following non-inclusion relations must be satisfied: X(i) � X

and X̄(i) � X. This means that we can find a rank-1 term w∗
i h

∗
i
T with supp{w∗

ih
∗
i
T} �

supp{X(\i)}, whose support is included in both X(i) and X̄(i). Thus, we can write wi = w∗
i ∨w�

i ,

w̄i = w∗
i ∨ w̄�

i , hi = h∗
i ∨ h�

i and h̄i = h∗
i ∨ h̄�

i , with supp{w∗
ih

∗
i
T} � supp{X(\i)} and{

supp{w∗
ih

�
i
T}, supp{w�

ih
∗
i
T}, supp{w�

ih
�
i
T}, supp{w∗

i h̄
�
i

T}, supp{w̄�
ih

∗
i
T}, supp{w̄�

i h̄
�
i

T}
}
⊆ supp{X(\i)}.

As w̄i 	= wi or h̄i 	= hi, it means that at least one of the supports of w�
i ,h

�
i , w̄

�
i , h̄

�
i is non-

empty. Suppose, without loss of generality, that supp{w�
i } 	= ∅. As supp{w�

i } ⊆ supp{wi} and

supp{w�
ihi

T} ⊆ supp{X(\i)} it means that supp{w�
i } ⊆

⋂
k∈Ωhi

supp{wk} 	= ∅, which contradicts

the assumption and ends the proof.

Figure 2 illustrates the partial uniqueness conditions in the case of a rank-3 decomposition;

the grey rectangles represent the supports of the three sources. In Figure 2 (a) it can be seen

that the partial uniqueness condition with respect to X(2) is not satisfied. Indeed, supp{h2} ⊆
(supp{h1} ∪ supp{h3}) and supp{w1} ∩ supp{w3} 	= ∅. Thus, by subtracting, for example, the

9



hatched part from the support of X(2), another admissible rank-1 term X̄(2) 	= X(2) can be

obtained. On Figure 2 (b), supp{w1} ∩ supp{w3} = ∅, and therefore, given X(1) and X(3), the

only possible rank-1 term satisfying the decomposition is X(2).

X(2)

X(3)

X(1)

w1

w2

w3

h1

h2

h3

(a) Partial non-uniqueness with respect to X(2) : by

subtracting the hatched part from the support of X(2)

we obtain another rank-1 term X̄(2), that satisfies X =

X(1) ∨ X̄(2) ∨ X(3).

X(2)

X(3)

X(1)

w1

w2

w3

h1

h2

h3

(b) Partial uniqueness with respect to X(2): for fixed

X(1) and X(3), X(2) is the only rank-1 binary matrix

satisfying X = X(1) ∨ X(2) ∨ X(3).

Figure 2: An illustration of partial uniqueness condition of Theorem 3.2, for a rank-3 decomposition. The grey

rectangles represent the supports of the three rank-1 terms.

Theorem 3.3 (Full uniqueness : necessary and sufficient condition). Let X be a binary matrix

of Boolean rank K, following the Boolean decomposition given by (6). The decomposition is fully

unique (as defined in Definition 3.1) iff the partial uniqueness with respect to X(i) is satisfied for

all i = 1, . . . ,K.

Proof. We only give hereafter the proof for the sufficient condition; the proof of the necessary

condition is obvious. Let us suppose that the decomposition is not fully unique, meaning that there

exists another rank-K decomposition X = X̄(1) ∨ · · · ∨ X̄(K), such that at least one rank-1 term,

say X̄(i), is such that X(i) 	= X̄(i). Let us re-write X(i) as X(i) = wih
T
i = (w∗

i ∨w�
i )(h

∗
i ∨h�

i )
T =

w∗
ih

∗
i
T∨w∗

i h
�
i
T∨w�

i h
∗
i
T∨w�

i h
�
i
T, with supp{w∗

i }∩supp{w�
i } = ∅ and supp{h∗

i }∩supp{h�
i } = ∅.

Suppose that this decomposition is such that w∗
i h

∗
i
T is the rank-1 term with the smallest support

such that: supp{w∗
ih

∗
i
T} � ⋃

k �=i

supp{X(k)} and
{
supp{w∗

i h
�
i
T}, supp{w�

ih
∗
i
T}, supp{w�

ih
�
i
T}

}
⊆

⋃
k �=i

supp{X(k)}. This decomposition is always possible as one can always decompose a Boolean

rank-1 term as a sum of four rank-1 term with disjoint supports. The support of w∗
ih

∗
i
T must be

non-empty, because otherwise the Boolean rank of X would be less than K. For the same reason,

any rank-K decomposition of X must have an ith term containing w∗
i h

∗
i
T. Therefore, X̄(i) can

be expressed as X̄(i) = w̄ih̄
T
i = (w∗

i ∨ w̄�
i )(h

∗
i ∨ h̄�

i )
T = w∗

i h
∗
i
T ∨ w∗

i h̄
�
i

T ∨ w̄�
i h

∗
i
T ∨ w̄�

i h̄
�
i

T
,

where the last three rank-1 terms are included in
⋃
k �=i

supp{X̄(k)}. Thus, we can write X =

∨
k �=i

X(k) ∨w∗
i h

∗
i
T =

∨
k �=i

X̄(k) ∨ w∗
ih

∗
i
T. As both

∨
k �=i

X(k) and
∨
k �=i

X̄(k) have a Boolean rank equal

to K − 1 and the support of w∗
ih

∗
i
T is not included in the support of either of them, it means

that
∨
k �=i

X(k) =
∨
k �=i

X̄(k). Using this result, we have: X =
∨
k �=i

X(k) ∨ X(i) =
∨
k �=i

X(k) ∨ X̄(i),

10



meaning that the decomposition is not partially unique with respect to X(i), which contradicts

the hypothesis and ends the proof.

A direct consequence of Theorem 3.2 and Theorem 3.3 is the following sufficient condition

which is of practical interest.

Corollary 3.1 (Full uniqueness: a sufficient condition). The decomposition (6) is fully unique if

its rank-1 terms X(i) = wih
T
i satisfy supp{wi} �

⋃
k �=i

supp{wk} and supp{hi} �
⋃
k �=i

supp{wk},
for all i = 1, . . . ,K.

Proof. The proof is directly obtained by applying the results of theorems 3.2 and 3.3.

Roughly speaking, the uniqueness results presented in this section express the fact that a

Boolean decomposition with rank-1 terms having overlapping supports (correlated sources) has

less chances of being unique than a decomposition with non-overlapping supports (non-correlated

sources), and the “probability of non-uniqueness” increases with the correlation degree of the

sources. This will be illustrated on randomly generated binary matrices in section 5.1.

An interesting question is how are these uniqueness results related to the well-known separability

and sufficiently scattered uniqueness conditions for the NMF model [44] ? The Boolean BMF

model is in general non-linear in its parameters W and H . Thus, the rationale that leads to NMF

uniqueness conditions, which is based on linearity considerations, cannot even be applied to the

Boolean BMF case. As shown in Section 2, the ranks of the two decompositions are generally

not even the same, which makes impossible the comparison between the corresponding uniqueness

results. However, the two models are equivalent is the case where both the columns of W and of

H have disjoint supports, respectively. In this case, both models are identifiable, have the same

rank, and the two decompositions yield exactly the same rank-1 terms X(k). Nevertheless, even in

this case, the columns of W and H for NMF, are subject to scaling/counter-scaling ambiguities,

which is not the case for the Boolean BMF. In that respect, one could claim that the identifiability

conditions for the Boolean BMF model are less restrictive those for NMF. Moreover, we have a

necessary and sufficient condition for the identifiability of the Boolean BMF model, while such

condition does not exist for NMF, in the general case.

4. A post-nonlinear mixture model approach to Boolean BMF

Consider the Boolean decomposition of a binary matrix given by (6). By arranging the factors

wk and hk, k = 1, . . . ,K of the rank-1 terms on the columns of matrices W = [w1, . . . ,wK ] and

H = [h1, . . . ,hK ], of respective sizes N ×K and M ×K, the Boolean BMF can be re-written as:

X = W �HT . (8)

11



“�” is called Boolean matrix product and is defined as Xij =
K∨

k=1
(Wik ∧Hjk), where “∨” and “∧”

are OR and AND logical operators, respectively. Until now we only considered the exact BMF, i.e.,

X can be exactly recovered from the K rank-1 terms. In the sequel we suppose that the rank-K

model can be corrupted by noise/errors. Depending on the set over which the decomposition of

the binary matrix is performed, this noise term can take different forms. For the decomposition of

X in binary terms, and for the Boolean BMF in particular, it is natural to assume that the entries

of the “noise” matrix take values in the {0, 1} set, and that we have

X = W �HT ⊕N , (9)

with “⊕”, the element-wise XOR logical operator. Intuitively, this means that the 1’s of N change

the corresponding entries of W �HT regardless of their respective values (“0” or “1”).

Thus, the inverse problem to be solved in order to achieve the Boolean BMF is the following:

{W ,H} = arg min
W ,H∈{0,1}

∥∥X −W �HT
∥∥2
F
= arg min

wk,hk∈{0,1}

∥∥∥∥∥X −
K∨

k=1

wkh
T
k

∥∥∥∥∥
2

F

. (10)

It is worth noting that, for a binary-valued matrix, the Frobenius norm and the “entry-wise” norms

�0 and �1 are equivalent.

As we mentioned earlier in this paper, the problem (10) is NP -complete [29], and two main

strategies have been proposed to tackle this issue.

4.1. The relaxation of Boolean BMF problem over the nonnegative real orthant.

Several authors (e.g., [32, 7, 33] ) proposed to compute the BMF by relaxing it over the

nonnegative real orthant. This comes down at replacing (10) by the inverse problem:

{W ,H} = arg min
W ,H∈{0,1}

∥∥X −WHT
∥∥2

F
= arg min

wk,hk∈{0,1}

∥∥∥∥∥X −
K∑

k=1

wkh
T
k

∥∥∥∥∥
2

F

, (11)

where WHT is the classical real-matrix product. By replacing the Boolean BMF problem (10)

by its relaxation (11), the NP -hard problem is reduced to a classical real-valued optimization

problem, easier to solve. However, one can easily see that (11) is equivalent to (10) only in the

case where the rank-1 terms have disjoint supports. In fact, (11) solves the binary BMF problem

instead of the Boolean BMF, as illustrated in Section 2. Therefore, all the algorithms based on

(11) assume implicitly that the sources are uncorrelated. Nevertheless, the decomposition (11) may

still yield good results if the source correlation is not “too strong”, as illustrated by the following

example.

Consider the Boolean BMF given by:

12






1 1 1 0

1 1 1 0

1 1 1 1

0 0 1 1




︸ ︷︷ ︸
X

=




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0




︸ ︷︷ ︸
w1hT

1

∨




0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1




︸ ︷︷ ︸
w2hT

2

This decomposition is unique, according to Corollary 3.1. Suppose now that we perform the rank-2

decomposition of X using (11) and obtain:



1 1 1 0

1 1 1 0

1 1 1 1

0 0 1 1




︸ ︷︷ ︸
X

≈




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0




︸ ︷︷ ︸
w1h

T
1

+




0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1




︸ ︷︷ ︸
w2h

T
2

≈




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0




︸ ︷︷ ︸
w1h

T
1

+




0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1




︸ ︷︷ ︸
w2h

T
2

.

It can be observed that in this case, the “true” decomposition produces the same minimum cost

value ‖X−WHT‖2F =1 as the second binary decomposition. This means that a “good” algorithm

based on model (11) may produce indistinctly the “true” solution or another equivalent one (with

respect to the data fitting term). However, as the correlation of the two sources increases, the

“true” solution of the Boolean decomposition of X corresponds no longer to a minimum of the

cost function (11), as illustrated by the following example:



1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1




︸ ︷︷ ︸
X

=




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0




︸ ︷︷ ︸
w1hT

1

∨




0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1




︸ ︷︷ ︸
w2hT

2

.

In this case, the “true” solution yields a cost ‖X −WHT‖2F = 4, while the decomposition:



1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1




︸ ︷︷ ︸
X

≈




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0




︸ ︷︷ ︸
w1hT

1

+




0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1




︸ ︷︷ ︸
w2hT

2

costs only ‖X −WHT‖2F = 2.

Two BMF algorithms based on the real nonnegative relaxation approach presented were proposed

in [32], namely the Penalty Function algorithm (PF) and the THresholding algorithm (TH). The

TH algorithm is based on a thresholding procedure of the entries of matrices W and H , while the

PF algorithm implements (11) by minimizing the cost function:

∑
i,j

(
Xij − (WHT

)
ij
)2 +

1

2
λ
∑
i,k

(
W 2

ik −Wik

)2
+

1

2
λ
∑
j,k

(
H2

jk −Hjk

)2
(12)

The binary constraint on H and W is imposed by using the penalty terms H2
jk − Hjk and

W 2
ik −Wik. To minimize (12), a gradient descent algorithm with multiplicative update rule,

similar to NMF [38, 39] is used. This algorithm was used as inspiration for the approach proposed

in this paper.
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4.2. Greedy algorithms for the BMF problem

The second main strategy used to tackle the NP -hardness of Boolean BMF is to iteratively

estimate and subtract the rank-1 terms from X, in a greedy manner. Several approaches have been

proposed using different greedy strategies ([26, 28, 29, 30, 31]). For illustration and comparison

purposes, we briefly present hereafter two such algorithms.

4.2.1. The ASSOciation rules algorithm (ASSO)

The ASSO algorithm for solving the Discrete Basis Problem was introduced in [29]. ASSO

proceeds by deflation and seeks at each iteration the rank-1 term that minimizes the residual.

The implementation of the algorithm exploits the correlation between the columns of X through

the notion of association between the columns i and j, defined as c(i ⇒ j,X) =
xT

ixj

xT
ixi

. These

associations are used to form candidate basis vectors that will form the columns of H , by a greedy

selection.

4.2.2. The Formal Concept analysis algorithm (FC)

Another greedy-type BMF algorithm that will be used in this paper for comparison, was pro-

posed in [30]. It is based on the formal concept analysis (FCA); a formal concept defines a binary

relation between a set of objects and a set of attributes. Here,X is interpreted as an object-attribute

matrix, W and H are interpreted as object-factor and factor-attribute matrices, respectively. The

proposed algorithm is based on a theorem saying that the optimal decompositions of X (i.e.,

those having a minimum rank K) are those where the factors are formal concepts in the sense of

formal concept analysis. Roughly speaking, the approach consists in iteratively estimating and

subtracting from X, rank-1 terms X(k) having maximum overlapping with X. Two algorithms

have been proposed in [30]. The first one starts by computing all the formal concepts and then,

during each iteration, selects the one maximizing the intersection with X. This algorithm produces

good results but it is inefficient for large datasets. The second algorithm (that will be used for

comparison in this paper), uses a more efficient strategy and constructs the factor concepts by

adding sequentially “promising columns”.

All greedy approaches mentioned in this section use deflation procedures to iteratively estimate

the sources. This technique guarantees, similarly to the real nonnegative relaxation strategy, the

exact recovery of the “true” sources only in the uncorrelated case. When the sources are correlated,

their ability to recover the “true” sources will be highly dependent on their correlation level.

4.3. The proposed Post NonLinear Penalty Function algorithm (PNL-PF)

As explained in the previous subsection, most existing methods for the Boolean BMF yield good

results only in the case of uncorrelated sources, because they are solving approximate, relaxed

versions of the inverse problem (10). We propose in this section a BMF problem formulation

based on a post-nonlinear mixture model which is equivalent to (10) when the matrices W and
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H are exactly binary. An algorithm for estimating W and H based on this formulation is also

introduced. Therefore, this new approach is expected to provide good results even in the case of

highly correlated sources.

We preserve the idea of [32] to replace the Boolean matrix product by the real matrix product

with binary constraints on W and H , but we introduce a nonlinear function that guarantees the

binarity of the reconstructed data. In theory, we desire a peace-wise linear function such that:

Φth(x) =




1 for x > (1− δ)

x for δ ≤ x−δ
1−2δ ≤ 1− δ

0 for x < δ

, with 0 ≤ δ < 0.5. (13)

Thus, the inverse problem we seek to solve, can be formulated as:

{W ,H} = arg min
W ,H∈{0,1}

‖X − Φth(WHT)‖2F. (14)

However, for algorithmic convenience, in this paper we approximate Φth(x) by the sigmoid function

Φ(x) = 1
1+e−γ(x−0.5) as it is continuously differentiable; the parameter γ allows to adjust the slope

of Φ.

Figure 3 plots Φth(x) for δ = 0.1 and Φ(x) for γ = 1, 5, 10, 100. One can see that, as the value

of γ increases, Φ(x) fits better Φth(x). However, for algorithmic reasons, the value of γ must not

be big in order to facilitate the parameters’ variations during the iterations. In practice, a good

choice for γ is a value between 1 and 10, depending on the application.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.2

0.4

0.6

0.8

1

(x
)

th
(x) for =0.1

(x) for  = 1
(x) for  = 5
(x) for  = 10
(x) for  = 100

Figure 3: Function Φth(x) and its sigmoid approximations for various values of γ

To solve (14), we propose a gradient descent algorithm with a multiplicative update rule. The

proposed algorithm minimizes the objective function (15); the fundamental difference compared
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to (12) is the integration of the non-linear function Φ to guarantee Φ(WHT) ≈W �HT:

G(W ,H) =
1

2

∑
i,j

(
Xij − Φ(WHT)ij

)2
+

1

2
λ
∑
i,k

(
W 2

ik −Wik

)2
+

1

2
λ
∑
j,k

(
H2

jk −Hjk

)2
. (15)

Algorithm 4.1 : Post NonLinear Penalty Function algorithm (PNL-PF)

Input: X, K, Nbiter, λ, ε, γ

Output: W , H

STEP 1: Initializations: W ← rand(N,K), H ← rand(N,K), iter = 0

STEP 2: Normalization

W ←WD
−1/2
W D

1/2
H , with DW = diag (max(w1),max(w2), · · · ,max(wK))

H ←HD
−1/2
H D

1/2
W , with DH = diag (max(h1),max(h2), · · · ,max(hK))

STEP 3: Updates of W , H

iter← iter + 1

H ←H ∗ γ((X ∗ Ω(WHT))T ·W ) + 3λH2

γ(Ψ(WHT)T ·W ) + 2λH3 + λH

W ←W ∗ γ((X ∗ Ω(WHT)) ·H) + 3λW 2

γ(Ψ(WHT) ·H) + 2λW 3 + λW

STEP 4: Stop criterion

if iter ≥ Nbiter or G(W ,H) < ε then

break

else

return to STEP 3

end if

The steps of the proposed algorithm are presented in Algorithm 4.1. In practice, for a faster

convergence, W and H are initialized with the result of the NMF algorithm [38]. In STEP 3,

W and H are normalized in order to confine the values of Wij and Hij within the interval [0, 1].

Ω and Ψ are two element-wise functions that associate to each entry Zij of a matrix Z (given

in argument) the real values e−γ·(Zij−0.5)(
1+e−γ·(Zij−0.5)

)2 and e−γ·(Zij−0.5)(
1+e−γ·(Zij−0.5)

)3 , respectively. In Algorithm

4.1, the power operation for a matrix Z is defined as Z2 = Z ∗ Z, and the matrix division is

performed element-wise. The derivation of the update rules for W and H are detailed in appendix

Appendix A.

Convergence issues. The algorithm PNL-PF proposed in this section is based on multiplicative

update rules, similar to the ones introduced in [38, 39] for NMF. It was proven in [39] that the

NMF cost function is non-increasing after each update. However, several papers such as [45, 46]

pointed out that such properties do not imply the convergence to a stationary point, and that
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multiplicative NMF lacks sound optimization properties. While the cost function used in [38] is

convex with respect to each of the two factor matrices, the PNL-PF optimization problem (15) is

highly non-linear and non-convex because of the nonlinear function Φ and the binarity penalties.

Therefore, providing sound theoretical convergence guarantees for the proposed algorithm is a

highly difficult task and is an open problem in the current state of knowledge. Algorithms based

on more advanced optimization procedures should be developed for convergence claims. However,

this is beyond the scope of this paper and is part of ongoing work. Meanwhile, we study numerically

in Section 5.1 the convergence of the proposed algorithm and show that it exhibits good convergence

behavior in realistic scenarios.

5. Performance evaluation on synthetic and real data

In this section we provide a numerical performance analysis of the proposed PNL-PF algorithm,

compared to the state-of-the-art BMF approaches.

5.1. Evaluation on synthetic data

The first experiment aims at validating the identifiability results derived in Section 3. To this

end, we designed a scenario with a Boolean mixture X (40×40) of three binary sources X(1), X(2)

and X(3). The supports of these sources are represented on Figure 4a: the first two sources have

overlapping supports of size 20 × 20. The support of X(3) is of size M ×M and is touching the

bottom right corner of X(3), as illustrated. We have increased gradually the value of M by moving

the top left corner of X(3) towards X(1), as indicated by the arrow, while fixing its bottom right

corner. For each value of M , we performed the BMF using PNL-PF. On Figure 4b we plotted the

rate of successful recovery of X(2) from the mixture in 100 trials, for different values of M . It can

be observed that we have a success rate of 100% for the values of M ≤ 20, which corresponds to a

range where the decomposition is unique, according to the results of Section 3. For M > 20, the

support of X(3) overlaps with the support of X(1), and thus violates the uniqueness condition of

Theorem 3.2. In this case, as expected, the success rate curve drops down to zero, which validates

the uniqueness condition.

We study next the behavior of our approach in the presence of XOR binary noise, as defined

in Section 4. We simulated the following model: X ⊕N , where the noise matrix N is a random

binary matrix that follows a Bernouilli distribution of parameter b, and X = W �HT, is a rank-K

binary matrix. We computed the average reconstruction error for X, ErrX =
‖X−X̂‖2

F

MN (where X̂

is the reconstructed matrix) over 40 trials, as a function of the added noise rate b. W and H were

generated according to a Bernoulli distribution of parameter p.

Thus, we designed a second experiment to compare the performance of the proposed PNL-PF

algorithm with state-of-the-art methods, in the case of K = 3 “sparse” sources with p = 0.25

(which corresponds to a 1’s to 0’s ratio of ≈ 0.0625 for each rank-1 term). We plotted on Figure
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(a) The source supports for the simu-

lation set-up of the first experiment.
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Figure 4: Numerical validation of the uniqueness condition derived in Section 3 using PNL-PF with γ = 4, λ = 10.

5 the reconstruction error ErrX with respect to the noise rate b, for PNL-PF, NMF [38], PF

[32], FC [30], and ASSO [29]. One can see that, in the noiseless case (b = 0), all algorithms
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Figure 5: Comparison of the reconstruction error for PNL-PF with state-of -the-art algorithms, in the case of a

rank-3 “sparse” binary matrix X, for increasing additive XOR noise rates.

estimate X exactly. When the noise power increases, PNL-PF, PF and NMF still yield accurate

estimations, while the two greedy algorithms (FC and ASSO) completely fail to reconstruct X.

This is an expected behavior as the greedy algorithms were designed for exact binary factorizations,

and do not perform well for low-rank approximation problems. Moreover, one can observe that

the proposed PNL-PF algorithm exhibits performances very similar to NMF; this is somewhat

surprising, as NMF is not constraint to binary values, and therefore one may expect NMF to

better fit the low-rank decomposition of X. However, for high noise rates (> 0.3), all algorithms

fail, as the low-rank structure of X is destroyed by the non-linear addition of the XOR noise.

The third experiment is very similar to the second one, with the difference that matrices W

and H were generated according to a Bernoulli distribution of parameter p = 0.6, which implies

much more “dense” rank-1 terms (with a 1’s to 0’s ratio of ≈ 0.36). It can be seen on Figure 6 that,
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not only the performances of ASSO et FC degrade further, but also the gap between PNL-PF and

PF increases. The reason for this is the strong overlapping of the rank-1 term supports (i.e., the

strong correlation of the sources). As explained in Section 4.1, in this case, the algorithms based

on the classical matrix product of binary matrices, such as PF, no longer produce good results.

Meanwhile, the proposed PNL-PF method still achieves good performances, close to NMF, thanks

to its underlying post-nonlinear mixture model.

The results of these experiments also illustrates the fact that, for a binary-valued matrix, its

binary decomposition (associated with the PF, FC and ASSO algorithms) requires a higher rank

to achieve the same approximation error as compared to its Boolean decomposition (performed by

PNL-PF).
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Figure 6: Comparison of the reconstruction error for PNL-PF with state-of -the-art algorithms, in the case a rank-3

“dense” binary matrix X, for increasing additive XOR noise rates.

The fourth experiment on synthetic data (Figure 7) was designed to numerically study the

convergence properties of the proposed algorithm PNL-PF. We plotted the cost functions for our

algorithm in the case of 4 sources with N = M = 200 for in the noiseless case, and in the presence

of 10% and 20% of XOR noise. The parameters used in the simulations are λ = 10 and γ = 1.

The ratio “ones to zeros” for the simulated sources was set to 15% for figures A and B and to 85%

for figures C and D. It can be seen from Figure 7 that our algorithm achieves fast convergence in

all the considered scenarios. As expected, in the “non-correlated” case (figure A) the convergence

is faster (after about 3 iterations) compared to the “correlated” case where the algorithm needs

twice more iterations to converge. This numerical study shows (in the absence of an analytical

convergence proof), that the proposed algorithm behaves well in most practical situations.

5.2. Application to real/ realistic data

We study in this section the compression capability of our method compared to the other state-

of-the-art methods on real /realistic binary data extracted from the Causality Workbench database

(http://www.causality.inf.ethz.ch).
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Figure 7: Illustration of the convergence speed of the proposed algorithms for three different levels of XOR noise (

K = 4 sources, N = M = 200, λ = 10 and γ = 1). The ratio “ones to zeros” for the simulated sources is of 15% for

figure A and 85% for figure B

.

The first experiment was performed on the sido0 train dataset. SIDO (SImple Drug Oper-

ation mechanisms) contains descriptors of molecules, which have been tested against the AIDS

HIV virus. The binary values indicate the molecular activity: 1 - active, 0 - inactive (please refer

to Causality Workbench website for further details on sido0 dataset generation). The resulting

binary matrix is of size 12678× 4932 and could be qualified as “sparse”, as only 9.8% of its entries

are non-zero. We plotted in Figure 8 the reconstruction error for the algorithms mentioned in

the previous section, for different ranks of the data matrix decomposition, going from 0 to 100.

Once again, as expected, the “non-binary” NMF algorithm presents the best rank-compression

performance. However, in terms of memory requirements, PNL-PF outperforms largely NMF.

As one can see in Figure 8, for a rank 20, NMF gives the same reconstruction error as PNL-

PF with a rank 25. In terms of storage memory, for the same compression error, NMF requires

(12678 + 4932) × 20 × 16 = 5635200 bits (real-values are generally encoded on 2 bytes), while

PNL-PF needs only (12678 + 4932) × 25 = 440250 bites, that is 12 times less ! Moreover, our

PNL-PF algorithm and the PF algorithm perform better than the greedy algorithms, especially

for low ranks. This behavior can be explained by the fact that, for this “sparse” dataset, the

correlation (overlapping) of the rank-1 terms is low, in which case the performances of PF and

PNL-PF are similar (as explained in Section 4).

In the second experiment we used another dataset (lucap0 test) from the Causality Work-

bench database. LUCAP (LUng CAncer set with Probes) contains toy data generated artificially

by causal Bayesian networks with binary variables and are modeling a medical application for the

diagnosis, prevention, and cure of lung cancer (please refer to Causality Workbench website for
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Figure 8: Comparison of the reconstruction error for PNL-PF with state-of-the-art algorithms, for the “sparse”

sido0 train dataset, for different decomposition ranks.

further details). In this case the binary data matrix, of size 10000× 143 is much more dense, with

51% of non-zero entries. For lucap0 test dataset, the overlapping of the rank-1 terms is much
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Figure 9: Comparison of the reconstruction error for PNL-PF with state-of-the-art algorithms, for the “dense”

lucap0 test dataset, for different decomposition ranks.

more important and, consequently, the PF algorithm performs poorly as one can see on Figure

9. Meanwhile, the PNL-PF algorithm still gives accurate approximations for decomposition ranks

between 1 and 50, and requires about 6 times less memory compared to NMF, which recommends

it as a very interesting tool for low-rank approximation of binary-valued matrices.

The third experiment considers the Congressional Voting Records Data Set from the UCI

Machine Learning Repository.4 This dataset includes votes for each of the U.S. House of Rep-

resentatives Congressmen on the 16 key votes identified by the CQA. After suppressing the lines

containing missing values, we obtain a 235 × 16 binary-valued matrix (“1”= yes and “0”=no).

4https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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Each row corresponds to the votes of a representative (democrat/republican), and each column

corresponds to a voted law, as one can see on Figure 10a. The ground truth (democrat/republican

row labels) is available. For the images presented in this section, the white color encodes the “0”

values, gray color the “1”s and black color is used to represent values equal to “2” resulting from

the superposition of two rank-1 binary terms.
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(a) The initial 235 × 16 dataset
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(b) The arithmetic sum of the two rank-1 terms resulting

from the decomposition of the dataset using PNL-PF. The

black color indicates the overlapping values.

Figure 10: Congressional voting dataset

The goal of this experiment is to classify the representatives in one of the two classes: democrat

or republican, based only on the way they voted. To this end, we applied the PNL-PF algorithm

with a rank equal to 2; the result of this decomposition is presented on Figure 10b. Two remarks

can be made:

• as expected, there is little overlapping between the supports of the two rank-1 terms, meaning

that, globaly, the democrats and the republicans voted differently;

• the democrats and the republicans voted in a contradictory manner for law no.11 (“synfuels-

corporation-cutback”), as the corresponding column is not discriminant for the classification.

Table 3 presents a comparison between the different binary decomposition algorithms in terms

of classification performance. A representative is classified as democrat or as republican respec-

tively, if its corresponding entry in the wi vector of the rank-1 term corresponding to the democrat

or republican camp respectively, is equal to “1”. The column “Successful classification” corre-

sponds to the representatives that were correctly classified as democrat or republican, “Ambiguous

classification”, to the ones that were labeled at the same time as democrat and republican, and

the last column accounts for the non-classified representatives.
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Algorithm Successful classification Ambiguous classification Non-classified

PNL-PF 212 16 4

PF 212 16 4

FC 177 46 9

ASSO 131 97 4

Table 3: Performance comparison of representatives classification

As for this dataset the overlapping of the two rank-1 terms is very limited, the proposed PNL-PF

algorithm gives the same decomposition as PF; however both surpass in classification performance

the other two greedy methods, as it can be seen in Table 3. We do not have access to their identities

but the ambiguously classified congressmen are 12 republicans (rows: 8, 35, 70, 85, 86, 115, 143,

155, 166, 186, 188, 225) and 4 democrats (rows: 38, 46, 149, 214).

In the fourth experiment we analyze the UCI zoo dataset5 that was partially seen in Section 2.

This dataset consists of 101 animal species from a zoo. There are 16 variables with various traits to

describe the animals. We considered only the 15 Boolean valued variables: airborne, feathers,

breathes, backbone, tail, eggs, predator, aquatic, fins, toothed, milk, catsize,

hair, venomous, domestic, in this order. This results in a 101 × 15 binary-valued matrix that

can be seen in Figure 11. We applied our PNL-PF algorithm to the data matrix from Figure 11
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Figure 11: The initial zoo dataset

for different decomposition ranks. The highest rank for which the decomposition result was stable

(the same result was obtained each time over 10 consecutive runs, with random initializations) is

5https://archive.ics.uci.edu/ml/datasets/Zoo.
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rank 3. The result of the rank-3 Boolean decomposition by PNL-PF is plotted in Figure 12a. We

obtain three animal classes sharing the following common features:

• features class #1: airborne, feathers, breathes, backbone, tail, eggs;

• features class #2: backbone, tail, eggs, predator, aquatic, fins, toothed;

• features class #3: breathes, backbone, tail, toothed, milk, catsize, hair.
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(a) PNL-PF algorithm
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(d) ASSO algorithm

Figure 12: Results of the rank-3 decomposition of the zoo dataset from Figure 11

An animal from an identified class has most of the class features, but not necessarily all of

them. Generally speaking, the first class represents the “birds”, the second one, the “fishes” and

the third one, the “mammals”:
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• class #1 (“birds”): chicken, crow, dove, duck, flamingo, gnat, gull, hawk, honeybee,

housefly, kiwi, ladybird, lark, moth, ostrich, parakeet, penguin, pheasant, rhea,

skimmer, skua, sparrow, swan, tortoise, vulture, wasp, wren;

• class #2 (“fishes”): bass, carp, catfish, chub, crab, crayfish, dogfish, dolphin,

frog, haddock, herring, lobster, newt, octopus, pike, piranha, pit viper,

platypus, porpoise, seahorse, sea lion, seal, sea snake, sea wasp, slowworm,

sole, starfish, stingray, toad, tuatara, tuna;

• class #3 (“mammals”): aardvark, antelope, bear, boar, buffalo, calf, cavy,

cheetah, deer, dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla,

hamster, hare, leopard, lion, lynx, mink, mole, mongoose, opossum, oryx,

platypus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer,

seal, sea lion, squirrel, vampire, vole, wallaby, wolf.

It can be seen that there is an overlapping between class #2 and class #3; they have the following

animals in common: dolphin, sea lion, seal, platypus, porpoise. This is a reasonable

result as these particular animals present feature belonging to both classes. Six other animals

(clam, flea, scorpion, slug, termite, worm) were not included in any of these three classes

because they do not present sufficient characteristics of any of them. Also, one can see that the

algorithm did not take into account the last two attributes (venomous, domestic), as they were

not discriminant for this rank-3 decomposition.The results for the three other binary algorithms

are also given in Figure 12. As expected, PF yields a similar result, but with smaller overlapping

between the last two terms. The results for FC and ASSO are more difficult to interpret; moreover,

they exclude additional animals from the classification.

An important aspect in data analysis is the uniqueness of the decomposition, as it guarantees

the unambiguous interpretation of the decomposition result. In the case of an exact rank-K

Boolean decomposition of a binary matrix X
(
X =

∨K
k=1 wkh

T
k

)
, the conditions proved in Section

3 can be directly used to asses uniqueness. However, in the case of a rank-K approximation, i.e.,

X ≈ ∨K
k=1 wkh

T
k , one must first check that the approximation is stable, i.e., the approximation

error matrix does not change if we run the decomposition several times. If the decomposition

is stable, the uniqueness conditions from Section 3 can then be applied to check the uniqueness

of the rank-1 terms. This procedure is in no way different from the NMF case, when one needs

to asses uniqueness of a non-negative low-rank approximation of a non-negative data matrix. In

our case, the rank-3 PNL-PF decomposition seems stable over 10 runs. According to Corollary

3.1, the result in Figure 12a is unique, which guarantees an interpretable classification. The rank-

4 decomposition, however, is not stable. For illustration, we plotted in Figure 13 two possible

rank-4 approximation results of the zoo dataset. Two different classification (at least) can thus

be obtained, each one with its own interpretation. Therefore, the uniqueness conditions derived
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Figure 13: Illustration of the non-uniqueness of the rank-4 decomposition of the dataset from Figure 11. Figures

(a) and (b) represent two different rank-4 Boolean decompositions obtained by PNL-PF.

in Section 3 are highly useful in analyzing the stability and interpretability of the decomposition,

and determining the adequate rank (number of classes).

6. Conclusions

In this paper we introduced a new approach to the Boolean factorization of binary-valued

matrices, within the blind source separation framework. The proposed method is based on a

post-nonlinear mixture model which is equivalent to the Boolean mixture model when the factors

are exactly binary. This model explicitly accounts for the correlation of the mixed sources and

therefore it yields more interpretable results in the case of “overlapping” factors, compared to the

state-of-the-art algorithms. A simple, yet efficient algorithm to estimate the parameters of this new

mixture model was proposed, based on NMF-like multiplicative update rules. In addition to this

new approach, we provided, for the first time in the binary data literature, uniqueness conditions

for the Boolean factorization of binary matrices. The proposed algorithms were compared to similar

state-of-the-art methods on simulated and real data. We showed that, in the case of “overlapping”

factors, these methods achieve accurate low-rank approximations of binary matrices, which is

a highly desirable property in many signal processing and data compression applications. The

approach introduced in this paper constitutes a promising tool for binary data/signal analysis

especially in the case of highly correlated sources. Ongoing work aims at developing algorithms

for the considered approach based on more advanced optimization procedures, allowing to provide

theoretical convergence guarantees. A symmetric version of PNL-PF is also in development; it will

allow to apply our method in network science to the analysis of no-oriented graphs.
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Appendix A. Derivation of the update rules for the algorithm PNL-PF

Computation of the partial derivative of G(W ,H) with respect to H :

∂G(W ,H)

∂Hpn
= −

∑
i

(
Xip − 1

1 + e−γ((W ·HT)ip−0.5)

) ∂
(

1

1+e−γ·((WHT)ip−0.5)

)
∂Hpn

+λ(H2
pn−Hpn)·(2Hpn−1).

Or
∂

(
1

1+e
−γ·((WHT)ip−0.5)

)

∂Hpn
= −

∂
∂Hpn

(
1+e−γ·((WHT)ip−0.5)

)
(
1+e−γ·((WHT)ip−0.5)

)2 and ∂
∂Hpn

(
1 + e−γ·((WHT)ip−0.5)

)
=

−γWine
−γ·((WHT)ip−0.5) Then

∂

(
1

1+e
−γ·((WHT)ip−0.5)

)

∂Hpn
= γWine

−γ·((WHT)ip−0.5)(
1+e−γ·((WHT)ip−0.5)

)2 , and

∂G(W ,H)

∂Hpn
= −

∑
i

(
Xip − 1

1 + e−γ((W ·HT)ip−0.5)

)
·γ(W

T)nie
−γ·((WHT)ip−0.5)(

1 + e−γ·((WHT)ip−0.5)
)2 +2λHpn

3−3λH2
pn+λHpn.

By introducing the Ω and Ψ functions defined in the main text, we obtain:

∂G(W ,H)

∂Hpn
= −γ((X ∗ Ω(WHT))T ·W )pn + γ(Ψ(WHT)T ·W )pn + 2λHpn

3 − 3λH2
pn + λHpn.

The gradient descent for H can be expressed as:

Hpn ←Hpn − αHpn

∂

Hpn
G(W ,H).

By choosing αHpn as:

αHpn =
Hpn

γ(Ψ(WHT)T ·W )pn + 2λHpn
3 + λHpn

,

the following update rule for H is obtained:

Hpn ←Hpn

γ((X ∗ Ω(WHT))T ·W )pn + 3λH2
pn

γ(Ψ(WHT)T ·W )pn + 2λHpn
3 + λHpn

H ←H ∗ γ((X ∗ Ω(WHT))T ·W ) + 3λH2

γ(Ψ(WHT)T ·W ) + 2λH3 + λH
,

where the matrix division is taken element-wise and matrix power is defined as Z2 = Z ∗Z.

By switching the roles of W and H , one can easily obtain the update rules for W as:

Wmn ←Wmn
γ((X ∗ Ω(WHT)) ·H)mn + 3λW 2

mn

γ(Ψ(WHT) ·W )mn + 2λWmn
3 + λWmn

W ←W ∗ γ((X ∗ Ω(WHT)) ·H) + 3λW 2

γ(Ψ(WHT) ·W ) + 2λW 3 + λW
.
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