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Abstract. In this paper we study the identifiability of the Paralind
model with sparse interaction matrices (i.e. S-Paralind). We provide
some theoretical results on how to obtain the sparsest interaction matri-
ces in some particular configurations and when these matrices are unique.
These results could be use for the design and analysis of �0-based decom-
position algorithms.

1 Introduction
The Parafac [8, 14] decomposition of an X (I×J×K) 3-way array (or tensor)

into sum of R rank-1 tensors is given by X =
∑R

r=1 ar ◦ br ◦ cr, where ar,
br and cr are vectors of dimensions I, J and K, respectively, and “◦” denotes
the outer vector product. For simplicity, the noise/error term in the model is
ignored at this point of the presentation. By regrouping the vectors of the three
dimensions (or “modes”) of X into three component matrices A = [a1 . . . aR],
B = [b1 . . .bR] and C = [c1 . . . cR], an alternative notation for the Parafac
decomposition of X is obtained:

X = [[A,B,C]]. (1)

In some applications, prior knowledge on the existence of linear dependencies
between the columns of the component matrices is available. This information
can be explicitly taken into account by introducing some constraint (or interac-
tion) matrices Ψ (R1 ×R), Φ(R2 ×R), Ω(R3 ×R), containing the linear depen-
dency patterns between the columns of A, B, C, respectively. Thus, instead of
[[A,B,C]] the decomposition is given by

X = [[ÃΨ , B̃Φ, C̃Ω]], (2)

with Ã(I × R1), B̃(J × R2) and C̃(K × R3) full column rank matrices. This
type of decomposition was introduced in [6] and previous versions, and named
Paralind1. A slightly different version, Confac2, with the constraint matrices
having canonical vectors as columns, was proposed in [3, 2]. A less general frame-
work (involving structured types of linear dependencies), but often highly inter-
pretable, called Block Component Model (BCM) was introduced in [10]. These
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decompositions proved their usefulness in various domains such as telecommu-
nications [3, 17, 20, 19], spectroscopy [4, 9, 5] or direction finding [16, 21].

In general, the algorithms for fitting the Paralind model assumes that the
constraint matrices are a priori known. However, this is not always the case in
practice. Moreover, in some real life applications it may be of practical interest
to estimate these constraint matrices, as they provide important information on
the interactions between the physical mechanisms generating the data. A blind
alternating least squares (ALS) estimator for the Paralind model, referred
to as ALS-Paralind, was proposed in [6]. However, for identifiability reasons
(as explained in the next section), the interaction matrices estimated by this
approach are highly dependent on the algorithm initialization, which limits their
practical utility. To regularize this ill-posed inverse problem, we proposed in [7]
to impose sparsity constraints on the interaction matrices, leading to sparse
Paralind (S-Paralind). These contraints are physically meaningful as they
aim at explaining the interactions between the mechanisms generating the data
in the simplest way possible. However, no results were given in [7] regarding the
identifiability of the S-Paralind model; the objective of this paper is to shed
some light on this aspect.

2 Identifiability of S-Paralind model
2.1 Preliminaries

A model is said identifiable if all its parameters can be uniquely estimated from
the data, up to some trivial indeterminacies. Thus, in this paper, identifiability
can be understood as a uniqueness problem. For example, the Parafac model
given by (1) is identifiable if the matricesA,B,C can be uniquely estimated from
X up to simultaneous column permutation and column-wise rescaling. The most
well-known Parafac identifiability condition is due to Kruskal [15] and is based
on the Kruskal-rank3 of the component matrices A,B,C. Following [6], identi-
fiability of the Paralind model is essentially the same as that of the Parafac
model. If the interaction matrices are fixed and known, identifiability conditions
specific to Paralind can be found in [18]. If these interaction matrices are not
known, the identifiability problem can be much more complicated. In particu-
lar, it may happen that only some components of the three matrices, or only
one matrix (among the three) are identifiable, resulting in the so-called partial
uniqueness or uni-mode uniqueness results. The interested reader is referred to
[13] for details.

Let us now assume that the uniqueness of matrix A is fulfilled and that we
aim at estimating the constraint matrix Ψ together with the full column rank
matrix Ã. The identifiability of Ψ and Ã comes down to the uniqueness of the
bilinear decomposition A = ÃΨ . Without any further constraints, such a de-
composition is not unique since an alternative decomposition can be obtained as
A = ÃΨ = (ÃT−1)(TΨ ) = Ã′Ψ ′, for any non-singular matrix T. By imposing

3 The Kruskal-rank of a matrix A (denoted kA) is the maximum number � such that
every � columns of A are linearly independent.



sparsity on the constraint matrix Ψ (which should have a minimum number of
non-zero entries), we try to explain the rank deficiency of matrix A by consid-
ering the the simplest dependency pattern between its columns. This problem
has close connection with the problem of dictionary identification using sparse
matrix factorization and sparse component analysis, which has been studied in
different papers such as [11, 1, 12]. Basically, in [11, 1], the problem is addressed
as a �2 − �0 optimization problem. Using a geometrical point of view, identifi-
ability conditions are obtained requiring that the size of the training set grows
exponentially with the number of atoms. In contrast, the work of [12] addresses
the problem as a �2 − �1 (non combinatorial) optimization problem. It is shown
that the size of training set only needs to grow quadratically with the number
of atoms .

All these works consider the problem of overcomplete dictionary recovery.
We to stress up the fact that this is one of the main differences with the problem
addressed in this paper where only full column rank dictionaries are considered.

The rest of the section aims at giving some answers to the following questions:

– when is the matrix Ã, yielding the sparsest Ψ , a submatrix of A ?
– when is the decomposition A = ÃΨ unique ?

Before addressing analytically these problems, let us consider some examples
to illustrate the purpose. Let A be given by

A = [a1 a2 a3 a1 + a2] = [a1 a2 a3]



1 0 0 1
0 1 0 1
0 0 1 0


 (3)

= [a1 + a2 a1 + a3 a2 + a3]




1/2 1/2 −1/2 1
1/2 −1/2 1/2 0

−1/2 1/2 1/2 0


 (4)

As illustrated by (3) and (4), it appears that the sparsest matrix Ψ is ob-
tained by selecting R1 independent columns of A to form Ã. It is worth noting
that imposing sparsity of Ψ does not ensure the uniqueness of the bilinear de-
composition. For example, another possible decomposition of A is

A = [a1 a3 a1 + a2]



1 −1 0 0
0 0 1 0
0 1 0 1


 . (5)

One can see that Ψ matrix in (5) has the same sparsity degree as the one in (3).

2.2 Choosing a basis of the column space of A that yields the
sparsest Ψ

Now we are ready to provide some results on what is the “best” basis, that is the
“best” matrix Ã, for having the sparsest Ψ matrix. However, it is first necessary
to introduce some notations. Let A be a matrix of dimension (M ×N),M ≥ N



and let rA = rank(A) ≤ N . We aim at finding a factorization of the matrix
A = ÃΨ where Ã is a (M × rA) (tall) matrix and Ψ is (rA ×N) (fat) matrix.
The considered factorization problem is known to be subject to permutation and
scale ambiguities. To remove scale ambiguities we impose to have the maximum
value of each column of Ψ equal to 1.

Let us denote the set of admissible bases of the column space of A by
A = {Ã of size (M × rA) / span(Ã) = span(A)}. The problem of finding
the factorization of A having the sparsest Ψ can then be formulated as follows:

min
(Ã,Ψ), Ã∈A, A=ÃΨ

‖Ψ‖0 (6)

where ‖Ψ‖0 stands for the �0 pseudo-norm of matrix Ψ , that is the number of
non-zero entries of Ψ .

Proposition 1. Let A = Ã1Ψ1 = Ã2Ψ2 where both Ã1 and Ã2 are full column-
rank matrices in A such that Ã1 is composed of rA ≤ N independent columns
of A and Ã2 is composed of rA ≤ N independent linear combination of the
columns of A1 which are not proportional to the columns of A. If rA satisfies
r2A − (N + 1)rA + 2N ≥ 0, then ‖Ψ1‖0 ≤ ‖Ψ2‖0.
Proof. Let A = Ã1Ψ1 = Ã2Ψ2 where both Ã1 and Ã2 are full column-rank
matrices in A. The matrix Ψ1 can be written as Ψ1 = [ψ1(1) · · ·ψ1(N)] and Ψ2 =
[ψ2(1) · · ·ψ2(N)]. Now we assume that Ã1 is composed of rA ≤ N independent
columns of A, which, without loss of generality, are assumed to be the first rA
columns: ψ1(1), · · · ,ψ1(rA). Thus, the number of non-zero elements of Ψ1 is
given by :

‖Ψ1‖0 =

N∑
i=1

‖ψ1(i)‖0 =

rA∑
i=1

‖ψ1(i)‖0+
N∑

i=rA+1

‖ψ1(i)‖0 = rA +

N∑
i=rA+1

‖ψ1(i)‖0

As ∀i = rA + 1, · · · , N, kA ≤ ‖ψ1(i)‖0 ≤ rA , ‖Ψ1‖0 is bounded by : rA +
(N − rA)kA ≤ ‖Ψ1‖0 ≤ rA + (N − rA)rA. Let us now consider the matrix
A2. Since Ã2 is composed of rA ≤ N independent linear combination of the
columns of A1 which are not proportional to the columns of A, we have ∀i =
1, · · · , N, ‖ψ2(i)‖0 ≥ 2 and ‖Ψ2‖0 ≥ 2N . Thus, ‖Ψ1‖0 ≤ ‖Ψ2‖0 if rA + (N −
rA)rA ≤ 2N , that is : r2A − (N + 1)rA + 2N ≥ 0.

Remark 1. It can be noticed that r2A − (N + 1)rA + 2N ≥ 0 is satisfied for all
rA ≤ N ≤ 6. This is no longer true when N > 6.

Remark 2. The result of proposition 1 is based on the worst case scenario since
it corresponds to the least favorable case ‖ψ1(i)‖0 ≤ rA. This condition can be
relaxed by imposing a more favorable situation such as : ‖ψ1(i)‖0 ≤ rA−k which
results in rA+(N−rA)(rA−k) ≤ 2N , that is r2A−(N+k+1)rA+(2+k)N ≥ 0.

Remark 3. In proposition 1, it is assumed that Ã2 does not include any column
of A. Let us now examine what happens if Ã2 does include a number of l ≤ rA
columns of A. In such a case, the sufficient condition for having ‖Ψ1‖0 ≤ ‖Ψ2‖0
is r2A − (N + k + 1)rA + (2 + k)N ≥ l.



The results corresponding to proposition 1 and remark 2 are shown in figure 1 for
different values of N . The bottom curve corresponds to the case of proposition
1 (k = 0). The other curves are obtained for increasing values of k. For all the
cases corresponding to the values of the plotted curves greater that the threshold
(set to 0), the solutions obtained by considering independent columns of A are
sparser than those obtained by considering linear combinations of columns of
A which are not proportional to the columns of A. As mentioned in remark
1, proposition 1 is always true for N ≤ 6. The case N = 6 is depicted on the
left-hand side of figure 1. The case of remark 3, which corresponds to having l
of columns of A in Ã2, is simply obtained by shifting the threshold to a value
equal to l.

To further illustrate these results, we provide next an example in which the
condition of proposition 1 is not fulfilled and for which it is possible to find a
sparsest decomposition with a basis not consisting of columns of A. Let A be
the following matrix :

A = [a1 a2 a3 a4 a1 − a2 − a4 a1 + 2a2 − a3 + a4 a1 − a2 + a3 a2 − a3 − a4]

= [a1 a2 a3 a4]



1 0 0 0 1 1 1 0
0 1 0 0 −1 2 −1 1
0 0 1 0 0 −1 1 −1
0 0 0 1 −1 1 0 −1


 (7)

= [(a1 + a4)/2 (a1 − a4)/2 a2 − (a1 − a4)/2 a3 − a2 + (a1 − a4)/2]

1 0 0 1 0 0 1 1
1 1 0 −1 1 0 0 0
0 1 1 0 −1 −1 0 0
0 0 1 0 0 1 1 −1


 . (8)

The number of non-zero elements of the matrix Ψ corresponding to the first
decomposition equals 17 while that of the second is 16. Indeed, in that caseN = 8
and rA = 4. Thus r2A − (N + 1)rA + 2N < 0, and the sparsest decomposition

cannot be guaranteed to correspond to a matrix Ã including only columns of A.
For example, the second decomposition (8) is sparser than the decomposition
(7) .

Finally, to conclude this part, we can consider a special case where the de-
pendencies take only the form of collinear loadings. This corresponds to having
k = rA − 1 in r2A − (N + k + 1)rA + (2 + k)N ≥ 0, yielding rA ≥ 0 which is
always satisfied. In other words, in the case of collinear loading only, the ma-
trix Ã yielding the sparsest solution consists (obviously) in a selection of rA
independent columns of A.

2.3 Uniqueness of the sparsest decomposition

In this part we aim at studying the uniqueness of the sparsest decomposi-
tion A = ÃΨ . For all the uniqueness results presented in this part we as-
sume that the full column rank matrix Ã yielding the sparsest solution is a
submatrix of A. The uniqueness properties of the case where Ã is not a sub
matrix of A are much more difficult to analyze. Thus, the matrix A can be
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Fig. 1: Illustration of the sparsity properties : the bottom curve corresponds to
the case of proposition 1. The others correspond to the case of remark 2 for
different values of k. As k is increasing, there are much more situations in which
the condition ‖Ψ1‖0 ≤ ‖Ψ2‖0 is fulfilled.

written as: A = [Ã Ă] = [ã1, · · · , ãrA , ărA+1, · · · , ăN ]. Defining the matrix
Ai = [Ã ăi], with i = rA + 1, . . . , N , its Kruskal-rank satisfies kAi ≤ kA ≤ rA
and each ăi can be expressed as a linear combination of exactly kAi columns
of Ã. In other words : ăi = Ãψ(i) and ‖ψ(i)‖0 = kAi . We define the set
Ã = {Ã / Ã is a submatrix of A of size (M × rA), span(Ã) = span(A)} ⊂ A.

Proposition 2. Let Ã1 �= Ã2 two matrices of Ã and Ψ1 and Ψ2 the two ma-
trices satisfying A = Ã1Ψ1 = Ã2Ψ2. Then ‖Ψ1‖0 ≤ ‖Ψ2‖0 if and only if∑N

rA+1 kAi
1
≤ ∑N

rA+1 kAi
2
.

Proof. After a proper column permutation, the matrix A can be written as A =
[Ã1 Ă1], thus we have : A = Ã1Ψ1 = Ã1 [IrA ,ψ(rA + 1) · · ·ψ(N)] where IrA
is the identity matrix of dimension rA. The number of non-zero elements of Ψ1 is
given by ‖Ψ1‖0 = rA+

∑N
rA+1 ‖ψ1(i)‖0, which, as shown earlier, is equivalent to

‖Ψ1‖0 = rA +
∑N

rA+1 kAi
1
. Similarly we can write ‖Ψ2‖0 = rA +

∑N
rA+1 kAi

2
. It

follows immediately that ‖Ψ1‖0 ≤ ‖Ψ2‖0 if and only if
∑N

rA+1 kAi
1
≤ ∑N

rA+1 kAi
2
.

A straightforward extension of proposition 2 is given by the following propo-
sition which gives the condition for having the sparsest and possibly unique
decomposition of A:

Proposition 3. If ∃ Ã0 ∈ Ã such as ∀Ã ∈ Ã, Ã �= Ã0,
∑N

rA+1 kAi
0
≤ ∑N

rA+1 kAi

then the decomposition A = Ã0Ψ0 is the sparsest decomposition. If the inequality
is strict (<), the sparsest decomposition is unique.

It should be noted that proposition 3 does not provide any effective means
to find the sparsest decomposition of A. Indeed, finding it would require to
find all the possible basis consisting in rA columns of A which is actually an
NP-complete combinatorial problem.

The result of proposition 3 can be specialized into the following cases:



– the linear dependencies between the columns of A are only colinearities. In
that case Ã only includes a single element since any selection of rA indepen-
dent columns of A will result in the same basis up to scale and permutation.
Thus the decomposition is unique.

– A has a Kruskal-rank equal to its rank i.e. kA = rA. In that case, any
selection of rA columns of A is a basis and ∀Ã ∈ Ã, kAi = kA, ∀i =
rA + 1, · · · , N . Thus ∀Ã ∈ Ã, ‖Ψ‖0 = (N − rA + 1)rA.

In practice, having a unique sparsest matrix Ψ is not crucial. Indeed, from a
Paralind point of view, having a number of decompositions yielding the same
degree of sparsity simply means that all these decompositions are equivalent.

3 Conclusion
In this paper we provided some rank-based results for the identifiability of the
Paralind model with sparse interaction matrices (S-Paralind). More pre-
cisely, we prove a condition that indicates in which cases, choosing the Paralind
loadings between the loadings of the associated Parafac decomposition yields
the sparsest interaction matrix. These results could be helpful for the design and
the analysis of �0-based algorithms for the decomposition of bilinear/multilinear
arrays.
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