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Abstract—Over the last two decades, tensor-based methods
have received growing attention in the signal processing com-
munity. In this work, we propose a comprehensive overview
of tensor-based models and methods for multisensor signal
processing. We present for instance the Tucker decomposition,
the Canonical Polyadic Decomposition (CPD), the Tensor-Train
Decomposition (TTD), the Structured TTD, including Nested
Tucker Train (NTT), as well as the associated optimization
strategies. More precisely, we give synthetic descriptions of
state-of-art estimators as the Alternating Least Square (ALS)
algorithm, the High-Order SVD (HOSVD), and of more advanced
algorithms as the Rectified ALS, the TT-SVD/TT-HSVD and the
Joint dImensionally Reduction And Factor retrieval Estimator
(JIRAFE) scheme. We illustrate the efficiency of the introduced
methodological and algorithmic concepts in the context of three
important and timely signal processing-based applications: the
Direction-Of-Arrival (DOA) estimation based on sensor arrays,
multidimensional harmonic retrieval and MIMO wireless com-
munication systems.

I. INTRODUCTION

Tensors are, roughly speaking, generalizations of matrices

to more than 2 dimensions (orders larger than 2). Tensors

present several advantages over matrices, such as uniqueness

of rank decomposition under mild conditions, or preservation

of the local structure in N -way data processing. This is what

motivated the advent of tensors in data analysis (phonetics [1],

psychometrics [2]) in the early ’70s and later on, in the signal

processing community. Over the last fifteen years approxi-

mately, the computer science community actively participated

in the popularization of tensors as data analysis tools. Due to

their ability to model highly structured data, tensors quickly

became a staple of data mining and machine learning fields

(see, e.g. [3], [4]).

In multisensor signal processing, tensors are being used for

almost two decades in various applications such as Direction

Of Arrival (DOA) estimation [5], harmonic retrieval [6],

communications systems [7] or RADAR [8]. However, despite

a large number of publications on this topic, we were unable to

find in the literature a comprehensive “point of entry” article

on the use of tensors in multisensor signal processing. The aim

of the present work is to fill this need. This paper does not

intend to draw an exhaustive picture of the existing methods
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and models but rather provides an overview of the princi-

ples and main ideas used in tensor-based multisensor signal

processing. We illustrate our presentation by three popular

multisensor applications: DOA estimation, multidimensional

harmonic retrieval and MIMO systems design.

The paper is organized as follows: in Section II we de-

fine the main tensor concepts and notations and in Section

III we introduce some of the most commonly used tensor

decompositions and algorithms. These tensor decompositions

are then applied to DOA estimation problem (Section IV),

multidimensional harmonic retrieval (Section V) and MIMO

wireless communication system (Section VI). Conclusions are

drawn in Section VII.

II. TENSOR PRELIMINARIES: NOTATIONS AND OPERATIONS

Tensors are multilinear maps between two sets of linear

spaces [9]. Once these linear spaces are fixed as well as their

bases, a tensor is characterized by its array of coordinates. In

the present contribution, we shall assume that this is the case

and shall mainly work on array coordinates. Hence, with usual

abuse of vocabulary, we shall assimilate tensors with their

array representations. The number of dimensions (indices) of

such an array is called the order of the tensor.

Tensors are typeset with a bold calligraphic font (e.g., T ),

matrices in bold caps (e.g., Q); the elements of tensors or

matrices are typeset as Ti,j,k and Qi,j respectively; vectors are

denoted with bold lower cases (e.g. v), with entries vi. The

Frobenius norm of a matrix/tensor is denoted ‖ ·‖F ; (.)T, (.)H

and (.)† symbolyze the matrix transpose, conjugate transpose

and the Moore-Penrose inverse, respectively, and “⋆” denotes

the convolution operator.

The tensor (outer) product between tensors, matrices, or

vectors, is denoted by ⊗, as in e.g. T = v⊗M . The

contraction on the pth index of a tensor is denoted as •
p
; by

convention, when contracted with a matrix, the summation

always applies on the first index of the matrix if it appears

after, or to the second index if it appears first. In other words,

the product AB between two matrices can be written A •B
as well, without further index specification.

For instance, the products Xi,j,k =
∑

q Tq,j,kMi,q, Yi,j,k =
∑

q Ti,q,kMj,q and Zi,j,k =
∑

q Ti,j,qMk,q can be written in

compact form as X = T •
1
M , Y = T •

2
M and Z = T •

3
M ,

respectively. Note that we also have X = MT •
1
T .
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The Kronecker product between two matrices is denoted

A⊠B, and is defined by the block matrix:

A⊠B =











A1,1B A1,2B . . . A1,JB

A2,1B A2,2B . . . A1,JB
...

...

AI,1B AI,2B . . . AI,JB











,

if matrix A is of size I × J . Once bases of linear spaces

are well defined, the tensor product between operators can

be represented by Kronecker products [9]. The Khatri-Rao

(column-wise Kronecker) product between two matrices with

the same number J of columns is written as:

A⊙B = [a1⊠ b1, . . .a2⊠ b2, . . .aJ ⊠ bJ ] ,

if aj and bj represent the columns of A and B respectively.

Analogously to the Frobenius norm of a matrix, the Frobe-

nius norm of a tensor T is defined as the square root of the

sum of all the squares of its elements, i.e.:

‖T ‖F =

√

∑

i

∑

j

∑

k

T 2
i,j,k.

Contraction between two tensors

The product
p
•
q

between two tensors A and B of size I1 ×

· · · × IQ and J1 × · · · × JP , respectively, where Iq = Jp, is a

tensor of order (Q + P − 2) denoted by:

[A
p
•
q
B]i1,...,iq−1,iq+1,...,iQ,j1,...,jp−1,jp+1,...,jP

=

Iq
∑

k=1

[A]i1,...,iq−1,k,iq+1,...,iQ [B]j1,...,jp−1,k,jp+1,...,jP .

Tensor reshaping

Tensor reshaping transforms a Q-order tensor T of dimen-

sions I1×· · ·×IQ into a matrix T(q) having the product of the

first q dimensions of T , say I1 · · · Iq , as the number of rows,

and the product of the remaining dimensions, Iq+1 · · · IQ, as

the number of columns. In MATLAB, this reshaping can be

obtained using the native reshape function, such that

T(q) = reshape

(

T ,

q
∏

s=1

Is,

Q
∏

s=q+1

Is

)

. (1)

For example, let T be a 4-order tensor of dimensions 2× 2×
2× 2, defined by:

T (:, :, 1, 1) =

[

1 3
2 4

]

,T (:, :, 2, 1) =

[

5 7
6 8

]

,

T (:, :, 1, 2) =

[

9 11
10 12

]

,T (:, :, 2, 2) =

[

13 15
14 16

]

.

Matrix T(2) of dimensions 4× 4 is then given by:

T(2) = reshape (T , 4, 4) =









1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16









.

The so-called flattening or unfolding operation is a special

case of the reshaping operation [9]. The most used flattenings

are those keeping one of the original dimensions, say Nq, as

the number of rows. Hence, the so-called qth matrix unfolding

of T is of dimension Iq × I1 . . . Iq−1 Iq+1 . . . IQ. Compared

to the flattening operation, the reshape function can be

considered as a more general flattening operation, in the sense

that

unfoldqT = reshape











T
′

, Iq,

Q
∏

s=1
Is

Iq











, (2)

with

T
′

= permute (T , [q, 1, 2, · · · , q − 1, q + 1, q + 2, · · · , Q]) ,

where permute is a native MATLAB function that rearranges

the dimensions of the Q-order tensor T .

III. TENSOR DECOMPOSITIONS AND ALGORITHMS

We introduce hereafter the tensor decompositions (Section

III-A) used in the applications presented in Sections IV, V

and VI, as well as some basic algorithms to compute these

decompositions (Section III-B).

The Tucker decomposition along with two of its variants

(High-Order SVD and partial Tucker), are introduced in

Subsection III-A1. Tucker decomposition is a generic tensor

tool that decomposes a tensor into a set of non-structured

factor matrices and a core tensor. A simple algorithm for

computing the High-Order SVD (Tucker decomposition with

semi-unitary factor matrices) for third-order tensors is given

in Subsection III-B2. The Canonical Polyadic Decomposition

(CPD) (Subsection III-A2) - probably the most widely used

tensor decomposition - can be seen as a Tucker decomposition

with a diagonal core. Its existence and uniqueness issues are

discussed in Subsection III-A3. The pseudo-code for the pop-

ular Alternating Least Squares (ALS) algorithm for estimating

the CPD is given in Subsection III-B1. Subsection III-A4 intro-

duces the Tensor-Train Decomposition (TTD), a tool designed

to efficiently handle high-order tensors (order higher than 3),

by splitting them into an interconnected set (“train”) of lower-

order tensors. A particular class of TTD, the Structured Tensor-

Train (STT) models, is presented in Subsection III-A6. The

Tensor-Train SVD (TT-SVD) algorithm for computing TTD is

illustrated in Subsection III-B3. A link between the TTD and

the CPD of high-order tensors (TT-CPD) is developed in Sub-

section III-B4; the JIRAFE (Joint dImensionality Reduction

And Factors rEtrieval) method for estimating the parameters of

the TT-CPD model is also detailed. Two additional tools used

in MIMO application (Section VI), the least squares Kronecker

(Subsection III-B5) and least squares Khatri-Rao (Subsection

III-B6) factorizations, conclude this section.

A. Tensor decompositions

Any matrix can always be diagonalized by congruent trans-

formation. In addition, the two linear transforms involved can
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be imposed to be unitary: this is the Singular Value decom-

position (SVD). When we move from matrices to tensors, it

is generally impossible to use unitary transforms and obtain a

diagonal tensor. Consequently, depending on which property

is desired, we end up with two different decompositions. This

is what is explained in the next two subsections, where we

limit ourselves to third order tensors to ease the presentation.

1) Tucker decomposition, HOSVD, and multilinear rank:

Given a tensor T of dimensions I × J × K , it is always

possible to find three matrices A, B and C of dimensions

I × R1, J ×R2 and K ×R3, respectively, such that

Ti,j,k =

R1
∑

m=1

R2
∑

n=1

R3
∑

p=1

Ai,mBj,nCk,p Gm,n,p, (3)

where R1, R2, R3 are minimal and R1 ≤ I , R2 ≤ J , R3 ≤ K .

Tensor G, often called core tensor, is of dimensions R1 ×
R2×R3. The triplet of minimal values of {R1, R2, R3} forms

the multilinear rank of T . This is referred to as the Tucker

decomposition of T , and can be written in a more compact

way as:

T = JA,B,C;GK. (4)

Each Rℓ is uniquely defined, and corresponds to the rank of

the linear operator associated with the ℓth matrix unfolding

of T , unfoldℓT . The point is that the Tucker decomposition

is not unique, for it is defined up to three invertible matrices

{M1,M2,M3}, because:

JA,B,C;GK = JAM−1
1 ,BM−1

2 ,CM−1
3 ;G′K

if G′ = JM1,M2,M3;GK. Yet, as in the SVD of matrices,

it is possible to impose that the core tensor is obtained via

semi-unitary transforms {U ,V ,W } as:

T = JU ,V ,W ;GK, (5)

where UHU = IR1 , V HV = IR2 and W HW = IR3 . Equa-

tion (5) defines the High-Order SVD (HOSVD), sometimes

referred to as multilinear SVD of tensor T [10].

a) Partial Tucker decomposition: We present next a

variant of the Tucker decomposition for an Q-order tensor

X ∈ CI1×···×IQ , with factor matrices A(q) ∈ CIq×Rq

whose Q − Q1 last ones are equal to identity matri-

ces IIq of order Iq , for q = Q1 + 1, · · · , Q. This so-

called Tucker-(Q1, Q) decomposition is compactly written as

JA(1), · · · ,A(Q1), IIQ1+1 , · · · , IIQ ;GK, where the core tensor

G is of dimensions R1 × · · · × RQ1 × IQ1+1 × · · · × IQ,

which induces Rq = Iq for q = Q1 + 1, · · · , Q. See [11]

for more details. For instance, the standard Tucker2 and

Tucker1 decompositions correspond to (Q1, Q) = (1, 3) and

(Q1, Q) = (2, 3), respectively.

2) Exact CP decomposition, rank, uniqueness: Of course,

there is no reason that tensor G in Equation (5) be diagonal;

this is clear by just looking at the number of degrees of

freedom of both sides. On the other hand, if the unitary

constraint of matrices {U ,V ,W } is relaxed, it is possible

to decompose any tensor T as:

T = JA,B,C;SK, (6)

where tensor S is diagonal. This is known as the Canonical

Polyadic (CP1) decomposition (CPD). Note that now, not only

matrices {A,B,C} are not semi-unitary, but their number

of columns, R, may exceed the number of their rows. The

minimal value of R such that (6) holds exactly is called the

rank of tensor T . The explicit writing of (6) in terms of array

entries is:

Ti,j,k =

R
∑

r=1

Ai,rBj,rCk,r σ(r), (7)

if σ(r)’s denote the diagonal entries of S. But a clearer writing

of this CPD is provided in terms of decomposable tensors [9]

as follows:

T =

R
∑

r=1

σrD(r), (8)

where D(r) = a(r)⊗ b(r)⊗ c(r), that is, D(r)i,j,k =
Ai,rBj,rCk,r, ‖D(r)‖ = 1, and σr > 0. In fact, decompos-

able tensors may be seen as rank-1 tensors. This writing is

clearer because it does not depend on the way tensors D(r)
are represented – and their representation is precisely rarely

unique, which is not related to the uniqueness of (8). Note

that the definition of tensor rank is pretty much the same as

matrix rank. Hence, this CPD may be seen as another natural

generalization of the matrix SVD to tensors, the former being

HOSVD seen in the previous section. Because the acronym

CP is sometimes used to mean “Completely Positive”, it may

sometimes be more suitable to call it rank decomposition,

when the number of terms R is indeed minimal.

The uniqueness of the CPD (8) should not be confused

with its array representation (7). In fact, the latter is never

unique, since expressing a rank-1 tensor as the tensor product

of N vectors is subject to N − 1 scaling indeterminacies. For

instance, D = a⊗ b⊗ c can also be written as αa⊗βb⊗ γc
provided αβγ = 1. This is precisely the difference between

a tensor space and a product of linear spaces [9], [13], [14].

This is the reason why the wording of “essential uniqueness”

is sometimes found in the literature; it expresses the fact that

there are N − 1 scaling indeterminacies, and that the order of

summation is subject to permutation because the addition is

commutative.

With Definition (2), the CPD can be rewritten in matrix

form. For a 3rd order rank-R tensor T = JA,B,C;SK for

example, the three flattened representations of the CPD are

[15]:

unfold1T = AS(C ⊙B)T, (9)

unfold2T = BS(C ⊙A)T, (10)

unfold3T = CS(B ⊙A)T, (11)

where S denotes the diagonal matrix with entries σ(r) =
Sr,r,r, ∀1 ≤ r ≤ R.

One of the major interests in the CPD (8) lies in its

uniqueness. In particular, it allows to relax the orthogonality

constraint (necessary in the case of matrices to achieve some

1The acronym CP also stands for Candecomp/Parafac in the literature, due
to two contributions [1], [2] in which this tensor decomposition has been
independently rediscovered, years after the original publication [12].
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form of uniqueness), which is often incompatible with physical

reality. More precisely, several uniqueness conditions have

been derived in the literature. We shall quote two of them.

A sufficient condition is that [16]–[18]:

2R ≤ krank{A}+ krank{B}+ krank{C} − 2, (12)

where krank{A} denotes the so-called Kruskal rank of A

[9], [16]; by definition2, the krank is always smaller than

or equal to the usual matrix rank. If entries of A are seen

as randomly drawn according to an absolutely continuous

distribution, krank{A} can be replaced by the smallest of

its two dimensions. In the latter case, the condition is referred

to as generic [19], [20].

A second generic condition ensuring uniqueness of the CPD

is given by the bound of the so-called expected rank [21]–[23]:

R ≤
R1R2R3

R1 +R2 +R3 − 2
− 1, (13)

where Rℓ are the multilinear ranks defined in Section III-A1.

To sum up, the exact CP decomposition (8) is almost surely

unique if the tensor rank is not too large.

3) Approximate CPD, existence, uniqueness: Things be-

come more complicated when it is thought to approximate a

tensor by another one of lower rank. To fix the ideas, suppose

that our objective is to minimize:

Υ =

∥

∥

∥

∥

∥

T −
Ro
∑

r=1

σ(r) a(r)⊗ b(r)⊗ c(r)

∥

∥

∥

∥

∥

2

F

,

where σ(r) > 0 and ||a(r)|| = ||b(r)|| = ||c(r)|| = 1,

∀r, 1 ≤ r ≤ Ro. Unfortunately, it has been pointed out in

e.g. [24] that this objective function may not always have a

minimum (but only an infimum), which means that this low-

rank approximation problem is ill-posed; there are ways to

circumvent the difficulty, for instance by imposing extraneous

angular constraints [25], which is meaningful in the context

of DOA estimation for instance.

On the other hand, if all objects are real nonnegative, then

the problem becomes well-posed [26]. In the latter case, it

is important to recall that imposing a nonnegative constraint

generally increases the rank [9], even for matrices. This being

said, it has been proved in [22] that the best nonnegative low-

rank tensor approximation of a nonnegative tensor is almost

surely unique. One can even look at the conditions under

which the best low-rank approximation admits a unique CPD

[27], but this is more involved.

To conclude, the best low-rank approximate of a tensor does

not always exist, and this is still often ignored in the literature.

4) Tensor-Train Decomposition (TTD) and TT-ranks: A Q-

order tensor of size I1× . . .× IQ admits a decomposition into

a train of tensors [28] if

X = G(1) 1
•
2
G(2) 1
•
3
G(3) 1
•
4
. . .

1
•

Q−1
G(Q−1) 1

•
Q
G(Q), (14)

where the TT-cores G(1), G(q)(2 ≤ q ≤ Q−1), and G(Q) are,

respectively, of size I1×R1, Rq−1×Iq×Rq and RQ−1×IQ.

2A matrix M has Kruskal rank R if any subset of R columns forms a full
rank matrix. Remember that M has rank R if there exists at least one subset
of R columns forming a full rank matrix.

The Q− 1 dimensions {R1, . . . , RQ−1} are referred to as the

TT-ranks with boundary conditions R0 = RQ = 1.

The idea behind the TTD, is to transform a highQ-order tensor

into a set of much lower 3-order tensors, which allows to break

the “curse of dimensionality” [29]. Indeed, just like the CPD,

the storage cost of the TTD scales linearly with the order Q.

A graph-based representation of the TTD of a Q-order tensor

X is given in Fig. 1. It is straightforward to see that the TTD

Fig. 1. TT decomposition of a Q-order tensor

is not unique since [30]

[X ]i1,··· ,iQ = a1(i1)
TA2(i2) · · ·AQ−1(iQ−1)aQ(iQ) (15)

where

a1(i1) = M1[G
(1)]Ti1,: : R1 × 1, (16)

aQ(iQ) = M−1
Q−1[G

(Q)]:,iQ : RQ−1 × 1, (17)

Aq(iq) = M−T

q−1[G
(q)]:,iq,:Mq : Rq−1 ×Rq, (18)

with Mq, an invertible matrix of size Rq × Rq . In [30], it is

shown that, when we apply decomposition algorithms such as

TT-SVD or TT-HSVD, the matrices Mq are change-of-basis

matrices, that are mainly linked to the estimation of dominant

subspaces by the SVD.

5) Model equivalence between TTD and CPD: An inter-

esting model equivalence property between a Q-order CPD of

rank-R and a train of (Q− 2) 3-order CPD(s) of rank R and

two matrices is briefly discussed in [28]. We can summarize

this fundamental algebraic relation according to the following

result.

Theorem 1. If the tensor X follows a Q-order CPD of rank-R
with factors Pq, then a TTD can be given by:

G1 = P1, (19)

Gq = I3,R •
2
Pq (3-order CPD), where 2 ≤ q ≤ Q − 1,

(20)

GQ = P T

Q , (21)

and the TT-ranks are all equal to the canonical rank R.

Proof. The TTD of the Q-order identity tensor IQ,R is given

by

IQ,R = IR
1
•
2
I3,R

1
•
3
· · ·

1
•

Q−1
I3,R

1
•
Q
IR. (22)

Substituting the above TTD into the CPD, we get

X = (IR
1
•
2
I3,R

1
•
3
· · ·

1
•
Q
IR) •

1
P1 . . . •

Q
PQ (23)

(24)
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by expressing the entries of X and reorganizing them, we can

equivalently write

X = (P1IR)
1
•
2
(I3,R •

2
P2)

1
•
3
· · ·

1
•
Q
(IRP

T

Q). (25)

By identifying the TT-cores in (25) with those in (14), we

can deduce the relations (19), (20) and (21). Then, it is

straightforward to conclude that the TT-ranks are all identical

and equal to the canonical rank R.

Thus, conditionally to the knowledge of the TT-cores, it is

theoretically possible to recover the factors of the CPD by a

one-to-one methodology. In Section III-B4, we present the so

called JIRAFE framework, used for that aim.

6) Structured Tensor-Train models: In this subsection, we

present a particular class of TT models, the so-called struc-

tured tensor-train (STT) models. These models are composed

of a train of third-order tensors, each tensor being represented

by means of a tensor decomposition like CP, Tucker or

generalized Tucker.

For a Q-order tensor X ∈ CI1×I2···×IQ , an STT model can

be written as:

X = T (1) 1
•
3
T (2) 1

•
4
· · ·

1
•

Q−1
T (Q−2), (26)

with T (1) ∈ CI1×I2×R2 , T (Q−2) ∈ CR2Q−6×IQ−1×IQ , and

T (q) ∈ CR2q−2×Iq+1×R2q for 2 ≤ q ≤ Q− 3.

For instance, in the case of a fifth-order tensor X ∈
CI1×I2···×I5 , let us assume that T (q) satisfies a Tucker-(1,3)

decomposition for q ∈ {1, 2} while T (3) satisfies a Tucker-

(2,3) decomposition such that [11]:

T (1) = JA(1), II2 , IR2 ;G
(1)K ∈ CI1×I2×R2 (27)

T (2) = JA(2), II3 , IR4 ;G
(2)K ∈ CR2×I3×R4 (28)

T (3) = JA(3), II4 ,A
(4);G(3)K ∈ CR4×I4×I5 (29)

with the core tensors G(1) ∈ CR1×I2×R2 , G(2) ∈
CR3×I3×R4 , G(3) ∈ CR5×I4×R6 , and the matrix factors

A(1) ∈ CI1×R1 , A(2) ∈ CR2×R3 , A(3) ∈ CR4×R5 , A(4) ∈
CI5×R6 . We then obtain a structured Tucker train of order five,

abbreviated as STuT(5), which can be written by means of the

following scalar equation:

xi1,i2,i3,i4,i5 =

R1
∑

r1=1

R2
∑

r2=1

· · ·
R6
∑

r6=1

a
(1)
i1,r1

g
(1)
r1,i2,r2

a(2)r2,r3g
(2)
r3,i3,r4

a(3)r4,r5g
(3)
r5,i4,r6

a
(4)
i5,r6

, (30)

or compactly as:

X = T (1) 1
•
3
T (2) 1

•
4
T (3). (31)

Comparing eqs. (30)-(31) of the STuT(5) model with eq. (14)

of the TT model with Q = 5, we can conclude that the STuT

model corresponds to a TT model for which each tensor of the

train satisfies a Tucker-(1,3) or Tucker-(2,3) decomposition.

Such an STuT model was derived for the fourth-order

tensor of received signals in a cooperative wireless MIMO

communication system [31], and then generalized to a Q-order

tensor in the case of multi-hop MIMO relay systems [32]. This

model can also be interpreted as a nested Tucker train (NTT)

model, with two successive tensors sharing a common factor.

Thus, in the case of a fourth-order tensor X ∈
CI1×I2×I3×I4 , as illustrated by means of Fig. 2, with

A(1) ∈ CI1×R1 ,G(1) ∈ CR1×I2×R2 ,A(2) ∈ CR2×R3 ,G(2) ∈
CR3×I3×R4 ,A(3) ∈ CI4×R4 , the NTT(4) model can be de-

scribed by means of the following scalar equation:

xi1,i2,i3,i4 =

R1
∑

r1=1

R2
∑

r2=1

R3
∑

r3=1

R4
∑

r4=1

a
(1)
i1,r1

g
(1)
r1,i2,r2

a(2)r2,r3g
(2)
r3,i3,r4

a
(3)
i4,r4

.

(32)

Fig. 2. NTT(4) model for a 4-order tensor

Let us define the following third-order Tucker models:

T (1) = JA(1), II2 , IR2 ;G
(1)K (33)

= G(1) •
1
A(1) ∈ CI1×I2×R2 (34)

T (2) = JA(2), II3 ,A
(3);G(2)K (35)

= G(2) •
1
A(2) •

3
A(3) ∈ CR2×I3×I4 (36)

T (3) = JA(1), II2 ,A
(2);G(1)K (37)

= G(1) •
1
A(1) •

3
A(2)T ∈ CI1×I2×R3 (38)

T (4) = JIR3 , II3 ,A
(3);G(2)K (39)

= G(2) •
3
A(3) ∈ CR3×I3×I4 . (40)

These Tucker models can be written in an element-wise form

as:

t
(1)
i1,i2,r2

=

R1
∑

r1=1

g
(1)
r1,i2,r2

a
(1)
i1,r1

(41)

t
(2)
r2,i3,i4

=

R3
∑

r3=1

R4
∑

r4=1

g
(2)
r3,i3,r4

a(2)r2,r3a
(3)
i4,r4

(42)

t
(3)
i1,i2,r3

=

R1
∑

r1=1

R2
∑

r2=1

g
(1)
r1,i2,r2

a
(1)
i1,r1

a(2)r2,r3 (43)

t
(4)
r3,i3,i4

=

R4
∑

r4=1

g
(2)
r3,i3,r4

a
(3)
i4,r4

. (44)

The NTT(4) model (32) can be viewed as the nesting of the

third-order Tucker models T (3) and T (2) which share the

matrix factor A(2). It can also be interpreted as a contraction

of a Tucker-(1,3) model with a Tucker-(2,3) model, along their

common mode:

X = T (1) 1
•
3
T (2) = T (3) 1

•
3
T (4). (45)
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These contraction operations correspond to summing the en-

tries of the third-order tensors T (1) and T (2), or T (3) and

T (4), along their common mode r2, or r3, as follows:

xi1,i2,i3,i4 =

R2
∑

r2=1

t
(1)
i1,i2,r2

t
(2)
r2,i3,i4

(46)

=

R3
∑

r3=1

t
(3)
i1,i2,r3

t
(4)
r3,i3,i4

. (47)

Defining the fourth-order tensor C ∈ CR1×I2×I3×R4 such that:

cr1,i2,i3,r4 =

R2
∑

r2=1

R3
∑

r3=1

g
(1)
r1,i2,r2

a(2)r2,r3g
(2)
r3,i3,r4

, (48)

the NTT(4) model (32) can also be interpreted as the following

Tucker-(2,4) model [33]:

X = C •
1
A(1) •

4
A(3), (49)

or in scalar form:

xi1,i2,i3,i4 =

R1
∑

r1=1

R4
∑

r4=1

cr1,i2,i3,r4a
(1)
i1,r1

a
(3)
i4,r4

. (50)

The nested CP model introduced in [34], and exploited in

[35] in the context of MIMO relay systems, is a special case

of the nested Tucker model (32), defined as follows:

xi1,i2,i3,i4 =

R1
∑

r1=1

R2
∑

r2=1

a
(1)
i1,r1

g
(1)
i2,r1

a(2)r1,r2g
(2)
i3,r2

a
(3)
i4,r2

, (51)

with A(1) ∈ CI1×R1 ,G(1) ∈ CI2×R1 ,A(2) ∈
CR1×R2 ,G(2) ∈ CI3×R2 ,A(3) ∈ CI4×R2 . The nested CP

model is illustrated in Fig. 3 for a fourth-order tensor.

Fig. 3. Nested CP model for a 4-order tensor

This nested CP model can be deduced from the nested

Tucker model (32) using the following correspondences:

(r1, r2, r3, r4)↔ (r1, r1, r2, r2) (52)

(A(1),G(1),A(2),G(2),A(3))↔ (A(1),G(1),A(2),G(2),A(3)).
(53)

More generally, one can define a STT model (26) for which

each elementary tensor of the train has a CP decomposition.

Thus, for a Q-order tensor X , Eq. (26) then becomes a

structured CP train (SCPT) such that:

T (1) = JA(1),G(1),A(2)T;IR1K ∈ CI1×I2×R2

T (q) = JA(q),G(q),A(q+1)T;IRq
K

∈ CRq−1×Iq+1×Rq+1 for 2 ≤ q ≤ Q− 3

T (Q−2) = JA(Q−2),G(Q−2),A(Q−1);IRQ−2K

∈ CRQ−2×IQ−1×IQ ,

with the matrix factors A(1) ∈ CI1×R1 , A(q) ∈ CRq−1×Rq ,

for 2 ≤ q ≤ Q − 1, A(Q−1) ∈ CIQ×RQ−2 , and G(q) ∈
CIq+1×Rq , for 1 ≤ q ≤ Q − 2. The SCPT model of order

Q can also be written in the following scalar form:

xi1,··· ,iQ =

R1
∑

r1=1

· · ·

RQ−2
∑

rQ−2=1

a
(1)
i1,r1

g
(1)
i2,r1

a(2)r1,r2g
(2)
i3,r2

a(3)r2,r3g
(3)
i4,r3
· · · g

(Q−2)
iQ−1,rQ−2

a
(Q−1)
iQ,rQ−2

.

B. Algorithms

1) Alternating least squares algorithm: There are many

algorithms to compute a CP decomposition. By far, the most

used one is the alternating least squares (ALS). ALS was pro-

posed in [1], [2], and is considered today as the “workhorse”

for CPD computation. It is a simple algorithm that fixes,

iteratively, all but one factor, which is then updated by solving

a linear least squares problem. In Algorithm 1, we present the

ALS algorithm for a 3-order tensor T ≈ JA,B,C;I3,RK.

The generalization for a Q-order case is straightforward.

Algorithm 1 ALS algorithm

Input: 3-order rank-R tensor T , CritStop

Output: Estimated CPD factors: A, B and C

1: Initialize B and C

2: while CritStop and maximum iterations are not

reached do

3: A = unfold1T · (C ⊙B)T†

4: B = unfold2T · (C ⊙A)T†

5: C = unfold3T · (B ⊙A)T†

6: end while

Generally CritStop is based on the evaluation of the

fitting error ‖T − JA,B,C;I3,RK‖F .

2) High-order SVD algorithm: Based on the definition of

the HOSVD given in (5), an algorithm to compute the HOSVD

is presented in Algorithm 2. This algorithm was proposed

in [10], and it relies on the computation of the left singular

vectors of the unfoldings unfoldqT . The truncated HOSVD

has a moderate computing cost, and is not necessarily optimal,

but it gives a good approximation, which can be used as

initialization for ALS-like algorithms. For ease of presentation,

we derive the method only for a 3-order tensor, but the

generalization to a Q-order tensor is straightforward.
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Algorithm 2 HOSVD algorithm

Input: 3-order tensor T , multilinear rank {R1, R2, R3}
Output: U , V , W and G

1: U ← R1 first left singular vectors of unfold1T
2: V ← R2 first left singular vectors of unfold2T

3: W ← R3 first left singular vectors of unfold3T
4: G = T •

1
UH •

2
V H •

3
W H

3) TTD computation with the TT-SVD algorithm: The TT-

SVD algorithm has been introduced in [28]. This algorithm

minimizes in a sequential way the following LS criterion:

ψ(X ) =

∥

∥

∥

∥

X −A1
1
•
2
A2

1
•
3
· · ·

1
•

Q−1
AQ−1

1
•
Q
AQ

∥

∥

∥

∥

2

F

. (54)

In Fig. 4, we present in a schematic way the TT-SVD

algorithm applied on a 4-order tensor X . As illustrated, the

TT-SVD computes in a sequential way Q−1 SVDs on matrix

reshapings of the Q-order original tensor. Note that at each

step, we apply the truncated SVD on the reshaped matrices

V
(q)
(2) of size (RqIq+1) × (Iq+2 · · · IQ) to recover matrices

U (q+1) and V (q+1), this latter containing the product of the

pseudo-diagonal singular values matrix and the right singular

vectors matrix.

Fig. 4. TT-SVD algorithm applied on a 4-order tensor

It is worth noting that the TT-SVD in its current state cannot

be parallelized, which is a problem when we deal with very

high order tensors. An alternative method to compute the TTD

is to consider different reshapings than those considered in

the TT-SVD. Indeed, the recently proposed TT-HSVD [30]

algorithm, for Tensor-Train Hierarchical SVD, is a hierarchical

algorithm for TTD, that suggests to combine more than one

mode in each dimension of the reshaped matrices, i.e., instead

of considering the matrix X(1) of size I1 × (I2I3I4), we

can for example use as first unfolding the matrix X(2) of

size (I1I2) × (I3I4). Note that using this strategy allows to

parallelize the decomposition, after each SVD, across several

processors, which suits very well high order tensors. Moreover,

the choice of the best reshaping strategy when the order is very

high is discussed in [30] in terms of the algorithmic complex-

ity. Indeed, [30] shows that reshapings with the “most square

” matrix (i.e., matrices with more balanced row and column

dimensions), leads to the lower computational complexity.

Remark that from an estimation point of view, the TT-SVD and

the TT-HSVD algorithms suffer from the lack of uniqueness

of the TT-cores described in Section III-A4. Indeed, as the

latent matrices {M1, · · · ,MQ−1} are unknown, the true TT-

cores remain unknown. In the next section, we propose a

methodology to solve this problem in the important context

where the observed tensor follows a Q-order CPD of rank R.

4) JIRAFE principle for CPD: In this section, we present

a TT-based methodology [36], JIRAFE, for high-order CPD

factors retrieval. The acronym JIRAFE stands for "Joint dI-

mensionality Reduction And Factors rEtrieval" and the method

is described in [36], [37] by the following two-step procedure:

1) Reduce the dimensionality of the original factor retrieval

problem by breaking the difficult multidimensional op-

timization problem into a collection of simpler opti-

mization problems on small-order tensors. This step is

performed using the TT-SVD algorithm.

2) Design a factor retrieval strategy by exploiting (or not)

the coupled existing structure between the 1st and 3rd

factors of two consecutive TT-cores. Here, the goal is to

minimize a sum of coupled least-square (LS) criteria.

In [36], the structures of the TT-cores associated with the

TT-SVD algorithm are described and a family of estimation

algorithms, is proposed. This methodology is based on the

following result:

Theorem 2. If the data tensor follows a Q-order CPD of rank

R parametrized by Q full column rank factors {P1, . . . ,PQ}.
The TT-SVD algorithm recovers the TT-cores such that:

A1 = P1M
−1
1 , (55)

Aq = I3,R •
1
Mq−1 •

2
Pq •

3
M−T

q , where 2 ≤ q ≤ Q − 1

(56)

AQ = MQ−1P
T

Q , (57)

where Mq is a nonsingular R×R change of basis matrix.

This means that if a Q-order tensor admits a rank-R CPD,

then its TTD involves a train of (Q− 2) 3-order CPD(s) and

has all identical TT-ranks such as R1 = . . . = RQ−1 = R.

The factors can be derived straightforwardly from the TT-cores

up to two change-of-basis matrices.

Remark 1. Note that each TT-core for 2 ≤ q ≤ Q−1 follows

a CPD coupled with its adjacent TT-cores (see Fig. 5).
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Fig. 5. 3-order CPD of the q-th TT-core

The above theorem and the remark allow us to derive

the factor retrieval scheme, called JIRAFE and presented in

Algorithm 3 as a pseudo code which minimizes the following

criterion:

min
M,P

{

‖A1 − P1M
−1
1 ‖F + ‖AQ −MQ−1PQ‖F (58)

+

Q−2
∑

q=2

φ(Aq)
}

, (59)

where M = {M1, · · · ,MQ} and P = {P1, · · · ,PQ} and

φ(Aq) = ‖Aq − I3,R •
1
Mq−1 •

2
Pq •

3
M−T

q ‖
2
F . (60)

Algorithm 3 JIRAFE for CPD

Input: Q-order rank-R tensor X

Output: Estimated CPD factors: P1, · · · ,PQ.

1: Model reduction: Solve criterion (54) using TT-SVD or

TT-HSVD, i.e.

min
A1,A2,...,AQ−1,AQ

ψ(X )

2: Factor retrieval:

min
M1,P2,M2

φ(A2).

3: for k = 3 · · ·Q− 1 do

4: minMq ,Pq
, φ(Aq|Mq−1)

5: end for

6: P1 = A1M1, and PQ = AT

QM
−T

Q−1

In Algorithm 3, we denote by φ(A|M) the criterion φ(A)
when factor M has been previously estimated. The JIRAFE

approach breaks this delicate optimization problem into a set

of Q low-dimensional and coupled LS criterion. Indeed, the

JIRAFE methodology is essentially based on a single tridimen-

sional LS optimization, Q−3 bidimensional LS optimizations

and the computation of two inverse R×R matrices. It is worth

noting that any processing applicable to CPDs can be done at

the level of the estimated 3-order CPD TT-cores, using the

JIRAFE principle, with a much lower complexity. Moreover,

the ambiguities of the CPD-Train model, presented in Theorem

2, are the same as the ones of the CPD. Indeed, in [36], a proof

of the following result is given:

Remark 2. Just like the CPD, the CPD-Train model, given in

Theorem 2, is characterized by the following indeterminacies:

1) a unique column permutation matrix denoted by Π,

2) diagonal scaling matrices satisfying the following rela-

tion:

Λ1Λ2Λ3 · · ·ΛQ−1ΛQ = IR (61)

where Λk is the scaling ambiguity for the k-mode factor

Pk.

5) Least squares Kronecker factorization: Consider the

following minimization problem

min
A,B

‖X −A⊠B‖F , (62)

where A ∈ CI2×R2 , B ∈ CI1×R1 and X = A ⊗B + V ∈
CI1I2×R1R2 , and V represents a zero-mean uncorrelated noise

term. The solution of the problem in Eq. (62), is based on a

rank-one matrix approximation (via SVD) of X (a permuted

version of X , the construction of which was proposed in [38]).

The problem in (62) becomes

min
a,b

∥

∥X − b⊗a
∥

∥

F
, (63)

meaning to find the nearest rank-one matrix to X , where a =
vec(A) ∈ CI2R2×1 and b = vec(B) ∈ CI1R1×1. In [39], the

authors proposed a solution generalizing [38] to a Kronecker

product involving N factor matrices. Let us consider the case

N = 3, usually encountered in practice. The problem then

becomes

min
A,B
‖X −A⊠B⊠C‖F , (64)

where A ∈ CI3×R3 , B ∈ CI2×R2 and C ∈ CI1×R1 . The

problem in (64) now becomes

min
a,b,c

∥

∥X − c⊗b⊗a
∥

∥

F
, (65)

where a = vec(A) ∈ CI3R3×1, b = vec(B) ∈ CI2R2×1,

c = vec(C) ∈ CI1R1×1. We have that x = vec(X) and

X = T {x} ∈ CI1R1×I2R2×I3R3 , where the operator T {·}
maps the elements of x into X , as follows

xq1+(q2−1)Q1+(q3−1)Q1Q2
−→
T {·}
X q1,q2,q3 (66)

where qi = {1, . . . , Qi} and Qi = IiRi, with i = {1, 2, 3}.
Otherwise stated, we have X = reshape (x, Q1, Q2, Q3).
Hence, finding the matrix triplet {A,B,C} that solves (64)

is equivalent to finding the vector triplet {a, b, c} that solves

(65), i.e., the solution of a Kronecker approximation problem

can be recast as the solution to a rank-one tensor approxi-

mation problem, for which effective algorithms exist in the

literature (see, e.g., [40]–[42]).

6) Least squares Khatri-Rao factorization: Consider the

following minimization problem

min
A,B
‖X −A⊙B‖F , (67)

where A ∈ CI×R, B ∈ CJ×R and X = A ⊙ B + V ∈
CJI×R, and V represents the zero-mean uncorrelated noise

term. Note that problem (67) can be rewritten as

min
ar ,br

R
∑

i=1

‖xr − ar ⊠ br‖2 , (68)
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or, equivalently,

min
ar,br

R
∑

i=1

∥

∥X̄r − br ⊗ar

∥

∥

F
, (69)

where X̄r ∈ CJ×I . Defining UrΣrV
H
r as the singular value

decomposition (SVD) of Xr, estimates for ar ∈ CI and br ∈
CJ , (r = 1, . . . , R) can be obtained by truncating the SVD of

Xr to its dominant eigenmodes, i.e., [43]

b̂r =

√

σ
(1)
r u(1)

r and â(1)
r =

√

σ
(1)
r v(1)∗

r , (70)

where u
(1)
r ∈ CJ and v

(1)
r ∈ CI are the dominant first left and

right singular vectors of Ui and Vi, respectively, while σ
(1)
r

denotes the largest singular value of X̄r. Hence, estimates of

the full matrices A and B that minimize (67) are obtained

by repeating such a rank-1 approximation problem R times in

parallel, one for each column xr, r = 1, . . . , R.

IV. TENSOR-BASED DOA ESTIMATION WITH SENSOR

ARRAYS

A fundamental problem in array processing is the estimation

of the DOAs for multiple sources impinging on an array of

sensors. Assume that P narrow-band far-field sources are im-

pinging on an array of L identical sensors (P < L, in general).

The direction of arrival of a source p in a Cartesian coordinate

system OXY Z associated with the array is given by the

unitary vector kp =
[

sin θp cosφp sin θp sinφp cos θp
]T
,

where θ and φ are the elevation and azimuth angles, respec-

tively, as illustrated on Fig.6.

O

Z

X

Y

θ
el

ev
at

io
n

φ azimuth

k

sensors

 
 
 

Fig. 6. DOA estimation set-up

With these notations, a snapshot of the array at time instant

t is given by:

y(t) =

P
∑

p=1

a(kp)sp(t) + b(t) = Ax(t) + b(t), (71)

where y(t) is the (L × 1) output vector of the array, A =
[a(k1), . . . ,a(kP )] is the (L× P ) steering vectors matrix of

the P sources, x(t) = [s1(t), . . . , sP (t)]
T is the (P×1) source

signals vector at time instant t, and b(t) is a (L × 1) vector

that accounts for the spatially and temporally white Gaussian

noise on the array sensors. If K snapshots t1, t2, . . . , tK are

considered, the output of the array can be expressed in the

matrix form as:

Y =[y(t1), . . . ,y(tK)] (72)

=A(k1, . . . ,kP )[x(t1), . . . ,x(tK)] +B

=A(k1, . . . ,kP )S
T +B

with S = [s1, . . . , sP ], a (K × P ) matrix gathering

on its columns the K time samples for the P sources,

sp = [sp(t1), . . . , sp(tK)]T, with p = 1, . . . , P and

B = [b(t1), . . . , b(tK)], a (L × K) noise matrix. The DOA

estimation problem consists in finding k1, . . . ,kP from the

data Y .

The use of multilinear algebra to solve this problem is

inspired from the principle of ESPRIT algorithm introduced

by Roy et al. in [44], [45]. The idea is to exploit the invariances

in the array output data in order to create multilinear structures.

These invariances can be intrinsic to the physics of the

acquired signals (i.e. polarization), to the acquisition setup

(i.e., spatially shifted subarrays), or artificially created (i.e.

matricization / time-frequency transform of 1D signals).

Y

X

Z

O

Subarray 1

δ

Subarray 2

Fig. 7. Acquisition set-up for ESPRIT

The main idea of ESPRIT, when applied to DOA estimation

is to employ two identical subarrays, the second one being

spatially shifted compared to the first one by a known dis-

placement vector δ, as illustrated in Fig. 7. The outputs of the

first and the second subarrays, denoted by y1(t) and y2(t),
respectively, can then be expressed as:

y1(t) = Ax(t) + b1(t), (73)

y2(t) = AΦx(t) + b2(t), (74)

with Φ, a diagonal matrix having on its diagonals the phase-

shifts between the two arrays for the P sources:

Φ =









e
j 2π
λ1

kT

1δ

. . .

e
j 2π
λp

kT

P δ









.

In the expression of Φ, λp denotes the pth source wavelength.

Thus, the DOA estimation problem comes down at estimating

the Φ matrix. To this end, the covariance matrix Ryy of the

entire array:

y(t) =

[

y1(t)
y2(t)

]

=

[

A

AΦ

]

x(t) +

[

b1(t)
b2(t)

]
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is first computed as:

Ryy = E{y(t)yH(t)} ≈
1

K

K
∑

k=1

y(tk)y
H(tk).

Then, we use the fact that the first P eigenvectors [ET

1 ,E
T

2 ]
T

of Ryy span the same subspace as the source steering vectors,

i.e,
[

E1

E2

]

=

[

A

AΦ

]

T =

[

AT

AΦT

]

, (75)

where T is a nonsingular matrix. As span{A} = span{E1} =
span{E2}, there exist a nonsingular matrix Ψ such that

E1Ψ = E2. (76)

From (75) and (76), it can be shown, after some algebraic

manipulations (see e.g., [45]), that Φ can be directly obtained

by the diagonalization of the matrix Ψ = E
†
1E2. However,

this least-squares (LS) estimate Ψ is biased because it assumes

implicitly that E1 is perfectly known and the error is to be

attributed only to E2. In practice, E1 and E2 are equally

“noisy” as they are both estimates of span{A}. A more

appropriate criterion that takes into account noise on both

E1 and E2 is the total least-squares (TLS) criterion. It

can be formulated as finding two minimum Frobenius norm

residual matrices R1 and R2, and a matrix Ψ satisfying

(E1 +R1)Ψ = E2 + R2. If we denote B = E1 + R1,

the TLS-ESPRIT problem can be expressed as the following

minimization problem:

min
Ψ,B

∥

∥

∥

∥

[

E1

E2

]

−

[

B

BΨ

]∥

∥

∥

∥

2

F

. (77)

The solution of (77) is obtained by the eigenvalue decom-

position of the 2P × 2P matrix [E1|E2]
H[E1|E2].

The ESPRIT algorithm presents several advantages over the

“classical” DOA estimation methods such as the beamforming

or MUSIC [46], [47]. For example, it requires no calibration

step and parameters estimates are obtained directly via two

well- conditioned eigenproblems. Thus ESPRIT avoids the

parameter grid search, inherent to MUSIC-like algorithms.

However, in order to use ESPRIT one needs to estimate the

data covariance matrix, which can be a difficult task in the

case of highly correlated sources. Another major drawback

of ESPRIT is the fact that it cannot handle more that two

displaced subarrays.

A. CPD-based array processing

To overcome these drawbacks, a DOA estimation approach

was introduced in [5], capable of handling N arbitrarily

displaced subarray, as illustrated in Fig. 8.

It is also the first time that a tensor-based algorithm is

proposed for the DOA estimation problem. If y1(t), . . . ,yN (t)

Y

X

Z

O

Subarray 2

Subarray 1

δ2 δN

Subarray N

Fig. 8. Acquisition set-up for the CP approach

are the outputs of the N subarrays and using notations similar

to those used for ESPRIT, we have:

y1(t) =

P
∑

p=1

a(kp)sp(t) + b1(t) = Ax(t) + b1(t),

y2(t) =
P
∑

p=1

a(kp)e
j 2π
λp

kT

pδ2sp(t) + b2(t) = AΦ2x(t) + b2(t),

...

yN (t) =

P
∑

p=1

a(kp)e
j 2π
λp

kT

pδN sp(t) + b2(t) = AΦNx(t) + bN (t),

where,

Φn =









e
j 2π
λ1

k1
Tδn

. . .

e
j 2π
λP

kP
Tδn









, n = 2, . . . , N.

If K snapshots are considered, the output of the entire array

can be expressed as the (NL×K) matrix Y :

Y =











Y1

Y2

...

YN











=











A1

A1Φ2

...

A1ΦN











ST+











B1

B2

...

BN











=
(

A⊙D
)

ST+B,

(78)

where S = [s1, . . . , sP ] is a (K × P ) source matrix, A =
[a(k1), . . . ,a(kP )] is the (L×P ) steering vector matrix and

D = [d(k1), . . . ,d(kP )] =











diag{IP }T

diag{Φ2}T

...

diag{ΦN}
T











is a (N × P )

matrix regrouping on its rows the diagonal elements of Φn,

B is a noise matrix. In the light of the concepts introduced

in Sections III-A2 and III-A3, equation (78) expresses a noisy

CP decomposition of the sensor array output. Using the tensor
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formalism, equation (78) can be expressed as a (L×K ×N)
tensor Y :

Y =

P
∑

p=1

ap⊗ sp⊗dp +B = JA,S,D;I3,P K +B. (79)

The tensor form (79) clearly highlights the three diversities

/ invariances of the array output: sensors - time - subarrays.

To estimate the loading matrices A,S,D, and consequently

the source DOAs, an approximate CP decomposition of the

data tensor Y must be performed, using one of the many

existing algorithms. Unlike the previous presented methods,

the CP approach applies directly to the “raw” data and does

not require the estimation of the second order statistics of the

array output.

In [25], the ill-posedness of the tensor approximation

problem induced by (79) is solved thanks to a constraint

imposing that sources must be different, in the sense that either

they should stem from different directions (e.g. if they are

fully correlated like multipaths), or they should not be fully

correlated, or both.

In [48], an approach that generalizes the results given in

[5] to an array that presents an arbitrary number of spatial

invariances was proposed. Consider a subarray composed of

L1 isotropic identical sensors indexed by l1 = 1, . . . , L1.

Consider then, L2 identical replicas of this subarray, spatially

translated to arbitrary locations. The L2 distinct copies of the

original subarray, indexed by l2 = 1, . . . , L2, can now be

seen as subarrays that together constitute a larger (higher-

level) array. This proposed array structure can be further gen-

eralized by considering an additional level, composed of L3

translated replicas of the previous sensor subarrays, indexed by

l3 = 1, . . . , L3. Let us generalize this scheme to a total of N
such hierarchical levels, with the “highest" level consisting of

LN subarrays indexed by lN = 1, . . . , LN . It is worth noting

that two different subarrays at a given level n need not be

disjoint, i.e. they may have in common subarrays/sensors of the

previous level (n− 1). However, if all subarrays at each level

are disjoint, then the entire array will contain a total number of

L = L1L2 . . . LN identical sensors. Fig. 9 illustrates a three-

level array of co-planar sensors.

Consider first a narrow-band plane wave impinging on the

array as described in Section ?? Let us denote by al1l2...lN its

phase factor at the sensor indexed by l1, l2, . . . , lN at the N

various levels of the array. Define d
(n)
ln

= [x
(n)
ln

y
(n)
ln

z
(n)
ln

]T,

with n = 1, . . . , N . With the notation introduced above, the

spatial phase factor is given by:

al1l2...lN (k) = exp
{

j
2π

λ

N
∑

n=1

kTd
(n)
ln

}

=

N
∏

n=1

exp
{

j
2π

λ
kTd

(n)
ln

}

.

(80)

Thus, the array manifold for the entire sensor-array is

a(k) = a1(k)⊠ . . .⊠aN (k), (81)

with

an(k) =









ej(2π/λ)k
Td

(n)
1

...

ej(2π/λ)k
Td

(n)
Ln









(82)

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

bc bc
bc bc
bc bc

Level 1

Level 2

Level 3

Fig. 9. A multi-scale planar array with three hierarchical levels.

an Ln × 1 vector, ∀n = 1, . . . , N .

Next, consider P narrow-band plane-waves, having traveled

through a nonconductive homogeneous isotropic medium, im-

pinging upon the array from directions kp, with p = 1, . . . , P .

Denote by sp(t) the time signal emitted by the pth narrow-

band source. Then, the output at time t of the entire sensor-

array can be expressed as an L× 1 vector,

z(t) =
P
∑

p=1

(

a1(kp)⊠ . . .⊠aN(kp)
)

sp(t) + n(t), (83)

where n(t) is a complex-valued zero-mean additive white

noise. Let us assume that we have at our disposal K snapshots

at time instants, t1, t2, . . . , tK . Define the following Ln × P
matrices:

A1 =
[

a1(k1), . . . ,a1(kP )
]

(84)

...

AN =
[

aN(k1), . . . ,aN(kP )
]

, (85)

and the K × P matrix:

S =











s1(t1) s2(t1) . . . sP (t1)
s1(t2) s2(t2) . . . sP (t2)

...
...

. . .
...

s1(tK) s2(tK) . . . sP (tK)











=
[

s1, s2, . . . , sP
]

.

(86)

The collection of K snapshots of the array can then be

organized into an L×K data matrix as

Z = [z(t1), . . . , z(tK)] =
(

A1 ⊙ · · · ⊙AN

)

ST +N , (87)

where N is a (L × K) complex-valued matrix, modeling

the noise on the entire array for all K temporal snapshots.

Equation (87) reveals a (N + 1)-dimensional CPD structure.

In the case where only one time-sample is available, i.e. matrix

S is a 1× P vector, the data model given by (87) becomes

z =
(

A1 ⊙ · · · ⊙AN

)

s+ n, (88)
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with z = z(t1), s = s(t1) =
(

S(1, :)
)T

and n = N(:, 1).
In the definitions above, we used the Matlab notations for

columns and rows selection operators. Equation (88) is a

vectorized representation of a N -dimensional CP data model.

It is worth noting that if only one snapshot of the array

is available, the N + 1 CP model degenerates into an N -

dimensional one. A discussion on the identifiability of these

CPD models, for different scenarios can be found in [48].

For this multi-scale invariance array, a two stages DOA

estimation procedure was also proposed in [48]. The first stage

estimates the N steering vectors an(kp) (n = 1, . . . , N) for

each of the P sources (p = 1, . . . , P ), by exploiting the

CPD structure (87) of the collected data. The second stage

estimates the sources’ direction-cosines kp, p = 1, . . . , P
from the steering vectors obtained at the previous stage.

To this end, the DOA estimation can be formulated as an

optimization problem, and a sequential procedure that exploits

all the available information from the source’s steering vectors

encompassing all scale levels, is adopted.

Define the following cost functions:

Jn(kp) = ‖â
p
n − an(kp)‖

2
2, with n = 1, . . . , N, (89)

where âp
n denotes the estimated steering vector at the nth level

for the pth source. Estimating the DOAs for the pth source

comes down to minimising the following criterion:

IN (kp) =

N
∑

n=1

Jn(kp). (90)

This function is non-convex and highly non-linear with respect

to the direction-cosines; hence, a direct local optimization

procedure would fail in most cases. In [48], a sequential

strategy was adopted to minimize IN (kp), progressing from

one level to the next higher level, using an iterative refinement

of the direction-cosine estimates within each level. The method

is based on the fact that, when noise-free, the N cost-functions

in (89) have the same global minimum.
Assume that the level-1 subarrays’ inter-sensor separations

do not exceed half a wavelength. This assumption is
essential to obtaining a set of high-variance but unambiguous
direction-cosine estimates. On the contrary, to achieve
a practical advantage, it is important that the spatial
displacement between any two subarrays of the highest level
exceeds λ/2, where λ is the wavelength. This will produce
estimates of lower variance but with cyclic ambiguity for
the same set of direction-cosines. On the other hand, under
the first assumption, the J1(kp) function is unimodal on the
support region of the DOAs. Therefore, any local optimization
procedure should converge towards the global minimum for
the criterion. Thus, we obtain another set of estimates, now
of high-variance but with no cyclic ambiguity, for the DOAs,
to be denoted by k∗

p,1 with p = 1, . . . , P . These estimates
will subsequently be used, in a second step, as the initial
point for the minimization of I2(kp) = J1(kp) +J2(kp). As
no assumption is made on the distances between the level-2
subarrays, I2(kp) may present more than one local minimum.
Hence, a good initial estimate is crucial for the optimization
procedure. The estimates obtained by the minimization of
I2(kp), denoted by k∗

p,2, are then used for the minimization

of I3(kp) =
∑3

n=1 Jn(kp), and so on, until the final
estimates are obtained by the minimization of IN (kp).
The proposed algorithm can be summarized as follows:

First Stage:

• Estimate A1, . . . ,AN by CP decomposition of the data Z or
z (see eq. (87) or (88)).

Second Stage:

• For p = 1, . . . , P and for n = 1, . . . , N , compute

k
∗

p,n = argmin
kp

In(kp) = argmin
kp

n∑

i=1

Ji(kp). (91)

• Output: The estimated parameters for the P sources:

k̂p = (ûp, v̂p, ŵp) = k
∗

p,N with p = 1, . . . , P .

Several CPD-based DOA estimation approaches, based on

other diversity schemes have been proposed in the literature. In

[49], polarization of electromagnetic waves was exploited as

an additional diversity, by using vector-sensor arrays capable

of capturing the six components of the electromagnetic field. A

coupled CPD approach for DOA estimation, using the multiple

baselines in sparse arrays was introduced in [50]. High-order

statistics (cumulants) were also used to create diversity in CPD

based direction finding algorithms [51].

While CPD remains the most commonly used decompo-

sition in tensor-based array processing, other tensor decom-

positions made their way in. For example, the HOSVD has

been used to develop multidimensional versions of the popular

ESPRIT and MUSIC algorithms (see e.g., [52], [53]).

V. TENSOR-BASED MULTIDIMENSIONAL HARMONIC

RETRIEVAL

Multidimensional Harmonic Retrieval (MHR) [6], [54] is

a classical signal processing problem that has found several

applications in spectroscopy [55], radar communications

[56], sensor array processing [57], [58], to mention a few.

The Multidimensional Harmonic (MH) model can be viewed

as the tensor-based generalization of the one-dimensional

harmonic one, resulting from the sampling process over a

multidimensional regular grid. As a consequence, the Q-

dimensional harmonic model needs the estimation of a large

number (QR) of angular-frequencies of interest. We can easily

note that the number of unknown parameters and the order of

the associated data tensor grow with Q. Moreover, it is likely

that the joint exploitation of multi-diversity/modality sensing

technologies for data fusion [59]–[61] further increases the

data tensor order. This trend is usually called the “curse

of dimensionality” [62]–[64] and the challenge here is to

reformulate a high-order tensor as a set of low-order tensors

over a graph. In this context, we observe an increasing

interest for the tensor network theory (see [62] and references

therein). Tensor network provides a useful and rigorous

graphical representation of a high-order tensor into a factor

graph where the nodes are low-order tensors, called cores,

and the edges encode their dependencies, i.e., their common

dimensions, often called “rank”. In addition, tensor network

allows to perform scalable/distributed computations over the

cores [62]. In the tensor network framework, Hierarchical/tree

Tucker [29], [65] and Tensor Train (TT) [66] are two popular

representations of a high-order tensor into a graph-connected
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low-order (at most 3) tensors. In this section, we focus our

effort on the TT formalism for its simplicity and compactness

in terms of storage cost. Unlike the hierarchical Tucker

model, TT is exploited in many practical and important

contexts as, for instance, tensor completion [67], blind source

separation [68], and machine learning [4], to mention a few.

In the context of the MHR problem, this strategy has at least

two advantages. First, it is well-known that the convergence

of the Alternating Least Squares (ALS) algorithm becomes

more and more difficult when the order increases [69]–[71].

To deal with this problem, applying ALS on lower-order

tensors is preferable. The second argument is to exploit some

latent coupling properties between the cores [4], [72] to

propose new efficient estimators.

The Maximum Likelihood estimator [73], [74] is the optimal

choice from an estimation point of view, since it is statistically

efficient, i.e., its Mean Squared Error (MSE) reaches the

Cramér-Rao Bound (CRB) [75] in the presence of noise.

The main drawback of the maximum likelihood estimator

is its prohibitive complexity cost. This limitation is partic-

ularly severe in the context of a high-order data tensor. To

overcome this problem, several low-complexity methods can

be found in the literature. These methods may not reach,

sometimes, the CRB, but they provide a significant gain in

terms of the computational cost compared to the maximum

likelihood estimator. There are essentially two main families

of methods. The first one is based on the factorization of

the data to estimate the well-known signal/noise subspace

such as the Estimation of Signal Parameters via Rotational

Invariance Techniques (ESPRIT) [45], the ND-ESPRIT [76],

the Improved Multidimensional Folding technique [77], and

the CP-VDM [78]. The second one is based on the uniqueness

property of the CPD. Indeed, factorizing the data tensor thanks

to the ALS algorithm [79] allows an identification of the

unknown parameters by Vandermonde-based rectification of

the factor matrices.

A. Generalized Vandermonde Canonical Polyadic Decompo-

sition

The multidimensional harmonic (MH) model assumes that

the measurements can be modeled as the superposition of

R undamped exponentials sampled on a Q-dimensional grid

according to [6]

[X ]i1...iQ =

R
∑

r=1

αr

Q
∏

q=1

ziq−1
r,q , 1 ≤ iq ≤ Iq (92)

in which the r-th complex amplitude is denoted by αr and

the pole is defined by zr,q = ejωr,q where ωr,q is the r-th
angular-frequency along the q-th dimension, and we have zq =
[

z1,q z2,q . . . zR,q

]T
. Note that the tensor X is expressed

as the linear combination of M rank-1 tensors, each of size

I1× . . .× IQ (the size of the grid), and follows a generalized

Vandermonde CPD [80]:

X = A •
1
V1 •

2
. . . •

Q
VQ (93)

where A is a R× . . .×R diagonal tensor with [A]r,...,r = αr

and

Vq =
[

v(z1,q) . . . v(zR,q)
]

is a Iq ×R rank-R Vandermonde matrix, where

v(zr,q) =
[

1 zr,q z2r,q . . . z
Iq−1
r,q

]T

.

We define a noisy MH tensor model of order Q as:

Y = X + σE, (94)

where σE is the noise tensor, σ is a positive real scalar,

and each entry [E]i1...iQ follows an i.i.d. circular Gaussian

distribution CN (0, 1), and X has a canonical rank equal to

R. The reader may be referred to [76] for the case of damped

signals, which is not addressed in the present article.

B. Algorithms

1) Vandermonde rectification of the ALS algorithm:

a) Limit of the ALS algorithm for structured CPD: The

CPD of any order-Q rank-R tensor X involves the estimation

of Q factors Vq of size Iq × R. As pointed out above, in

the context of the MD-harmonic model, the factors Vq of the

CPD are Vandermonde matrices. Consider, Yq , the q-th mode

unfolding [9] of tensor Y , at the k-th iteration with 1 ≤ k ≤
M , M denoting the maximal number of iterations. The ALS

algorithm solves alternatively for each of the Q dimensions

the minimization problem [81], [82]: minVq
||Yq − VqSq||2

where ST

q = VQ ⊙ . . . ⊙ Vq+1 ⊙ Vq−1 ⊙ . . . ⊙ V1. It aims

at approximating tensor Y by a tensor of rank R, hopefully

close to X . The LS solution conditionally to matrix Sq is

given by Vq = YqS
†
q where † stands for the pseudo-inverse.

Now, remark that there is no reason that the above LS criterion

promotes the Vandermonde structure in the estimated factors in

the presence of noise. In other words, ignoring the structure

in the CPD leads to estimate an excessive number of free

parameters. This mismatched model dramatically decreases the

estimation performance [83]. Hence there is a need to rectify

the ALS algorithm to take into account the factor structure.

b) Rectified ALS (RecALS): The RecALS algorithm be-

longs to the family of Lift-and-Project Algorithms [84], [85].

The optional lift step computes a low rank approximation

and the projection step performs a rectification toward the

desired structure. The RecALS algorithm is based on iterated

projections and split LS criteria. Its algorithmic description is

provided in Algorithm 4 for Q = 3. We insist that several

iterations in the while loops are necessary, since restoring the

structure generally increases the rank, and computing the low-

rank approximation via truncated SVD generally destroys the

structure. The most intuitive way to exploit the Vandermonde

structure is called column-averaging. Let ω = 1
i∠z

i where ∠

stands for the angle function. Define the sets

J =

{

v =
f

[f ]1
: f ∈ CI

}

(95)

Aℓ =

{

v(z = ejω̄) : ω̄ =
1

ℓ

ℓ
∑

i=1

1

i
∠[f ]i+1

}

(96)
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Algorithm 4 Rectified ALS (RecALS)

Require: Y , V1,V2, {V1, . . . ,VK}, CritStop
Ensure: {z1,q, . . . , zR,q} for 1 ≤ q ≤ 3

1: while CritStop and maximum iterations are not

reached do

2: —————————————————–

3: V3 = unfold3Y ·
(

(V2 ⊙ V1)
T
)†

4: for r = 1, . . . , R do

5: v := [V3]r
6: while (CritStop is false) do

7: v = πVK
. . . πV1(v)

8: end while

9: zr,3 = minz ||v(z)− v||2

10: end for

11: V3 :=
[

v(z1,3) . . . v(zR,3)
]

12: —————————————————–

13: V2 = unfold2Y ·
(

(V3 ⊙ V1)
T
)†

14: for r = 1, . . . , R do

15: v := [V2]r
16: while (CritStop is false) do

17: v = πVK
. . . πV1(v)

18: end while

19: zr,2 = minz ||v(z)− v||2

20: end for

21: V2 :=
[

v(z1,2) . . . v(zR,2)
]

22: —————————————————–

23: V1 = unfold1Y ·
(

(V3 ⊙ V2)
T
)†

24: for r = 1, . . . , R do

25: v := [V1]r
26: while (CritStop is false) do

27: v = πVK
. . . πV1(v)

28: end while

29: zr,1 = minz ||v(z)− v||2

30: end for

31: V1 :=
[

v(z1,1) . . . v(zR,1)
]

32: end while

where 1 ≤ ℓ ≤ I − 2. This method exploits the Vandermonde

structure in a heuristic way. So, the rectified strategy is to

consider the iterated vector f(h) = (πAℓ
πJ)

h(f). Another

straightforward method is the periodogram maximization. Un-

der Gaussian noise and for a single tone αrz
iq
r,q, the maximum

likelihood estimator (MLE) is optimal and is given by the

location of the maximal peak of the Fourier-periodogram [8],

[86]. To increase the precision of the estimation, it is standard

to use the well-known zero-padding technique at the price

of an increase in computational cost. In [87], two strategies

for Vandermonde-based rectification of the CP factors are

provides but the RecALS principle is generic and flexible in

the sense that any Vandermonde-based rectification methods

can be used.

C. VTT-RecALS

In this section, the JIRAFE algorithm and the RecALS

method are associated to solve the multidimensional harmonic

retrieval problem. The VTT-RecALS estimator is based on the

JIRAFE principle which is composed of two main steps.

1) The first one is the computation of the TTD of the initial

tensor. By doing this, the initial Q-order tensor is broken

down into Q graph-connected third-order tensors, called

TT-cores. This dimensionality reduction is an efficient

way to mitigate the “curse of dimensionality”. To reach

this goal, the TT-SVD [28] is used as a first step.

2) The second step is dedicated to the factorization of

the TT-cores. Recall the main result given by Theorem

2, i.e., if the initial tensor follows a Q-order CPD

of rank R, then the TT-cores for 2 ≤ q ≤ Q − 1
follow coupled 3-order CPD of rank R. Consequently,

the JIRAFE minimizes the following criterion over the

physical quantities {V1, . . . ,VQ} and over the latent

quantities {M1, . . . ,MQ−1}:

C = ||G1 − V1AM−1
1 ||

2
F + ||GQ −MQ−1V

T

Q ||
2
F

(97)

+

Q−1
∑

q=2

||Gq − I3,R •
1
Mq−1 •

2
Vq •

3
M−T

q ||
2
F , (98)

where A is a R×R diagonal matrix with [A]r,r = αr.

The above cost function is the sum of coupled LS crite-

ria. The aim of JIRAFE is to recover the original tensor

factors using only the 3-order tensors Gq . Consequently,

the JIRAFE approach adopts a straightforward sequen-

tial methodology, described in Fig. 10, to minimize the

cost function C.

Fig. 10. VTT-RecALS representation

We present in Algorithm 5, the pseudo-code of the VTT-

RecALS algorithm, where RecALS3 denotes the RecALS ap-

plied to a 3-order tensor, while RecALS2 denotes the RecALS

applied to a 3-order tensor using the knowledge of one factor.

The VTT-RecALS algorithm is actually divided into two parts.

The first part is dedicated to dimensionality reduction, i.e.,

breaking the dimensionality of the high Q-order tensor into

a set of 3-order tensors using Theorem 2. The second part

is dedicated to the factors retrieval from the TT-cores using

the RecALS algorithm presented in the previous section. It is

worth noting that the factors Vq are estimated up to a trivial

(common) permutation ambiguity [88]. As noted in [37], since

all the factors are estimated up to a unique column permutation

matrix, the estimated angular-frequencies are automatically

paired.
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Algorithm 5 VTT-RecALS

Input: Y , R, CritStop

Output: Estimated parameters: {z1, . . . , zQ}.

1: Dimensionality reduction:

[G1,G2, · · · ,GQ−1,GQ] = TT-SVD(X , R).

2: Factor retrieval:

3: For q = 2,

[M1,V2,M2, z2] = RecALS3(G2, R, CritStop).

4: for q = 3 · · ·Q− 1 do

5: [Vq,Mq, zq] = RecALS2(Gq,Mq−1,M, CritStop)
6: end for

7: V1 = G1M1, and VQ = GT

QM
−T

Q−1

VI. TENSOR-BASED MIMO WIRELESS COMMUNICATION

SYSTEMS

As it is now well known, the use of multiple transmit

and receive antennas, corresponding to a MIMO channel,

allows to significantly improve the performance of wireless

communication systems [89]. Such MIMO systems exploit

space diversity to combat channel fading. Each information

symbol is transmitted through different paths between the

transmitter and the receiver, each path being characterized by

an attenuation modeled by means of a fading coefficient of the

channel. These channel coefficients are generally assumed to

be independent and identically distributed (i.i.d.), which corre-

sponds to an i.i.d. Rayleigh flat fading channel. In the presence

of a slow fading environment, the channel coefficients are also

assumed to be constant during P time slots, the duration of

transmission of N data streams.

Another way to improve the performance consists in using

space-time (ST) or space-time-frequency (STF) codings to

get space, time and frequency diversities, corresponding to

redundancies of the information symbols in each of these

domains [33], [90], [91]. One objective of MIMO commu-

nication systems is to maximize the combined diversity gain

while ensuring the best transmission rate possible, which

corresponds to the fundamental diversity-rate tradeoff. Since

the pioneering work [7], wireless communications have been a

privileged field of application for tensors. Indeed, tensor-based

approaches in the context of MIMO communication systems

allow:

• to take simultaneously into account different diversities

like space, time, frequency or polarization, leading to high

order tensor models for the signals received at destination;

• to design tensor coding like tensor space-time (TST) or

tensor space-time-frequency (TSTF) codings;

• to develop semi-blind receivers for jointly estimating

the information symbols and the channel, by exploiting

uniqueness properties of tensor models, which is an ad-

vantage of tensor-based systems over matrix-based ones;

• to derive closed-form receivers under a priori knowledge

of some transmitted symbols (semi-blind systems);

• to deal with point-to-point systems as well as multi-hop

systems with relays.

A possible classification of MIMO wireless communication

systems can be made according to:

• the considered channel access and multiplexing technol-

ogy like CDMA (code-division multiple access), TDMA

(time-division multiple access), FDMA (frequency-

division multiplexing access), OFDMA (orthogonal

frequency-division multiplexing access), or yet hybrid

technologies like CDMA-OFDM or TDMA-FDMA;

• the assumptions on the channel: flat fading versus

frequency-selective fading channel, according to whether

all the frequency components of the transmitted signals

are attenuated by the same fading or not; in this last case,

the frequency dependency of the channel coefficients

leads to a third-order MIMO channel tensor;

• the consideration or not of a sparsely scattering environ-

ment characterized by a multipath assumption with DoD

(direction-of-departure) and DoA (direction-of-arrival)

angles;

• the consideration or not of resource allocation under the

form of matrix or tensor allocation;

• the type of coding (matrix/tensor), and the diversi-

ties taken into account (space-time (ST), space-time-

frequency (STF) codings);

• the type of communication system (supervised versus

semi-blind, depending on the use or not of a training

sequence);

• the type of receiver (iterative versus closed-form);

• the type of optimization algorithm used at the receiver

(ALS, Levenberg-Marquardt...);

• the type of communication: half-duplex (HD) versus full-

duplex (FD) depending on the possibility or not of a si-

multaneous communication between two users, meaning

that the communication can be in only one direction or

in both directions, respectively;

• the existence or not of relays corresponding to multi-hop

and single-hop communication systems, respectively;

• the relaying protocol used at the relays (amplify-and-

forward (AF) versus decode-and-forward (DF) protocols).

Note that the DF protocol means that the signals received

at the relay are decoded and then re-encoded before

to be forwarded by the relay, whereas in the case of

the AF protocol, the received signals are only amplified

and forwarded by the relay. When two end nodes are

communicating with each other through a relay, via

bidirectionnal links, one can distinguish one-way and

two-way relaying depending on the way the data streams

are exchanged between the end nodes via the relay. With

two-way relaying, the end nodes transmit simultaneously

their data to the relay, and then the relay combines

this information before broadcasting them to the end

nodes, which allows to increase the system throughput

(in bits/channel use).

A specificity of tensor-based communication systems lies

in the development of new tensor models through the design

of new systems. For instance, in the case of point-to-point
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systems, CONFAC (constrained factors) [92], generalized

PARAFAC-Tucker (PARATUCK) [90], and nested PARAFAC

models [34] were proposed. Most of these models can be

viewed as constrained PARAFAC decompositions. See [11],

[93] and [94] for overviews of such models and corresponding

point-to-point MIMO systems. In the context of cooperative or

relay-assisted communications, several papers have proposed

tensor-based models and algorithms for the supervised channel

estimation problem [95], [96], considering two-hop AF relays

and two-way MIMO relaying [97]. Tensor-based semi-blind

receivers for the uplink multiuser cooperative scenario were

first proposed in [98] and [99]. For the two-hop MIMO AF

relaying case, tensor modeling was exploited in several papers

to derive semi-blind joint channel and symbol estimation

algorithms [100], [35], [101]. More recently, tensor-based

receivers have been developed for multi-hop relaying systems,

by exploiting the nested Tucker and coupled nested Tucker

models [31], [102].

In this section, we make a brief presentation of three point-

to-point systems and of one relaying system to illustrate the

tensor-based approach in the context of wireless communica-

tion systems.

A. Khatri-Rao space-time coding

Let us consider a MIMO wireless system with M transmit

and K receive antennas. The information symbols to be

transmitted by the M transmit antennas define a symbol

matrix S ∈ CN×M , composed of N data streams, each one

containing M symbols. These symbols are coded using a

space-time coding matrix C ∈ CP×M such that the coded

symbols to be transmitted are given by:

U = C ⊙ S ∈ CPN×M , (99)

or equivalently:

u(p−1)N+n,m = cp,msn,m. (100)

The coding matrix C introduces a time diversity in the

sense that every symbol sn,m is duplicated P times, with P
corresponding to the number of time slots, and the channel

being assumed to be constant during the transmission, i.e.,

for p ∈ [1, P ]. The coding (99) can be viewed as a simplified

version of the Khatri-Rao space-time (KRST) coding proposed

in [103].

The MIMO channel is assumed to be i.i.d. Rayleigh flat

fading and defined as H ∈ CK×M , where hk,m is the

complex fading coefficient between the mth transmit antenna

and the kth receive antenna. The transmitter transmits the

coded signals via the communication channel, so that the

signal received by the kth receive antenna, during the pth time

slot, and associated with the nth data stream, can be written

as:

xk,n,p =
M
∑

m=1

hk,mu(p−1)N+n,m + bk,n,p

=

M
∑

m=1

hk,msn,mcp,m + bk,n,p. (101)

These received signals form a third-order tensor X ∈
CK×N×P , which satisfies a CPD model, with rank M and

factor matrices (H ,S,C), and B ∈ CK×N×P represents the

additive noise tensor. These matrices can be estimated using

the tri-ALS algorithm. Assuming the coding matrix known at

the receiver, it is possible to use the bi-ALS algorithm for

jointly estimating the channel and symbol matrices. Another

solution consists in applying the Khatri-Rao factorisation

(KRF) algorithm [43] after a LS estimation of the Khatri-Rao

product H ⊙ S as:

Ĥ ⊙ S = XKN×P (C
T)†, (102)

where (.)† denotes the matrix right inverse, and XKN×P

represents a tall mode-3 matrix unfolding of the received

signals tensor X ∈ CK×N×P (see Section III-B6). It is

worth noting that choosing a column-orthonormal coding

matrix allows to simplify the right-inverse of CT as

(CT)† = C∗(CTC∗)−1 = C∗, with the necessary condition

M ≤ P for uniqueness of this inverse.

B. Tensor space-time coding

We now present another MIMO system which can be

viewed as a simplified version of the TST one [33] in the

sense that no resource allocation matrix is considered. A tensor

space-time coding C ∈ CM×R×P is used to code the symbol

matrix S ∈ CN×R, composed of N data streams, each one

containing R symbols.

The coded signals to be transmitted are given by:

U = C •
2
S ∈ CM×N×P (103)

or equivalently:

um,n,p =

R
∑

r=1

cm,r,psn,r, (104)

which can be viewed as a linear combination of the R
information symbols belonging to the nth data stream, with

the coding coefficients cm,r,p as coefficients of the linear

combination.

After transmitting the coded signals from the M transmit

antennas via the channel H ∈ CK×M , the signals received at

destination satisfy the following equation:

X = U •
1
H +B ∈ CK×N×P

= C •
1
H •

2
S +B (105)

or in scalar form:

xk,n,p =
M
∑

m=1

um,n,phk,m + bk,n,p

=
M
∑

m=1

R
∑

r=1

cm,r,phk,msn,r + bk,n,p, (106)

which defines a third-order tensor satisfying a Tucker-(2,3)

model [11], with the coding tensor C as core tensor, and the

factor matrices (H ,S, IP ), where IP is the identity matrix

of order P . One factor matrix being an identity matrix, such
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a Tucker model is unique up to two nonsingular matrices

(∆H ,∆S). If the coding tensor is assumed to be known

at the receiver, the model ambiguity becomes a scalar factor

related to a Kronecker product. This scalar ambiguity can

be eliminated assuming the a priori knowledge of only one

symbol, leading to a semi-blind Kronecker receiver [94].

Then, the channel and symbol matrices can be jointly

estimated using the Kronecker factorisation (KF) algorithm

(see section III-B5), after the LS estimation of the Kronecker

product H ⊠S as:

Ĥ ⊠S = XKN×P C
†
MR×P , (107)

where CMR×P denotes a tall mode-3 matrix unfold-

ing of the coding tensor. Choosing this coding ten-

sor such that its matrix unfolding CMR×P is row-

orthonormal allows to simplify the right-inverse as C
†
MR×P =

C∗
P×MR

[

CMR×P (C
∗
P×MR

]−1
= C∗

P×MR, with the neces-

sary condition MR ≤ P for uniqueness of this inverse.

Comparing the two presented MIMO systems which are

simplified versions of the KRST and TST coding-based sys-

tems ( [103] and [33], respectively), one can conclude that both

systems lead to a third-order tensor for the received signals,

with the same dimensions. This tensor satisfies a PARAFAC

model, in the first case, while it satisfies a Tucker-(2,3)

model in the second case, which induces different ambiguities.

Another important difference is that with the TST coding, the

number (R) of symbols per data stream can be different from

the number (M ) of transmit antennas, which is not the case

with the KRST coding.

In a practical situation where the coding used at the trans-

mitter is known at the receiver, one can draw the supplemen-

tary conclusion that both systems offer the possibility of jointly

and semi-blindly estimating the channel and symbol matrices

by means of a closed-form receiver. However, in order to elim-

inate model ambiguities, the Kronecker factorization algorithm

used with TST coding presents the advantage over the Khatri-

Rao factorization algorithm used with KRST coding, to require

the a priori knowledge of only one symbol for the Kronecker

model while the a priori knowledge of M symbols is needed

for the PARAFAC model.

C. Tensor space-time-frequency coding

A more general and flexible tensor-based transceiver scheme

for space, time and frequency transmit signalling was proposed

in [90], referred to as tensor space-time-frequency (TSTF)

coding. By relying on a new class of tensor models, namely,

the generalized PARATUCK-(N1, N) and the Tucker-(N1, N)
models, the TSTF system combines a fifth-order coding tensor

with a fourth-order allocation tensor. It can also be seen as

a generalization of three previous tensor-based ST/TST/STF

coding schemes, offering new performance/complexity trade-

offs and space, time and frequency allocation flexibility.

Herein, the transmission time is decomposed into P time-

slots (data blocks) of N symbol periods, each one being

composed of J chips. At each symbol period n of the pth

block, the transceiver transmits a linear combination of the

nth symbols of certain data streams, using a set of transmit

antennas and of sub-carriers. The coding is carried out by

means of a fifth-order code tensor W ∈ CM×R×F×P×J

whose dimensions are the numbers of transmit antennas (M ),

data streams (R), sub-carriers (F ), time blocks (P ), and chips

(J). An allocation tensor C ∈ CM×R×F×P determines the

transmit antennas and the sub-carriers that are used, as well

as the data streams transmitted in each block p. As an example,

cm,r,f,p = 1 means that the data stream r is transmitted using

the transmit antenna m, with the sub-carrier f , during the time

block p.

The TSTF-coded signals to be transmitted are given by:

U = G •
1
S, with G = W ⋆

{m,r,f,p}
C, (108)

or, alternatively, in scalar form

um,n,f,p,j =

R
∑

r=1

wm,r,f,p,jsn,rcm,r,f,p, (109)

where G ∈ CM×R×F×P×J is the effective code-allocation

tensor, given by the Hadamard product between the code

tensor W ∈ CM×R×F×P×J and the allocation tensor C ∈
RM×R×F×P along their common modes, i.e.,

gm,r,f,p,j = wm,r,f,p,jcm,r,f,p.

Assuming a flat Rayleigh fading propagation channel, the

discrete-time baseband-equivalent model for the signal re-

ceived at the kth receive antenna during the jth chip period of

the nth symbol period of the pth block, and associated with

the f th sub-carrier, is given by:

xk,n,f,p,j =
M
∑

m=1

R
∑

r=1

hk,m,fsn,rwm,r,f,p,jcm,r,f,p + bk,n,f,p,j.

The above equation can be written as the following generalized

Tucker-(2,5) model [11]

X = G •
1
H •

2
S. (110)

Joint channel and symbol estimation is carried out by ex-

ploiting the following unfolding of the received signal tensor:

XNK×JPF = (S⊠HK×MF )GRMF×JPF , (111)

where GRMF×JPF is a matrix unfolding of the code-

allocation tensor defined in (108). By properly designing this

tensor to ensure its right-invertibility, the channel and symbol

matrices are estimated in closed form from a LS estimation

of the Kronecker product

Ŝ⊠HK×MF = XNK×JPFG
†
RMF×JPF . (112)

The use of a pilot-assisted channel estimation and of a

semi-blind alternating least squares (ALS) based receiver are

discussed in [90].
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Fig. 11. Block diagram of a one-way two-hop MIMO relay system.

D. MIMO relaying systems with tensor coding

The benefits of tensor space-time coding (TSTC) have been

extended to MIMO relaying systems in [31], where semi-

blind receivers have been derived for the joint estimation of

the source-relay and relay-destination channels, in addition

to symbol estimation. Consider a one-way two-hop MIMO

relaying communication system shown in Figure 11, where M ,

and K denote the numbers of antennas at the source (S), and

destination (D) nodes, respectively, while QR and QT repre-

sent the numbers of receive and transmit antennas at the relay,

respectively. The source-relay channel H(SR) ∈ CQR×M and

the relay-destination channel H(RD) ∈ CK×QT are assumed

to be flat fading and quasi-static, i.e. constant during the

transmission protocol which is divided into two consecutive

phases. Assume that the direct link between the source and

destination is absent or negligible. During the first hop, the

transmission is composed of N time-blocks associated with

N symbol periods, R data streams being transmitted per time-

block. The transmitted symbol matrix S ∈ CN×R contains

R data streams composed of N symbols each. During the

time-block n, each antenna m of the source node transmits a

combination of R information symbols sn,r, r = 1, ..., R, to

the relay, after a tensor space-time coding [31] by means of a

third-order tensor C(S) ∈ CM×P×R, which introduces space-

time redundancies, since each symbol sn,r is repeated P times

over the M transmit antennas, P being the source code length.

During the second hop, the source remains silent and the relay

uses a second three dimensional coding C(R) ∈ CQT×J×QR

before forwarding the QR received signals to the destination

using QT transmit antennas. Not that this second tensor coding

consists in repeating the signals received at the relay J times,

over the QT transmit antennas, J being the relay code length.

The tensor T ∈ CQT×J×P×N of signals transmitted by the

relay is defined as

tqT ,j,p,n =

QR
∑

qR=1

M
∑

m=1

R
∑

r=1

c
(R)
qT ,j,qR

h(SR)
qR,mc

(S)
m,p,rsn,r. (113)

After transmission through the relay-destination channel, the

noiseless signals received by K antennas at destination satis-

fies the following equation

xk,j,p,n =

QT
∑

qT=1

h
(RD)
k,qT

tqT ,j,p,n

=

QT
∑

qT=1

QR
∑

qR=1

M
∑

m=1

R
∑

r=1

h
(RD)
k,qT

c
(R)
qT ,j,qR

h(SR)
qR,mc

(S)
m,p,rsn,r. (114)

Fig. 12. NTT(4) model for a one-way two-hop MIMO relaying system with
tensor coding.

Comparing (114) with (32), we can conclude that the tensor

X ∈ CK×J×P×N of noiseless signals received at destination

satisfies a NTT(4) model. Figure 12 illustrates the NTT(4) for

the noiseless signal tensor X received at the destination. We

have to note that the four dimensions of the tensor X are

associated with four signal diversities (space k, relay code j,
source code p, time n).

A special case of this model is the one presented in [35],

[100], where the coding tensors C(S) and C(R) have a special

structure where their frontal slices are diagonal matrices, with

M = R and QR = QT . Physically, this means that the source

and the relay transmits a single data stream, in contrast to the

NTT(4) model in (114) where R and QR signals are combined

at the source and relay, respectively, before transmission. In

this case, the noiseless received signal tensor at the destination

node reduces to

xk,j,p,n =

QT
∑

qT=1

M
∑

m=1

h
(RD)
k,qT

c
(R)
qT ,jh

(SR)
qR,mc

(S)
m,psn,r, (115)

which corresponds to a Nested CP model. This can be con-

cluded by comparing (115) with (51).

Assuming that the coding tensors C(S) and C(R) are known

at the destination node (i.e. by the receiver), semi-blind

receivers for jointly estimating the symbol matrix (S) and the

individual channels (H(SR),H(RD)) are proposed in [31]. We

refer the interested reader to this reference for further details

on the receiver algorithms.

We summarized in Table I the different tensor decomposi-

tions and algorithms used in the three applications presented

in this manuscript.

VII. CONCLUSION

Collecting data from multisensor signal processing can

be naturally interpreted in the multilinear algebra context.

In this work, three important array signal processing-based

applications are exposed in which the tensor-based framework

has proven to be useful. Namely, the problems of interest

are (i) array signal processing for localization, (ii) multidi-

mensional harmonic retrieval and (iii) MIMO processing for

wireless communications. In this overview paper, we present

systematically in a synthetic way the necessary mathematical

material to ensure a good understanding of the problems of

interest.
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