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Polarization analysis in Raman spectroscopy provides a powerful tool in chemical physics to identify the
symmetry of the vibration modes of molecules, macromolecules and crystals, according to their
crystallographic structure and local spatial orientation. In this paper we propose two new approaches in
polarized Raman spectroscopy for data with rotational and spatial diversity, respectively. We show that the
joint use of parallel and crossed polarization data yields more accurate source separation results and improves
the uniqueness properties of the solution in blind nonnegative source separation algorithms. The proposed
approaches are validated on two real polarized Raman data sets.
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1. Introduction

Raman scattering is a light–matter interaction process which
reflects the molecular vibration properties of molecules and materials
thus characterizing the chemical composition of the analyzed sample
[1,2]. When coupled with a confocal microscope having motorized
stages, Raman spectra can be recorded at each (x,y) point on a sample
grid, yielding Raman mapping [3]. For materials presenting a regular
atomic or molecular structure, a more accurate characterization of the
sample can be achieved by using polarizers [4]. In particular, this is the
case for crystals as their response to the polarized light excitation will
reflect the crystallographic structure of the sample, motivating the
development of polarized Raman spectroscopy and mapping.

In most cases the incident laser beam is linearly polarized and the
Raman scattered light can be recorded in parallel or perpendicular
directions by a polarized analyzer. In this paper two polarized data
acquisition schemes are considered. They are respectively referred to
as rotational diversity1 and spatial diversity data acquisition. The
multidimensional signals recorded this way must be processed in
order to get insights into the physico-chemical properties of the
analyzed sample. Information about the local orientation of the
sample under the microscope objective, through the retrieval of the
local components of the Raman polarizability tensor [5], can thus be
obtained.

Due to the multivariate nature of the data, a model which is now
widely spread in spectroscopy consists in considering the data as a
mixture of pure components referred to as sources, whose concentra-
tions are varying with respect to some physical parameter referred to
as diversity. The data processing consists in the retrieval of these
sources and their concentrations. This problem is called multivariate
curve resolution (MCR) [6] in chemometrics while in the literature of
signal processing it is called nonnegative source separation or
nonnegative matrix factorization (NMF) [7,8]. The nonnegative prefix
is used to stipulate the fact that source spectra and concentrations are
positive by nature.

In this paper, two signal processingmodels for the Raman polarized
spectra, acquired with angular and spatial diversity, are proposed.
confused with rotational ambiguity which refers to the non-
ecomposition into subspaces.
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In the case of angular diversity data, physical considerations yield a
bilinear mixture model. In chemometrics, the NMF problem is
classically solved using the multivariate curve resolution-alternating
least squares (MCR-ALS) method [6]. SIMPLISMA-like techniques [9],
based on the strong pure-variable assumption, are employed to
initialize the MCR-ALS algorithm. In signal processing community,
another popular technique is the NMF algorithm, introduced by Lee
and Seung in [8], using amultiplicative updating rule to solve the NMF
problem. However, even if in practice these methods give generally
good results, because of the so-called rotational ambiguities, most of
the time, uniqueness of the decomposition cannot be guaranteed.

Getting back to the case of polarized Raman spectroscopy, both
polarizations are generally recorded but they are processed separate-
ly. One of the main contributions of this paper is to show that the joint
processing of both polarization spectra can reduce significantly the
rotational ambiguities. However, as the solution still cannot be
guaranteed to be unique, we use in the experimental part the BPSS
(Bayesian Positive Source Separation) method [10,11] which ensures,
through the assignment of Gamma priors on the distributions of both
the source signals and the mixing coefficients, the positiveness and
uniqueness of the solution. To some extent, this algorithm shares
some similarities with the positivematrix factorization (PMF) approach
introduced in [7].

For the spatial diversity case, based upon physical considerations,
we propose a trilinear Candecomp/Parafac (CP) model of the data
[12,13]. One of the main interests of this model is that its uniqueness is
ensured under mild conditions. In that respect, the fitting of this three-
way model, which is classically achieved by the ALS algorithm [13], is
not as challenging as in the bilinear case. However, even for trilinear
data, imposing positivity constraints to the ALS algorithmmay result in
improved convergence properties.

The rest of the paper is organized as follows: in Section 2 the
principles of polarized Raman data acquisition are briefly illustrated,
in Section 3 we present the model and the fitting algorithms for the
rotational diversity polarized data and in Section 4 the same thing is
done for the Raman imaging data. Section 5 presents results of the
proposed approaches on real spectra and some concluding remarks
are given in Section 6.
Fig. 1. Polarized Raman spectroscopy s
2. Polarized data acquisition

The Raman measurements were carried out in back scattering
geometry with the same objective for excitation and collection of
light. The confocal Raman spectrometer was equipped with a cooled
CCD camera and the laser source was an ionized argon laser emitting
at a wavelength λ=514.5nm. The analyzed crystal sample is fixed on
a rotating stage as shown in Fig. 1. Two coordinate systems are used,
one associated with the laboratory space-fixed coordinates (O,X,Y,Z)
and another attached to the analyzed sample (O,x,y,z). The incident
light is polarized such that the electric field arriving on the sample is
oriented along the Y direction. The scattered light is analyzed by
positioning an analyzer in front of the entrance slit of the
spectrometer. The analyzer is oriented either along the Y-axis (parallel
polarization) or the X-axis (crossed polarization). Thus, the acquisition
in one point of the sample yields a pair of spectra, one for the parallel
polarization, indexed by Y and another for the crossed polarization,
indexed by X.

Depending on the application, two acquisition schemes can be
envisaged. The rotational diversity scheme consists in rotating the
sample around the Z-axis (Fig. 1) with a fixed angular step (typically
10∘) and acquiring two polarized spectra for each step of the rotation.
This type of acquisition is mainly used to characterize the polarizabil-
ity tensor (see Subsection 2.1) of the analyzed crystal sample system.
Another acquisition scheme, used in Raman microscopy mapping, is
the spatial diversity. It consists in recording polarized spectra with
point-by-point scanning mode over a chosen sample area with a fixed
step. This procedure permits to obtain maps of the spatial distribution
of a particular component within mixture of the analyzed sample.

2.1. Physical considerations

To develop themathematical models for the polarized Raman data,
it is necessary to briefly remind the physical phenomenon related to
Raman scattering of polarized light. A useful quantity in this context is
the polarizability tensor. The polarizability tensor is a 3×3 real-valued
matrix α, relating the induced electric dipole moment p in the crystal
to the electric field vector e of the incident light. In the crystal-fixed
et-up in backscattering geometry.
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coordinate system (O,x,y,z) the polarizability tensor can be written
as:

α =
αxx αxy αxz
αyx αyy αyz
αzx αzy αzz

0
@

1
A: ð1Þ

A Raman polarizability tensor is associated to a particular
vibrational mode for a given crystal orientation [1,2]. The vibrational
modes will be thought of as sources in the source separation problems
presented in this paper. As the measurements are performed in the
laboratory coordinates system (O,X,Y,Z), a rotation matrix R(ϕ,θ,χ)
[1,2], accounts for the coordinate system change between the sample
and the laboratory frames. Denoting the Euler angles describing the
sample rotations in the coordinate system (O,X,Y,Z) by θ=(ϕ,θ,χ),
the induced electric vector in non polar crystal can be expressed by
the tensorial change of basis:

p θð Þ = RT θð Þα R θð Þe: ð2Þ

If we denote by pX,pY,pZ, the three components of p along X,Y and Z
axes, the intensity of the scattered light, measured by the spectrom-
eter, is given by the following proportionality relationship:

i θð Þ = iX iY iZð ÞT∝ p2X p2Y p2Z
� �T

: ð3Þ

In practical applications in backscattering geometry only iX and iY
are measured, corresponding to the crossed and parallel polarizations,
respectively.

We will suppose in the following that the recorded scattered light
is a mixture of N sources and that K wavelengths/wavenumbers are
acquired for each spectrum in one point on the crystal surface.

3. Rotational diversity data

In this section we focus on the angular diversity data whose model
is based on the physico-chemical knowledge on the analyzed crystal
sample, expressed by the non-zero components of the polarizability
tensor.

3.1. The bilinear model

For the rotational diversity acquisition scheme, M polarized
spectra are acquired for M different rotation angles (θ1,…,θM) of the
analyzed sample. For this angular diversity data, the “sources” are
represented by vibrational modes. Indeed, the vibrational modes are
characterized by specific displacements of the atoms from their
equilibrium position, which dictate the magnitude of the components
of the Raman polarizability tensor. The change of polarized Raman
intensity versus rotational angle, for a specific vibrational mode, will
therefore be different from another one. Each mode in polarized
Raman spectra will thus contribute as one source in the full spectrum.

Under the generally accepted assumption of instantaneous linear
mixture, the acquired data can be structured as two M×K matrices,
corresponding to the two polarization orientations X and Y:

Dp = ApS
T
p + Ep with p = X;Y : ð4Þ

In Eq. (4), matrix Ep∈RM×K accounts for the additive noise on the
sensors and the model errors and

Ap =
i1;p θ1ð Þ ⋯ iN;p θ1ð Þ

⋮ ⋱ ⋮
i1;p θMð Þ ⋯ iN;p θMð Þ

0
@

1
A∈R

M×N
; ð5Þ
Sp =
s1;p λ1ð Þ ⋯ sN;p λ1ð Þ

⋮ ⋱ ⋮
s1;p λKð Þ ⋯ sN;p λKð Þ

0
@

1
A∈R

K×N
: ð6Þ

are two matrices containing on their columns the angular and the
spectral evolution of the scattered light for each one of the N sources,
respectively, and for the two polarization orientations. Thus, Eq. (4)
illustrates two bilinear models for the two polarization types, leading
a priori to two independent source separation problems.

However, if we further analyze the underlying physico-chemical
phenomenon generating the two data sets, it can be observed that the
spectra of pure compounds are the same for the crossed and the
parallel polarization [1,2], since the vibrational modes are imposed by
the structure of the crystal. This implies SX=SY=S, which is quite
intuitive if we consider a geometrical point of view in which the
crossed and parallel polarized spectra are projections of the same
signal on two orthogonal axes. By injecting this information into Eq.
(4), one gets:

DX
DY

� �
= AX

AY

� �
ST + EX

EY

� �
: ð7Þ

Eq. (7) points out a bilinear model for the polarized spectra with
rotational diversity considering both polarized spectra families
jointly. Besides the fact that this is a more natural and compact
representation of the data, the sample size is doubled in Eq. (9)
compared to Eq. (4) which should normally improve the accuracy of
the estimated source parameters.

In order to simplify the presentationwe use the following notations:

D = DX
DY

� �
; A = AX

AY

� �
; E = EX

EY

� �
: ð8Þ

Eq. (7) can thus be re-written in a more concise manner as:

D = AST + E: ð9Þ

Given the nature of the data, the sources and themixing coefficients
are positive-valued,meaning thatEq. (9) expressesaNMF(Nonnegative
Matrix Factorization) model [7]. It should be noticed that stacking the
datamatricesDX andDY into a biggermatrixD can also be seen as a data
augmentation strategy. This kind of technique has already been
proposed for diverse problems such as the analysis of multiple runs of
gasoline blending processes [14]. Another example is the joint analysis
of UV–visible spectra related to the complexation of the aluminum by
caffeic acid and the titration of caffeic acid [15]. Actually, the benefit of
matrix augmentation strategy is threefold: it allows to decrease
estimation error uncertainties, it may remove rank deficiency and
helps in reducing rotational ambiguities. Hereafter, we mainly focus on
the reduction of rotational ambiguities. We also provide a geometrical
interpretation of the uniqueness ofNMFmodel, giving insights into how
matrix augmentation may reduce rotational ambiguities.

3.2. Identifiability of the NMF mixture model

A source mixture model is identifiable if the sources can be uniquely
estimated (up to permutation and scaling indeterminacies) from the
observations. In order to discuss the identifiability of the NMF model
(Eq. (9)) the notion of simplicial cone needs to be introduced.

Definition 1 (Simplicial cone). The simplicial cone generated by a
family of vectors {sn}n=1

N is

C fsngð Þ = x : x = ∑
n

αnsn;αn N 0
� �

:



Fig. 3. Mapping to the plane (1,1,1) of the three-dimensional space. The hatched area
corresponds to the admissible solutions domain.
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The order of a simplicial cone is the dimension of the subspace
span ({sn}n=1

N ).
Based on the simplicial cone, a necessary and sufficient condition

for NMF identifiability has been provided by Chen in [16]:

Theorem 1 (Necessary and sufficient unicity condition). Denoting K
the convex hull of the data matrix X, the decomposition of X according to
X=AST, A≥0, S≥0 is unique if and only if the simplicial cone C Sð Þ, such
as K⊂C Sð Þ, is unique.

Clearly, Theorem 1 does not provide any numerical conditions to
check if a NMF is unique or not. This motivated the work of [17,18]
from which it appears that uniqueness relies on the number of zero
entries in both matrices A and S. When uniqueness is not achieved,
there is a set of possible solutions, referred to as admissible solutions
or rotational ambiguities. The set of admissible solutions can be
determined analytically [19] for the special case of two sources. The
reader is also referred to [20] where a complete characterization of the
rotational ambiguities arising in the two-component case is proposed.
As mentioned in [20], the case of more than two components is
significantly more complex. In Ref. [10] the determination of the
admissible solutions for the three component problemwas addressed
through numerical simulations. However, such an approach is case
dependent and requires high computation time. In this section we
provide a geometrical interpretation of the set of admissible solutions
which is used to explain why the joint use of parallel and crossed
polarization data (and generally any matrix augmentation strategy) is
expected to improve the NMF problem in the sense of reducing the set
of admissible solutions and thus, the rotational ambiguities.

For simplicity and without loss of generality, we restrain our
explanations to the case of three sources, as illustrated in Section 5 on
real data. Consider the NMF noiseless model:

D = AST with A∈R
M×3 and S∈R

K×3
: ð10Þ

Each raw of datamatrixD can be seen as a point in a K-dimensional
space. The fact that the data are nonnegative means that every such
point lies in the positive orthant RK

þ of RK . The factorization (Eq. (10))
implies that all the raws of D lie in the simplicial cone generated by
the columns of S, namely C s1; s2; s3ð Þ. Thus, the admissible solutions
for (s1,s2,s3) are confined in the three-dimensional subspace obtained
as the intersection of RK

þ with span(S). Let {e1,e2,e3} be a canonical
unitary basis of RK

þ∩span Sð Þ (the vectors e1,e2,e3 are contained in the
canonical planes of RK), then all the data lie inside C s1; s2; s3ð Þ (Fig. 2).

In Fig. 3 we consider a mapping (affine projection) of the three-
dimensional space to the plane (1,1,1). By thismapping, a plane inR3 is
Fig. 2. Geometrical illustration of RK
þ∩span Sð Þ. The vectors e1,e2,e3 form a canonical

unitary basis and s1,s2,s3 are the sources.
mapped to a line and a simplicial cone is mapped to a triangle. Let us
suppose first that there are enough data to fully cover the triangle (s1,
s2,s3). Then any third order simplicial cone including C s1; s2; s3ð Þ (the
hatched area in Fig. 3) is an admissible solution for NMF (Eq. (10)). This
means that the problem is intrinsically ill-posed and the only sources
that can be uniquely recovered are those overlapping with one of the
basis vectors (e1,e2,e3). The regularization of the problem by imposing
sparseness constraints on the sources [21] reduces the solution space
by dragging (s1,s2,s3) towards the basis vectors.

Suppose now that C s1; s2; s3ð Þ is the same as C e1; e2; e3ð Þ, meaning
that the hatched area on Fig. 3 vanishes. Suppose also that the data
points do not fill completely C s1; s2; s3ð Þ (Fig. 4). Then, any third order
simplicial cone containing all the data is an admissible solution to
problem. A sufficient condition for uniqueness, presented in [17], is to
have at least two data points on each of the three edges of the triangle
(s1,s2,s3). In this case there is only one third order simplicial cone,
namely C s1; s2; s3ð Þ, that includes all the observations. In general, the
size of the admissible solutions set depends on the coverage degree of
the triangle (s1,s2,s3) by the data points. The better the data covers the
triangle the smaller the solution set. This explains the improvements in
the NMF admissible solutions obtained in Section 5 by the joint use of
crossed and parallel polarization data sets. Because different sources
(vibrationalmodes) are characterized by different polarizability tensors
it means that the sources present distinct behaviors in at least one
polarized data set. Thus, it is highly probable that the observedmixtures
for the crossed and parallel polarizations cover distinct areas of the
simplicial cone C s1; s2; s3ð Þ. An intuitive geometrical interpretation is
given in Fig. 4, where convex hulls of the two data sets (crossed and
parallel) are represented by a dashed and a dotted line, respectively. It is
obvious that by using both data sets jointly the incertitude on the
sources (the shadowed area) is reduced compared to one set only. This
result is illustrated in Section 5 where NMF is applied on real data in
several runs with different initial values.

By imposing sparseness on the mixing coefficients, the solution
given by the smallest simplicial cone C d1;d2;d3ð Þ is favored. Sparseness
on both sources and mixing coefficients would give an intermediate
solution between C d1;d2;d3ð Þ and C e1; e2; e3ð Þ. In chemometrics, other
constraints, such asunimodality ora prioriknown components are used.
Let us also mention concentration selectivity which is, to some extent,
related to imposing sparseness on the mixing coefficients. We did not
study this point further since it is out of the scope of the present paper.
3.3. Fitting the rotational diversity data

For the direct model expressed by Eq. (7), the inverse problem
consists in estimating AX,AY and S knowing DX and DY. Note that once

image of Fig.�2


Fig. 4. Illustration of the indeterminacy due to the mixing coefficients. The dotted area and the dashed area represent the crossed and parallel polarization data sets, and C d1;d2;d3ð Þ
is the simplicial cone containing the maximum number of data points on its facets.

Fig. 5. Illustration of the three-way data structure and the corresponding diversities.
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the matrix A in Eq. (9) is estimated, it is straightforward to obtain AX

and AY.
Alternating Least Squares (ALS) algorithms with non-negativity

constraints are generally used to estimate the matrices A and S. A basic
approach to invert the NMF model (9) is given in Algorithm 1. A large
number of methods improving the performances of this basic approach
have been proposed lately in the literature. One of the most popular is
theNMF algorithmby Lee and Seung [8], using amultiplicative updating
rule. Formore details about these techniques see [22] and the references
therein.

Algorithm 1. Basic approach to estimate NMF model parameters

1: INPUT: the observation matrix D and the number of the sources N
2: Initialize the matrix A randomly, or by using a deterministic strategy
3: Fix ε to a small positive value (typically, 10−16)
4: repeat
5: Estimate S: S=max{ε,DTA(ATA)−1},
where (⋅)T denotes the transposed of a matrix
6: Update A: A=max{ε,DS(STS)−1},
7: until convergence
8: OUTPUT: estimates of A and S.

4. Spatial diversity data

We propose in this section a model for Raman imaging data using
both crossed and parallel polarized lights. The details of the Raman
imaging acquisition have been presented in Section 2.

4.1. The trilinear model

For the spatial diversity scheme, two polarized spectra are acquired
in L different points denoted by: d1,...,dL, on a regular spatial grid. Define
the following matrices:

P =
i1;X … iN;X
i1;Y … iN;Y

� �
∈R

2×N
; ð11Þ

B =
b1 d1ð Þ … bN d1ð Þ

⋮ ⋱ ⋮
b1 dLð Þ … bN dLð Þ

0
@

1
A∈R

L×N
: ð12Þ
The B matrix contains on its columns the spatial evolution of the
source concentrations and P characterizes the behavior of theN sources
for the two polarization orientations. The acquired data can thus be
expressed as two L×K matrices:

Wp = BDp Pð ÞST + Ep; p = X;Y; ð13Þ

where Dp Pð Þ = diag i1;p; :::; iN;p
� 	

is a diagonal matrix which takes
the first or the second row of P as its diagonal, and Ep∈RL×K the noise
matrix. Relation (13) clearly expresses a three-way CANDECOMP/
PARAFAC (CP) model [13] for the polarized data with spatial diversity.
Fig. 5 illustrates the three-dimensional structure of the data.

The trilinear model validity is conditioned by the invariance of the
source polarization behavior with respect to spatial displacement. In
practice, this is the case if i) the analyzed objects have well-defined
spatial orientation and their size is bigger than the laser spot or ii) they
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have random orientation and their size is largely inferior to the laser
spot.

4.2. Identifiability issues for the trilinear model

Before presenting the algorithms for fitting the spatial diversity
data, identifiability conditions for the trilinear mixture model
expressed by Eq. (13) must be discussed. The spatial acquisition
scheme yields a trilinear CP model as one can see in Eq. (13). The
inverse problem for this model is the estimation of B,S and P from
the observationsWp. Unlike bilinear mixtures, the identifiability of a
CP model is ensured under mild constraints given by Kruskal's
condition [23]. Before stating the identifiability condition for the
presented trilinear model, the Kruskal-rank of a matrix must be
defined.

Definition 2 (Kruskal-rank). The Kruskal-rank of a matrix B equals r
(kB=r), if every r columns of B are linearly independent but this does
not hold for r+1 columns.

Applied to our case, Kruskal's condition states that one can
uniquely estimate the matrices B,S and P in Eq. (13) if:

kB + kS + kP≥2 N + 1ð Þ: ð14Þ

We shall only consider next, the case where S is a tall matrix,
meaning that there are more spectral points than sources (very
common in practice). Given the spiky nature of Raman spectra, S is full
column rank with high probability, implying kS=N. Kruskal's
condition can thus be re-written as:

kB + kP≥N + 2: ð15Þ

Given the size of matrices B and P, and knowing that the Kruskal-
rank of a matrix is upper bounded by its classical rank, the only
Fig. 6. Polarized Raman data versus rotational
possible solution to inequality (Eq. (15)) is kP=2 and kB=N. This
means that, in order to have an unique factorization, every two
sources must have different polarization behaviors and B (with L≥N)
has to be full column rank. Thus, in practice, the CPmodel (Eq. (13)) is
identifiable in most cases, provided that more acquisition points than
sources are used.
4.3. Fitting the spatial diversity data

Most methods for fitting the three-way CP model are derived from
the Alternating Least Squares (ALS) regression which consists in
estimating iteratively one matrix by fixing the two others [13,24]. As
shown in the previous subsection, this factorization is unique provided
that some mild conditions are satisfied. However, the direct use of ALS
can be impractical and problematic, since it usually suffers from linear
convergence, and is occasionally sensitive to local minima. To avoid
these problems, several algorithms have been proposed lately. In Ref.
[25] an enhanced line search (ELS) is proposed to accelerate the
convergence of ALS. The COMFAC algorithm introduced in Ref. [26] uses
more sophisticated initializations to achieve fast, accurate convergence
for factorization of trilinear arrays. Given the nature of the data, it is also
natural to impose non-negativity constraints on the matrices to
estimate and thereby facilitate the interpretation of the results. This
can be done similarly to the bilinear case (see Algorithm 1). An
optimized nonnegative algorithm for three-way factorization, used in
this paper to illustrate the proposed approach, can be found in the
Matlab N-way toolbox developed by Bro and Anderson and freely
available at: http://www.mathworks.com/matlabcentral/fileexchange/
1088-the-n-way-toolbox.

In order to estimate the matrices of this trilinear model one could
also use one of the algorithms for nonnegative bilinear factorization
mentioned in Subsection 3.3 and apply it on an unfolded version of
the data. This implies that, to ensure unicity on the decomposition,
additional constraints on the sources and/or mixing coefficients must
be made, not always physically justified. In this context, the main
angle χ for rutile TiO2 (110) single crystal.

http://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox
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advantage of the trilinear algorithms over the bilinear ones is the
conservation of the intrinsic structure of the data as generated by the
underlying phenomena.
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Fig. 7. Source spectra estimation by NMF (15 runs).
5. Results

In this section we illustrate the proposed approaches on polarized
Raman spectra. The rotational diversity was explored using TiO2 rutile
single crystal and the spatial diversity Raman spectra were collected
using amixture of CaCO3 powders with two polymorphs, aragonite and
calcite.

5.1. Results for rotational diversity data

The approach presented in Section 3 was applied to a rutile TiO2

crystal, as shown in Fig. 1. The crystallographic face (110) (Hermann–
Mauguin international crystallographic symbols) is analyzed. The
sample is rotated with respect to Z-axis only, meaning θ=(0,0,χ).
Fig. 6 presents the acquired polarized data for the parallel and crossed
polarizations (matricesDY andDX in Eq. (4)). The data was acquired in
a spectral range of 100cm−1−800cm−1 with an angular rotation
step of 10° between 0∘ and 190∘.

In the case of TiO2, four Raman active modes denoted as A1g, Eg, B1g
and B2g (Mulliken symbols for symmetry groups [1]) are expected from
theory. However, the B2g mode at 826 cm−1 is out of the spectral
window used in the present work (and anyway the B2g has a very low
Ramancrossed section and is oftennot detected). TheB1gmodewith the
(110) oriented crystal plane is silent either in parallel or crossed
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Fig. 8. Estimated coefficients by NMF for each polarization data set separately.
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polarizations (the same calculation exposed for A1g and Eg modes in
Appendix A would show that B1g mode is silent in our working
conditions). Consequently, one can expect two Raman active modes, i.e.
two sources, in the data collected here. Nevertheless, three sources are
necessary to properly describe the data, as indicated by the magnitude
analysis of the singularvalues of datamatricesDX,DY andD. A theoretical
explanation for the presence of this third source is provided latter in this
section.

Firstwe illustrate the effect of the joint use of the crossed andparallel
polarization data sets on the size reduction of the NMF admissible
solutions set, as emphasized in Subsection 3.2. For the same data
described earlier, the NMF algorithm [8] was used to estimate the three
source vectors and the correspondingmixing coefficients. The two data
setswere processed separately and jointly and the results are presented
on Fig. 7 for the source spectra and on Figs. 8 and 9 for the mixing
coefficients. To evaluate the size of the admissible solutions set we used
15 independent runs for each plot, with different random initial values
for thematrices A and S. As one can see, by processing both polarization
data sets jointly (Figs. 7(c) and 9) the admissible solution domain is
largely reduced as compared to the case when only one polarization is
used (Figs. 7(a),(b) and 8). These results validate the theoretical
considerations presented in Subsection 3.2 and emphasize the utility of
using both polarizations in Raman acquisitions.
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Fig. 9. Estimated coefficients by NMF for both polarization data sets jointly (15 runs).
Next, to illustrate the effect of the joint data processing on the
estimation accuracy, the BPSS algorithm [11] is used, for the reasons
presented in Subsection 3.3.
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Fig. 10. Source spectra estimation by BPSS.
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First, BPSS was applied on the concatenated data as in Eq. (7) and
then on each of the polarized data sets independently, (according to
Eq. (4)). The results for the joint processingof thepolarizations are given
on Fig. 10 (c) for the source spectra and on Fig. 12 for the mixing
coefficients. Figs. 10(a) and (b) and 11 plots the estimated spectra and
mixing coefficients, respectively using only the parallel or the crossed
polarization data. Three sources are identified: one (#1) with the main
peak at 440cm−1 corresponding physically to the vibrational mode Eg,
another (#2) at 610cm−1 corresponding to the mode A1g and a third
one (#3) that is rather unexpected from the theoretical considerations
exposed above. Indeed, one expect to find only two sources
corresponding to the two Raman active modes A1g and Eg. In fact, the
spectral shape of source #3 corresponds to second-order Raman active
mode and not to fundamental vibrational modes. This second-order
mode has a structured shape (coming from the density of phonon states
in rutile material) already observed and a complex behavior towards
rotational diversity [27]. It is thought to be a harmonic or combination
band of lower frequency fundamental acoustic modes that are silent in
Raman spectroscopy (but their combination becomes Raman active due
to symmetry consideration and spectroscopic rules). This is therefore a
nice success of our approach to have revealed the existence of this
second-order mode as a third source and to have retrieved its complex
structure experimentally evidenced by Porto et al. [27].
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Fig. 11. Estimated coefficients by BPSS for each polarization data set separately.
Onecan see that theuse of the twopolarizations jointly improves the
results of the bilinear factorization. This is especially visible on the
source spectra, where the polarization information allows a more
accurate separation of source contributions. For example, on Fig. 10 (c),
source #1 is clearly concentrated at a single wavenumber (440cm−1),
while on Fig. 10 (b) it presents an additional peak at the wavenumber
corresponding to source #2. Similar remarks can be made for the two
other sources in Fig. 10 (a).

The advantage of using the polarized data jointly is also visible on
the mixing coefficients. For example, if we look at the crossed
polarization data in Fig. 6 (bottom plot, near 440 cm−1), one can see
that the Egmode, i.e. source #1, presents an offset for reasons that will
be explained latter. If both datasets are used, the aforementioned
characteristic is successfully recovered (Fig. 12 (a)) while this is not
the case if the crossed polarization data is processed independently
(Fig. 11 (a)). Similar remarks can be made for the other mixing
coefficients and polarization dataset. In theory, themixing coefficients
of the two data sets (Fig. 12) are theoretically proportional to cos 2

(2χ) and sin 2(2χ), respectively as shown in Appendix A. Therefore,
they should pass by zero periodically. This is not the case for our data
and a possible explanation to this fact is the electronic resonance
phenomena which adds a baseline to the observed sources. Another
possible explanation comes from the fact that we used a ×50 optical
Fig. 12. Estimated coefficients by BPSS for both polarization data sets jointly.
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objective with a numerical aperture of 0.55. The numerical aperture of
this objective (0.55) was high enough to possibly induce a small
contribution of Raman scattered light on the z-axis, responsible for
such an offset.

5.2. Results for spatial diversity data

In this section, we analyze a mixture of two polymorphs of CaCO3

having a distinct crystallographic structure. Though the Raman active
modes involve similar atomic displacements, the change of the crystal
symmetry produces significant separation of the Raman peaks for
these two polymorphs. Some peaks are overlapped (for instance,
around 700 cm−1) but others are clearly well separated. Therefore,
one source is classically viewed as the entire Raman spectrum of one
polymorph in this section. This is different from the definition of
sources adopted for the rotational diversity data model and leads to
the trilinear mixture model.

For the illustration of the trilinear data model, we used a calcite
crystal of several micrometers in diameter grown on an aragonite
substrate. The polycrystalline sample of aragonite was made according
to the process described in Ref. [28]. During the crystallization, calcite
crystals (with an average size of several micrometers) were also grown
as impurities. After filtration, we obtained some calcite crystals
deposited randomly at the surface of the compacted aragonite powder.
Such a place was chosen for testing our signal processing approach of
polarized Raman mapping. The Raman spectra of pure aragonite and
calcite samples are well known and have been presented previously in
Ref. [28]. A spatial grid of 8×9 with a spatial step of 1 μm was read on
crossed and parallel polarizations. The 2×72 resulting spectra are
presented in Fig. 13 (a) and (b). The spectral rangewas 100−900 cm−1.
In this case a source is no longer assimilated with one vibrational mode
but rather with the totality of spectral peaks characterizing calcite or
aragonite.

The data was processed using the PARAFAC decomposition
algorithm with non-negativity constraints described in subsection 4.3.
The estimated spectral signatures and mixing coefficients for the two
crystalline varieties of CaCO3 are presented on Figs. 14 and 15,
respectively. As one can see in Fig. 14 the spectral signatures of the
two sources arewell recovered, in perfect agreementwith the literature
[28]. The fact that there are a lot of zero-values in the estimated spectra
is due to negative values present in the analyzed data (see Fig. 13) as a
side effect of the baseline removal in the preprocessing steps. The
estimation of the mixing coefficients is also accurate, allowing to plot
low resolutionmaps of the aragonite and calcite concentrations (Fig. 15
(a) and (b)), matching the visual image obtained in the microscope
oculars. The concentration maps reported in Fig. 15 are also coherent
with the fact that the diameter of the laser spot was around 2
micrometers and the size of the calcite crystal was a few micrometers.
The size of the calcite single crystal is bigger than the laser spot and the
crystal orientation is fixed. Therefore, this source obeys the model
hypothesis stated in Section 4. The second source corresponds to
aggregates of nano-crystals of aragonite polymorph, which are
randomly oriented, and of size quite inferior to the laser spot. Thus,
this second source also satisfies the model hypothesis.

6. Conclusions

We proposed in this paper two approaches for dealing jointly with
the crossed and parallel polarization data in Raman spectroscopy. A
bilinear and a trilinear model were introduced for polarized Raman
spectroscopy data with rotational and spatial diversity, respectively.
We showed that, besides improving source estimation accuracy, the
joint use of polarization information reduces the size of the admissible
solutions set for rotational diversity data and ensures mixture
identifiability in Raman imaging. The proposed approaches were
validated on real TiO2 and CaCO3 spectra. These first results highlight
the importance of using both crossed and parallel polarizations in
Raman acquisitions and should serve as basis for future experimental
protocols allowing further developments in Raman imaging and the
estimation of the polarizability tensor components.

image of Fig.�14


Fig. 15. Concentration maps for the CaCO3 sample.
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Appendix A. Theoretical calculation of the intensity of the Raman
active vibrations of TiO2 rutile for the (110) crystal plane versus
the rotational angle

The rutile structure of TiO2 has four Raman active vibrational
modes noted A1g,Eg,B1g and B2g [27]. The tensor components for each
mode are:

αA1g
=

α1 0 0
0 α1 0
0 0 α2

0
@

1
A;

αEg
=

0 0 0
0 0 α3
0 α3 0

0
@

1
A;

0 0 α3
0 0 0
α3 0 0

0
@

1
A;

(This mode is doubly degenerated.)

αB1g
=

α4 0 0
0 −α4 0
0 0 0

0
@

1
A;

αB2g
=

0 α5 0
α5 0 0
0 0 0

0
@

1
A:
The laser polarization was fixed along the Y-axis of the laboratory
frame plotted in Fig. 1. The analyzer was then either along the Y-axis
(parallel polarizations) or the X-axis (crossed polarizations). The
wave vector of the laser radiation was along Z.

The expressions for the polarizability tensors are given in the
coordinate system (O,x,y,z) attached to the analyzed sample. For the
(110) crystal plane, the use of a rotation matrix R′ is needed in order
to align the crystal plane (110) parallel to the (OXY) laboratory plane.
This way, an intermediate frame (O,x′,y′,z′) is defined and the tensor
components in this frame are given by:

α O;x′;y′;z′ð Þ = R0−1αR ðA:1Þ

with

R0 =

0 −
ffiffiffi
2

p

2

ffiffiffi
2

p

2

0

ffiffiffi
2

p

2

ffiffiffi
2

p

2
−1 0 0

0
BBBBB@

1
CCCCCA
: ðA:2Þ

Another rotation matrix R, corresponding to rotational angle
variation χ around the Z-axis, allows to express the measurements in
the laboratory (O,X,Y,Z) coordinate system:

R =
cosχ sinχ 0

− sinχ cosχ 0
0 0 1

0
@

1
A: ðA:3Þ

Thus, the new tensor components in the (O,X,Y,Z) frame are given
by:

α O;X;Y ;Zð Þ = R−1α O;x′;y′;z′ð ÞR: ðA:4Þ

We applied these equations to the A1g and Eg modes that are found
within the spectral window explored in this article.

A.1. Eg mode (450 cm−1)

For this doubly degenerated mode the following two results were
obtained:
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and
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The electric field of the incident laser is given by e=(0 eY 0)T

and the induced polarization is:

p = α O;X;Y ;Zð Þe: ðA:7Þ

The Raman intensity i is proportional to the square of the induced
polarization. Thuswe can predict for the doubly degenerated Egmode:

• for parallel polarizations (YY): iY∝sin 2(2χ)α3eY
2

• for crossed polarizations (XY): iX∝cos 2(2χ)α3eY
2.

Normally the Eg mode in parallel polarizations should be equal to
zero for a rotational angle of 90∘. Fig. 12(b) shows that there is a small
residual component near this angle value, which is discussed in the
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text. The variations for the crossed polarization are coherent with the
theoretical predictions excepting for the general offset of the curve in
Fig. 12(a) (source #1).

A.2. A1g mode (612 cm−1)

For the A1g mode, the calculations give the following results:

α O;X;Y ;Zð Þ =

cos2 χð Þα2 + sin
2
χð Þα1 cos χð Þ sin χð Þ α2−α1ð Þ 0

cos χð Þ sin χð Þ α2−α1ð Þ cos2 χð Þα1 + sin
2
χð Þα2 0

0 0 α1

0
BBBBB@

1
CCCCCA

ðA:7Þ

• for parallel polarizations (YY): iY∝(α2 sin 2χ+α1 cos 2χ)eY2

• for crossed polarizations (XY): iX∝sin 2(2χ)(α2−α1)2eY2.

The variations observed in Fig. 12 (a) and (b) for source #2 are in
good agreement with these predictions. The fact that in parallel
polarizations, source #2 is almost zero for a rotational angle of 90∘

indicates that the magnitude of α2 is considerably smaller than the
magnitude of α1.
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