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In this paper, we introduce a novel direction-finding algorithm
for a multiscale sensor array, that is, an array presenting multiple
scales of spatial invariance. We show that the collected data can be
represented as a Candecomp/Parafac model for which we analyze
the identifiability properties. A two-stage algorithm for
direction-of-arrival estimation with such an array is also proposed.
This approach generalizes the results given in [1] to an array that
presents an arbitrary number of spatial invariances. We illustrate,
on two particular array geometries, that our method outperforms, in
some difficult scenarios, the ESPRIT-based approach introduced in
[2], the ESPRIT-MUSIC of [3], and the tensor-ESPRIT of [4].
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Moreover, we show that the single-snapshot case and the fully
cross-correlated sources case can be handled by our method without
any spatial smoothing procedure, provided that the array includes at
least three scale levels.

[. INTRODUCTION

High-resolution techniques such as multiple signal
classification (MUSIC) [5, 6] or estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[7], introduced in the late 1970s and 1980s, gave an
impetus to sensor array signal-processing research. A
significant number of eigenstucture-based
direction-finding (DF) algorithms have been proposed
since for various types of sensors and array configurations.
Sidiropoulos et al. [1] proposed for the first time a
direction-of-arrival (DOA) estimation approach based on a
Candecomp/Parafac (CP) model of the data and
highlighted the link between CP and ESPRIT. Over the
subsequent years, several other authors proposed
CP-based DF algorithms for scalar or vector sensor arrays.
Liang et al. [8, 9] proposed two cumulant-based
algorithms for source localization using the CP model.
DOA-estimation algorithms for vector-sensor-arrays were
developed by Guo et al. [10] and by Zhang and Xu [11],
based on a three-way CP model, for which an
identifiability analysis was provided by Guo et al. [12]. A
similar approach, exploiting the quadrilinear structure of
the data covariance, was proposed by Miron et al. [13],
while Gong [14] developed a trilinear cross-covariance DF
method for an array of electric tripoles. Nion and
Sidiropoulos [15] established a CP approach for source
detection and localization for multi-input multioutput
radar systems. A regularized CP-based approach is used
by Gong et al. [16] to solve the DOA estimation problem
with a single six-component electromagnetic vector
sensor. Recently, Zhang et al. [17] proposed an algorithm
for coherent angle estimation for bistatic multi-input
multioutput radar based on a CP model with linear
dependences (i.e., PARALIND). Haardt et al. [4] proposed
a higher-order singular value decomposition-based
method for multidimensional harmonic retrieval, called
tensor-ESPRIT, and showed that it can significantly
improve the estimation accuracy compared to the
matrix-based methods in some particular situations. Other
orthogonal tensor decompositions have also been used in
the recent years to construct DF algorithms (see, e.g.,
[18-20] and the references therein).

The approach proposed in this paper generalizes and
extends the tensor-based array-processing approach
introduced in [1] to allow an array presenting multiple
scales of spatial invariance. Lim and Comon [21] already
utilized various tensor decompositions of a small
two-dimensional regular array grid with two levels of
spatial invariance. They proved that, depending on the
coherence of the impinging sources, different
decompositions of the array grid are not equivalent, from
the performance point of view. However, no generalization
to higher dimensions or to arbitrary grid geometry was
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provided and no DOA estimation algorithm was proposed.
This paper will propose an array geometry for which the
incident sources’ steering vectors can be expressed as
N-way tensor products. As we will show in the subsequent
sections, this array configuration may yield a large spatial
aperture with a reduced number of elements compared to a
fully populated array. In this respect, our method is related
to DOA estimation using sparse arrays, a longstanding
preoccupation in the sensor array processing community.
For example, Sundaram et al. [22] proposed a DOA
estimation method for a multielement interferometer with
nonuniform spacings, and a computationally efficient
technique for the characterization of the resolution and the
ambiguity functions of sparse arrays was developed by
Goodman and Stiles [23]. For an overview of sparse arrays
applications to radar detection, the interested reader is
referred to [24] and the references therein. Liao and Chan
[25] focused on the problem of DF with a sparse array
composed of sensors with unknown gain/phase responses,
while Hu et al. [26] highlighted the interest of the recently
developed sparse signal reconstruction methods for the
DOA estimation with sparse arrays. In our case, the sparse
structure of the array results from the multilinear structure
sought for the data and the uniqueness conditions for its
CP decomposition.

In this paper, we propose a CP-based DF algorithm for
any three-dimensional sensor array with an arbitrary
number (>2) of scales of spatial invariance, and we
provide a computationally efficient two-stage DOA
estimation algorithm that exploits all the information of
the sources’ DOAs available at each scale level. The DOA
estimation is performed using a sequential strategy,
progressing from one scale level to the next higher scale
level, using an iterative refinement of the direction-cosine
estimates within each level. It is worth noting that the
concept of multiscale array used in this paper is totally
different from that of nested arrays introduced by Pal and
Vaidyanathan [27], where the main idea was to use two or
more nested uniform linear arrays; the authors of [27]
showed that by exploiting the second-order statistics of the
received data through the associated difference coarray,
more sources than physical sensors can be resolved.

The remainder of this paper is organized as follows.
Section II presents the proposed multiscale array
configuration. The corresponding data model is derived in
Section III. In Section IV, we analyze the identifiability of
the proposed data model. A two-stage algorithm for DOA
estimation is introduced in Section V. In Section VI, the
proposed method is compared in simulations to the
ESPRIT-based approach in [2], the ESPRIT-MUSIC
algorithm in [3], and the tensor-ESPRIT of [4].
Conclusions are drawn in Section VII.

[I. THE GEOMETRIC CONFIGURATION OF A
MULTIPLE SCALE-INVARIANT SENSOR ARRAY

We introduce in this section the configuration of the
array for which the data model is to be derived in Section
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Fig. 1. Multiscale planar array with three hierarchical levels.

III. Consider a subarray composed of L, isotropic identical
sensors indexed by /| =1, ..., L;. Consider then, L,
identical replicas of this subarray, spatially translated to
arbitrary, possibly unknown locations.! The L, distinct
copies of the original subarray, indexed by [, =1, ..., Lo,
can now be seen as subarrays that together constitute a
larger (higher level) array. This proposed array structure
can be further generalized by considering an additional
level, composed of L; translated replicas of the previous
sensor subarrays, indexed by I3 = 1, ..., L3. Letus
generalize this scheme to a total of N such hierarchical
levels, with the highest level consisting of Ly subarrays
indexed by Iy =1, ..., Ly. It is worth noting that two
different subarrays at a given level n need not be disjoint,
that is, they may have in common subarrays/sensors of the
previous level (n — 1). However, if all subarrays at each
level are disjoint, then the entire array will contain a total
number of L =L, L, ... Ly identical sensors. Fig. 1
illustrates a three-level array of coplanar sensors.

Consider also a Cartesian coordinate system OXYZ to
describe the considered array. An impinging source is
characterized in this coordinate system by its
direction-cosines, u, v, w:

u sin 0 cos ¢
v | =] sinfsing |, €))
w cosf

where 0 € [0, ] denotes the source’s incident elevation
angle measured from the positive z axis and ¢ € [0, 2]
symbolizes the azimuth angle measured from the positive
X axis.

Let us consider a single level-1 subarray. In the
coordinate system OXYZ, the position of the /;th sensor

! Information on the exact positions of the sensors is not required for the
validity of the data model presented in Section III. However, to estimate
the sources’ DOAs from the measured data, knowledge of the array
manifold is necessary.
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of this subarray is given by the vector (xl(ll), yl(ll), zl(ll)).

Next, consider L; such subarrays. The position of

the /;th sensor of the /,th subarray is given by
(452,50 + 3220+ 22, where (62, 32, 2%)
indicates the spatial displacement of the /;th

subarray with respect to the first subarray. It can be
easily shown by induction that, for an N-level

array, the position of any sensor is given by

[¢Y) Ny (M N) (1)
(CTR U F TN i SPUE o VNS R SR

+2)),
where (x,(;v), yl(:’), zx:/)) indicates the spatial displacement
of the [yth subarray compared to the first subarray of the
level N (indexed by Iy = 1), etc.

The above presented array structure is composed of
sensors/subarrays packs that differ from each other only
by a translation in the three-dimensional Euclidian space.
This provides interesting spatial invariance properties in
the data acquired by this array, as will be shown in the
next section.

1. DATA MODEL
A. Derivation of the CP Model

Consider first a narrow-band plane wave impinging on
the array described in Section II. Let us represent by
a1, its phase factor at the sensor indexed by [y, I, ...,
Iy at the N various levels of the array. Define k = [u v w]”
and d}” = [x{"” y z{"1", withn = 1, ..., N. With the
notation introduced above, the spatial phase factor is given
by:

2w
.1, (K) = exp I

N
Z de;,',l)}

n=1
N
27 n
ZHGXP{]T degn)}. 2)
n=1
Thus, the array manifold for the entire sensor array is
ak)=2a;(k)®...®ay(k), 3)
with
ol (2n / A)K"d{”
a,(k) = : “)
ol (2x /M) ay)
anL, x 1vector,Vn =1,..., N and ® represents the

Kronecker product of two matrices.

Next, consider P narrow-band plane waves, having
traveled through a nonconductive homogeneous isotropic
medium, impinging upon the array from directions k, =
[u, v, w,]", withp =1, ..., P. Denote by s,(#) the time
signal emitted by the pth narrow-band source.” Then, the
output at time ¢ of the entire sensor array can be expressed

2 The incident signals are narrowband in that their bandwidths are very
small compared with the inverse of the wavefronts’ transit time across
the array.
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asan L x 1 vector,

P

2t)=Y (a1 (k) ®...®ay (k;))s,()) +n(t), (5)

p=l

where n(¢) is a complex-valued zero-mean additive white
noise.

Let us assume that we have at our disposal K snapshots
at time instants, #1, f,, . .., tx. Define the following L, x
P matrices:

A =[a;(ky),...,a;(kp)]

(6)
Ay =lay k1), ..., ay (kp)], @)
and the K x P matrix:
s1(t)  s2(f) sp(f1)
s1(t)  s2(t2) sp(t2)
S =

s1 (k) s2(tk) sp(tx)

=[SI,SQ,...,SP]. (8)

The collection of K snapshots of the array can then be
organized into an L x K data matrix as

Z=1[zt),....2t6)]=(A; O...0AN)ST +N, (9)

where © denotes the Khatri-Rao (Kronecker columnwise)
product of two matrices, and Nis a (L x K)
complex-valued matrix, modeling the noise on the entire
array for all K temporal snapshots. Equation (9) reveals a
(N + 1)-dimensional CP structure (see [28, 29]) of the
collected data.

In the case where only one time-sample is available,
that is, matrix Sisa 1 x P vector, the data model given
by (9) becomes

z=(A;0...0Ay)s+n, (10)

withz =z (1), s = s(t;) = (S(1, :))T and n = N(;, 1). In
the definitions above, we used the Matlab notations for
columns and rows selection operators. Equation (10) is a
vectorized representation of a N-dimensional CP data
model (see, e.g., [30] for details on the different CP
representations). It is worth noting that if only one
snapshot of the array is available, the N + 1 CP model
degenerates into an N-dimensional one.

B. CP Versus ESPRIT

We will next briefly contrast CP with ESPRIT for the
proposed array configuration. For fuller information on
this topic, the reader is referred to [1, 31] and the
references therein. Consider a two-level array composed
of L, subarrays, each of L, sensors. Denote by B;,, with [,
=1,...,L, the L; x P steering vector matrices for the
L, subarrays. With the notation introduced above,
it can be easily seen that B = A, and B;, = B, ®;,,
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(I, =2,...,L5), where
&, = diag <€j(2n//’L)ledg), - ej(zn//l)k,idg)) an

In (11), diag(.) denotes a square diagonal matrix with
the elements in the argument on its main diagonal. The
data measured on the L, subarrays can be represented by a
set of (L x K) matrices Z;,, (I, =1, ..., L)

Z, =B,S" + N, =A,;®,S" +N,, (12)

where N;, represents the additive noise on the /;th
subarray. With this new notation, the CP model (9) for the
considered two-level array becomes:

Z] A] N]

Z2 A](I>2 NZ
Zz=| . |=]|. ST+ | .

Z;, A®;, N,

= (A ©A)ST +N.

The standard ESPRIT algorithm [32] exploits the
invariance structure of the signal subspace for a single pair
of data matrices {Z;,, Z,, } and estimates the corresponding
matrix @ that links these two matrices’ respective signal
subspace. CP makes use of the entire dataset

{Z;,,vVl, =1, ..., Ly} simultaneously, thus exploiting
simultaneously the displacement invariance relationships
between all the subarrays, by using a multilinear model of
the data and the matrix A,. A multiple invariance ESPRIT
approach, using all available invariance, has also been
proposed in [32], leading to a nonlinear, computationally
complex optimization problem. More recently, a
tensor-ESPRIT approach was proposed in [4] for
multidimensional harmonic retrieval; however, unlike the
CP-based approach proposed in this paper, this method
requires a very particular array structure, presenting shift
invariances within each scale level.

(13)

IV. DATA MODEL IDENTIFIABILITY

Before presenting the proposed algorithm for DOA
estimation, a discussion on data model identifiability is in
order. In this paper, the term identifiability refers to the
nonambiguous estimation of the parameters of the CP
model from the collected data. We will focus on the
identifiability conditions for the estimation of the matrices
Ay, ...,Ayand S, from the data (9). A brief discussion
on the ambiguity problems when estimating the
direction-cosines from Ay, ..., Ay is provided in
Section V.

The main advantage of the CP method, compared to
other source separation approaches, is CP model
identifiability under only mild conditions. Kruskal [33]
derived a sufficient condition for identifiability in the
three-way CP model. This condition is based on a special
notion of matrix rank, called the Kruskal-rank or k-rank.
The k-rank of a matrix is the maximum number of
linearly independent columns that can be selected from
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that matrix in an arbitrary manner. Thus, the k-rank of a
matrix is at most equal to its classical rank. Kruskal’s
identifiability condition has been generalized later to
N-way arrays by Sidiropoulos and Bro [34]. If applied to
the data model given by (9), this condition states that the
matrices A, ..., Ay and S can be almost uniquely
estimated from Z if

N
> ka, +ks=2P+N,

n=1

(14)

where k() denotes the k-rank of a matrix. This estimation
is unique up to two trivial indeterminacies. The first
indeterminacy is an arbitrary simultaneous column
permutation of all N 4 1 matrices and implies that an a
priori defined order of the sources cannot be posteriori
determined. The second one is an arbitrary column
scaling/counterscaling and can be resolved by normalizing
each column of matrices Ay, ..., Ay by that column’s first
element.

If the P sources have distinct DOAs and are not fully
cross-correlated, the identifiability condition (14) can be
reformulated as

N
> min(L,, P)+min(K, P)=2P+N. (15

n=1

In general, the number of snapshots exceeds the number of
sources (i.e., K > P), in which case (15) becomes

N
Zmin(Ln,P) > P+ N. (16)

n=1

Furthermore, if L,, > P, Vn =1, ..., N (this could be
the case especially for a small N), the sufficient condition
will always be met if P, N > 2. This means that, for
sources that are noncollocated and also not fully
cross-correlated, the CP model identifiability can be
realized in most practical applications.

Another case of interest is when the array has at least
three scales of invariance. In this situation, the model can
be identified even with only a single snapshot, and
Kruskal’s condition reads:

N
Zmin(Ln, P)>2P+ N — 1.

n=1

a7

Meanwhile, if condition (14) does not hold, the
identifiability of (9) can no longer be ensured. In this case,
partial identifiability may apply, meaning that only some
of the parameters in (9) may be uniquely recovered. This
partial-identifiability Kruskal-like condition, for the
three-way CP model, has been derived in [35]. A
generalization of these results to N-way arrays has been
proposed in [36]. Specific identifiability conditions for the
case of fully coherent sources and/or collocated sources
could be derived from these results. However, this analysis
would be beyond the scope of this paper.
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V. DOA ESTIMATION

The DOA estimation procedure proposed in this paper
can be split into two stages. The first stage estimates the N
steering vectors a,(k,) (n =1, ..., N) for each of the P
sources (p =1, ..., P), by exploiting the CP structure (9)
of the collected data. In this first stage, an alternating
least-squares (ALS) procedure can be used to fit the CP
model. This ALS procedure recursively estimates one of
the N + 1 matrices Ay, ..., Ay, S, by fixing the other N
of them [28, 29]. The algorithmic steps of ALS can be
simply stated, but the algorithm suffers from slow
convergence and is sensitive to over- (and under-)
estimation of the number of sources. Improved versions of
ALS, using data compression and line search techniques
that partly mitigate these deficiencies, have been proposed
in [37-39]. Derivative-based methods or direct
(noniterative) procedures can likewise be employed to fit
the CP model [40]. Such CP decomposition methods have
been implemented in Matlab and are freely available
online (see, e.g., [41, 42]). This present paper’s
simulations will use the COMFAC approach of [38]
because of its algorithmic efficiency.

The second stage estimates the source’s
direction-cosines k,, p = 1, ..., P from the steering
vectors obtained at the previous stage. To this end, we
propose to formulate the DOA estimation as an
optimization problem and to adopt a new sequential
procedure that exploits all the available information from
the source’s steering vectors encompassing all scale levels.

Define the following cost functions:

T (k) = ”ﬁf —a (kp)|2

where 4} denotes the estimated steering vector at the nth
level for the pth source. Estimating the DOAs for the pth
source comes down to minimizing the following
criterion:

, with n=1,...,N, (18)

N
Iy (kp) = D Ju (Kp) - (19)
n=1
This function is nonconvex and highly nonlinear with
respect to the direction-cosines; hence, a direct local
optimization procedure would fail in most cases. We
propose to adopt a new sequential strategy to minimize
Zn(k,), progressing from one level to the next higher
level, using an iterative refinement of the direction-cosine
estimates within each level. The method is based on the
fact that, when noise-free, the N cost functions in (18)
have the same global minimum.

Assume that the level-1 subarrays’ intersensor
separations do not exceed half a wavelength. This
assumption is essential to obtaining a set of high-variance
but unambiguous direction-cosine estimates. On the
contrary, to achieve a practical advantage, it is important
that the spatial displacement between any two subarrays of
the highest level exceeds A/2, where A is the wavelength.
This will produce estimates of lower variance but with
cyclic ambiguity for the same set of direction-cosines. On
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the other hand, under the first assumption, the (k)
function is unimodal on the support region of the DOAs.
Therefore, any local optimization procedure should
converge toward the global minimum for the criterion.
Thus, we obtain another set of estimates, now of high
variance but with no cyclic ambiguity, for the DOAs, to be
denoted by k;l withp =1, ..., P. These estimates will
subsequently be used, in a second step, as the initial point
for the minimization of

T (kp) = Ji (kp) + 72 (k) - (20)

Because no assumption is made on the distances between
the level-2 subarrays, Z,(k,,) may present more than one
local minimum. Hence, a good initial estimate is crucial
for the optimization procedure. The estimates obtained by
the minimization of Z,(k,), denoted by k;,zv are then used

for the minimization of Z3(k,) = 2131:1 Ju(kp), and so
on, until the final estimates are obtained by the
minimization of Zy(Kk).

We emphasize the necessity of sequential iteration for
good results, going from level n to level n + 1. A direct
jump from a low hierarchical level (e.g., level 1) to a high
hierarchical level (e.g., level N) may result in erroneous
results, especially for low signal-to-noise ratios (SNRs).
The reason is that the number of local minima for 7, (K)
and Z,(Kk) increases with n and that the low-level estimates
have a high variance. Thus, the direct initialization of a
high-level parameter estimation step with a low-level
estimate may result in misconvergence toward a local
minimum instead of the global one.

This sequential minimization can be regarded as a
graduated nonconvexity (GNC) optimization approach
[43] because the criterion to minimize is gradually
transformed from Z; to Zy; the main difference from GNC
is that, in our approach, the criterion transformation is
determined a priori, by the intersensor/subarray spacings,
while in GNC, this transformation is user defined. A
sufficient condition ensuring the global minimization of
the nonconvex problem is that the initial convex problem
has a global minimum that can be reached and that each
intermediate subproblem has a global minimum lying in a
locally convex region that surrounds the next level’s global
minimum. The first requirement is met because the
interelement spacing of the level-1 subarray is <A/2,
resulting in a unimodal criterion ) (K). Regarding the
second requirement, it is difficult to determine whether it
is met because the shape of the criterion Jy (k) depends on
the array geometry. However, as the number of local
minima increases with the intersensor spacings, the
algorithm would likely reach the global minimum of the
criterion Jy(K), provided that the intersensor spacings of
the successive levels of the array do not change
excessively from one level to another level.

The proposed two-stage estimation algorithm can be
summarized as follows:
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Fig. 2. Spatial configuration of sensor array used in simulations of
sub-Section VIA.

FIRST STAGE: Estimate A, ..., Ay by CP decomposition
of the data Z or z, that is, see (9) or (10).
SECOND STAGE:
e Forp=1,...,Pand
forn=1,..., N, compute

k), = argmin Z, (k,) = argmln Z Ji (k
» ky o
e QOutput: the estimated parameters for the P sources:
k, =(lp,0p,wy) =k, y withp=1,..., P

2

The next section will illustrate the performance of the
proposed algorithm via Monte-Carlo simulations.

VI.  SIMULATION RESULTS AND DISCUSSION

First, we compare our approach with the two
ESPRIT-based methods developed in [2, 3]. In the second
part of this section, a comparison with another
tensor-based algorithm for harmonic estimation, that is,
tensor-ESPRIT of [4], is conducted.

A. Comparison With the ESPRIT-Based Approaches of
[2] and [3]

In this subsection, we compare our approach with the
dual-sized ESPRIT of [2] and the ESPRIT with
MUSIC-based disambiguation introduced in [3], using an
array configuration proposed by those same authors. The
Cramér-Rao bound (CRB) for the considered model,
derived in the Appendix, is used as a benchmark. The
sensor-array consists of a2 x 2 square grid at an extended
spacing of 104 and a five-element half-wavelength spaced
cross-shaped subarray at each grid point, as illustrated by
Fig. 2. We adopt this particular array configuration
because it is one of the configurations proposed in [2] and
[3] to which our approach is compared. Nevertheless, the
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method proposed in this paper is much more general
and does not require a regular grid or a regular shape
subarray, as shown in Section II. This array can be seen
as having two hierarchical levels with L; = 5 sensors

and L, = 4 subarrays, or as a three-level array with

Ly =5,L, =2,and L3 = 2. In [2], the sources’ DOAs

are estimated using an ESPRIT-based technique. Two
types of estimates (coarse-but-unambiguous vs.
fine-but-cyclically-ambiguous) are computed separately
(and in parallel) for each of the x and y axes of the
considered spatial grid, using four matrix pencils
altogether. The coarse-but-unambiguous estimates are then
used to disambiguate the fine-but-cyclically-ambiguous
DOA estimates. This procedure is followed by a pairing
step of the x-axis and y-axis direction-cosines of the
sources. In [3], the fine-but-cyclically-ambiguous DOA
estimates obtained by ESPRIT are disambiguated using a
MUSIC-like algorithm. The main advantage of this
approach over [2] is that there is no need for an explicit
derivation of any coarse reference estimate. Moreover, the
algorithm benefits from the superior accuracy of MUSIC
while avoiding its computational burden.

For the results presented in this subsection, the first
stage of the proposed algorithm is performed using the
COMFAC CP-fitting algorithm for complex valued
three-way arrays, available at http://www.telecom.
tuc.gr/~nikos/. For the second stage, the minimization of
7, in (21) is done by the Nelder-Mead simplex algorithm,
initialized by the estimates of the previous step k* bl
Random values, within the parameters’ respective support
regions, are used to initialize the minimization of 7 = 7.

The considered signal scenario involves two
equal-power narrowband signals impinging respectively
from (u; = 0.83, v; = 0.17) and (4, = 0.13, v, = 0.79).
There are / = 500 independent Monte-Carlo runs for each
data point plotted on the figures. The additive white noise
is complex-value Gaussian distributed. All the figures plot
the composite root-mean-square-error (CRMSE) of the
sources’ Cartesian direction-cosine estimates versus SNR.
This CRMSE is defined as

! u “u,pii " T, pi i + 812J p,i

z ,

(22)

where §,,,, (8., ,;) symbolizes the error in estimating the
pth source’s x-axis (y-axis) direction-cosine during the ith
run.

The pth source’s signal model used for the simulations
represented on Figs. 36 is

j(27‘r %ﬂr(pl,)

sp(t) = a,(t) e\ , (23)

where a,(?) is a zero-mean unit-variance complex-value
time series, Gaussian distributed, and temporally white;
¢, is a random variable uniformly distributed between

[0, 27]; and f; = f> = 1. In Figs. 3-5, the two complex
signals—a (t) and a,(f)—are statistically independent. All
random entities are statistically independent of each other.
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Fig. 3. Statistically independent sources: CRMSE versus

signal-to-noise power ratio (SNR).

The first experiment evaluates the performance of the
three algorithms for different SNRs in the case of
statistically independent sources. Figs. 3a and 3b plot the
CRMSE for K = 5 and K = 20 snapshots, respectively.
For high SNRs, the two approaches yield similar results,
very close to the CRBs. However, at low SNRs, the
proposed algorithm outperforms the ESPRIT-based
algorithms. This advantage is more obvious at small
values of K. The explanation is that our method estimates
also the incident signals’ temporal waveforms. This is not
the case for the methods in [2, 3], which average over the
time dimension to estimate the data spatial covariance
matrix. Thus, CP estimates only (L; + L, + K)P number
of parameters, but L; L, P for ESPRIT. Roughly speaking,
our algorithm provides better results compared to the other
methods for small values of K. Fig. 4 further illustrates
this statement using different numbers of snapshots K =
{2,3,...,19,20, 30, 40, ...,90, 100} for an SNR of
15 dB. It can be observed that the multiscale CP approach
produces more accurate results for a number of snapshots
fewer than about K = 11, which agrees with the simplified
analysis above.
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Fig. 5. Statistically independent sources: CRMSE versus

signal-to-noise power ratio (SNR) using one temporal snapshot.

The second experiment demonstrates the applicability
of the proposed algorithm for a single snapshot. However,
the (N 4+ 1)-way CP model now degenerates into an
N-way one, as shown by (10). Therefore, the array
depicted on Fig. 2 is now seen as a three-level array, where
the first level is the five-element cross-shaped subarray (L
=5), the second level is composed of two such subarrays,
aligned along the x-axis (L, = 2), and the third level
consists of two level-2 subarrays (L3 = 2). Fig. 5 plots the
results for the three methods under the single-snapshot
scenario. It can be seen that the proposed method still
yields fair results, while ESPRIT and ESPRIT-MUSIC are
unusable here.

In a third experiment, we study the behavior of the
three approaches for cross-correlated sources. For that, we
simulated two sources with a cross-correlation coefficient
of 0.83 between a;(7) and a,(7). The numerical simulation
results are plotted in Fig. 6. Once again, the proposed
algorithm outperforms the ESPRIT-based methods. This is
because, in this case, the source covariance matrix is no
longer diagonal, which violates a restriction in the model
used in [2] and [3], while entirely allowed by our CP
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Fig. 6. Cross-correlated sources: CRMSE versus signal-to-noise power
ratio (SNR).

approach. However, a strong cross-correlation between
sources may cause problems for our algorithm with
convergence, especially for a low SNR and a small
number of snapshots, as one can see in Fig. 6a. Anyway, in
this case, the ESPRIT-MUSIC also gives inaccurate results
even for high SNRs. This is because the cross-correlation
causes, for the MUSIC disambiguation procedure of [3],
inaccurate estimation of the signal subspace and the noise
subspace.

B. Comparison With the Tensor-ESPRIT Approach of [4]

In this subsection, our approach is compared to the
R-dimensional (R-D) standard tensor-ESPRIT and the R-D
unitary tensor-ESPRIT developed in [4]. The main
difference between the two tensor-ESPRIT algorithms is
that R-D unitary tensor-ESPRIT uses a forward-backward
averaging preprocessing step that virtually doubles the
number of available snapshots without sacrificing the
array aperture.

In order to apply R-D tensor-ESPRIT-type methods,
the sensor array must feature shift invariances in each of
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Fig. 7. Spatial configuration of sensor array used in simulations of

sub-Section VIB.

its modes; let us mention once again that this geometrical
constraint is not required by our CP-based method. For the
numerical experiments presented in this subsection, the
simulated array consists of a 3 x 3 uniform square grid at
an extended spacing of A and a 3 x 3 half-wavelength
spaced uniform square subarray at each grid point, as
illustrated by Fig. 7. In all simulations, except for the ones
presented on Fig. 10, the value of A is set to 104.

For the proposed approach, this array can be seen as
having four hierarchical levels with Ly = L, = L3 = Ly =
3, and the steering vectors of the pth signal for each level
are

a) (Mp) = [ ]ﬂup ]7!2u,,]T
a (vp) = [17 el v, /nzup]T’
as (up) = [1’ ej%zup]T’
a (Up) = |:]7 ejZHTAZv,,]T

It is worth noting that the direction-cosines u,, p =1, ...
P are only involved in the level-1 and level-3 subarrays,
while direction-cosines v,, p =1, ... P are involved in
only the level-2 and level-4 subarrays. Thus, the four-level
minimization problem can be decoupled into two
independent two-level minimization problems.

For R-D tensor-ESPRIT, a total number of 3* = 81
sensors, are distributed among N = 4 dimensions
(3 x 3 x 3 x 3) with uniform spacing in all modes. The
tensor-based signal subspace U!*!, defined in (21) of [4], is
firstly found by any higher-order singular value
decomposition-based low-rank approximation of the
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measurement tensor Y € C3*3x3x3xK .

P
Y=> a(uy)om (vp) oas (uy) oas(vy) os, + N,
p=1
24
where s, = [s,(t1), ..., sp(tK)]T denotes the pth signal,
N € CP3x33xK ig the noise tensor, and o symbolizes the
tensor outer product; see (1) in [4].

As already mentioned, the tensor-ESPRIT requires a
shift invariance in each of the N dimensions. For the array
in Fig. 7, in the nth mode (n = 1, ... , 4), the subarray
consisting of the first two component-sensors of a,(-) and
the subarray consisting of the last two component sensors
of a,(-) are shift invariant. Once the tensor-based signal
subspace is obtained, the shift invariance equations for all
four modes can be formulated as in (32) of [4]. These
shift-invariance equations can be explicitly solved as
shown by (34) of [4]. Then, the coarse-but-unambiguous
estimates of direction-cosines can be found by
solving the shift-invariance equations associated with
the first two modes a;(u,) and a>(v,); and the
fine-but-cyclically-ambiguous estimates of the
direction-cosines can be found by solving the
shift-invariance equations associated with the last two
modes az(u,) and a4(v,). To disambiguate the fine
estimates, a disambiguation step like the one proposed in
[2] is adopted.

For the results presented in this subsection, the first
stage of our CP-based algorithm is performed using the
Tensorlab toolbox [42]. For the second stage, the
minimization of Z, in (21) is done by the Nelder-Mead
simplex algorithm, initialized by the estimates of the
previous step k, , ;. Random values, within the
parameters’ respective support regions, are used to
initialize the minimization of 7; = 7.

The considered signal scenario in this subsection
involves two equal-power narrowband sources impinging
respectively from (u; = 0.83, vy = 0.17), and (u; = 0.13,
vy = 0.79). There are I = 1000 independent Monte-Carlo
runs for each data point on the figures. The additive white
noise is complex-value Gaussian distributed. For a fuller
comparison, we added on the plots presented in this
sections the results for the dual-size ESPRIT of [2].

The first experiment evaluates the performance of the
four considered algorithms for different SNRs, in a
statistically independent sources scenario. Figs. 8a and 8b
plot the CRMSE for 10 and 50 snapshots, respectively. At
low SNRs and for a small number of snapshots, the
proposed method performs better than the ESPRIT-based
algorithms. As expected, when the SNR and/or the
number of snapshots increases (Fig. 8b), all the methods
present similar performance.

In the second experiment, we compare our CP method
with the other algorithms for a fixed SNR of 6 dB and
various numbers of snapshots K. Fig. 9 shows that the
proposed algorithm can give better results than
tensor-ESPRIT and dual-sized ESPRIT where only a
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Fig. 9. Statistically independent sources: CRMSE versus number of
snapshots when SNR = 6 dB.

small number of snapshots is available. As the number of
snapshots increases, all the considered approaches yield
similar results.

In a third experiment, the behavior of the four methods
is analyzed with respect to the intergrid spacing A, which
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Fig. 11. Statistically independent sources: CRMSE versus

signal-to-noise power ratio (SNR) using one temporal snapshot.

varies within the range [0, 15] A/2; the SNR is set to 6 dB;
and the number of samples K = 5. It can be observed in
Fig. 10 that our algorithm (more precisely, the
disambiguation stage of our algorithm) is generally more
robust to the intergrid spacing than the disambiguation
procedure used by the ESPRIT-based methods. However,
as A increases, all methods fail. This phenomenon can be
avoided, for the proposed approach, by gradually
increasing the intergrid spacing across the four scale
levels, as explained in Section V.

Fig. 11 illustrates the results of the fourth experiment,
which evaluates the considered algorithms in the
single-snapshot scenario. In this case, prior to using
tensor-ESPRIT, a tensor-based spatial smoothing
preprocessing step, as developed in Section VI of [4], is
applied. It can be observed that our method and the two
tensor-ESPRIT algorithms produce similar results, while
the approach in [2] fails completely, as expected.

In the last experiment, we compare the proposed
approach to the others in the difficult scenario of fully
cross-correlated sources. Figs. 12a and 12b plot the results
of this experiment, with respect to the SNR for two
different number of snapshots K = 10 and K = 50,
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respectively. As before, to apply tensor-ESPRIT in this
case, a tensor-based spatial smoothing preprocessing, as
developed in Section VI of [4], is necessary. The two
figures show that, even for cross-correlated sources, our
method performs better at low SNR (<10 dB in these
simulations) than tensor-ESPRIT. The difference in the
estimation accuracy between the CP-based method and
tensor-ESPRIT, at low SNR, becomes even more
pronounced as the number of available snapshots increases
(Fig. 12b). It can also be observed that dual-size ESPRIT
is inapplicable in this case.

C. Discussion

‘We have shown in this section that, on two different
array configurations and for diverse scenarios, the
proposed approach provides more accurate results than the
methods in [2, 3] and the tensor-ESPRIT approach of [4].
For the simulations presented in sub-Section VIA, the gain
in the estimation accuracy comes at the expense of a
smaller number of sources that can generally be estimated
by our method. For a Q; x Q, grid of five-element
half-wavelength spaced cross-shaped subarrays, the

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 3 JULY 2015



approaches in [2, 3] can handle only up to
P =min{5(Q1 -1 0>—1,50:(Q2—1)
—1,20:0, - 1}

not fully cross-correlates sources, while the number of
sources P that can be handled by our approach is given by

min (5, P) + min(Q1Q», P) + min (K, P) > 2P + 2.
(26)

(25)

For the array configuration used in this section, both
approaches can handle up to seven sources, but if the size
of the grid increases, the number of sources that can be
estimated by ESPRIT would increase.

For the array configuration used in sub-Section VIB, in
the case of multiple snapshots and not fully
cross-correlated sources, a similar analysis shows that our
CP-based method can handle up to eight sources;
meanwhile, at most min{81, K} sources can be estimated
by standard tensor-ESPRIT and at most min{81, 2K}
sources by unitary tensor-ESPRIT. This analysis becomes
more complicated for tensor-ESPRIT when the spatial
smoothing procedure is applied. A drawback of the
proposed method is the computational burden, which is
generally heavier than for the ESPRIT-based methods.
However, powerful CP-fitting algorithms [38, 40] have
been developed in recent years, and they significantly
improve the convergence speed. Moreover, closed-form
solutions exist for CP decompositions [44] that are
particularly efficient for Vandermonde-structured data [45,
46], which frequently appears in array processing, and that
allow a computational complexity equivalent to ESPRIT’s.
Nevertheless, for the approaches in [2, 3], two pairing
procedures (that may fail for difficult scenarios) are
necessary to identify the source parameters. For
tensor-ESPRIT, the pairing of the sources across the
modes is accomplished by a simultaneous diagonalization
algorithm that may exhibit convergence problems. This
pairing step is no longer needed with our method because
it is implicitly accomplished by the CP decomposition.
Compared to tensor-ESPRIT, our algorithm is more
flexible because it can be applied to arrays that do not
present the shift-invariance feature in each mode, for
example, the arrays represented in Figs. 1 and 2.

VIl.  CONCLUSIONS

This paper introduces a new sensor-array configuration
for DOA estimation based on a scale-invariance principle;
and we prove that the data acquired by this array follows a
multidimensional CP structure. Our analysis proves that
this model is identifiable, under only mild conditions that
may be met readily in practical applications. A two-stage
algorithm for DOA estimation with such an array is
proposed and compared with the ESPRIT-based approach
developed in [2] and to the ESPRIT-MUSIC algorithm in
[3]. Our Monte Carlo simulations verify that our proposed
method produces lower mean-square errors than the two
earlier ESPRIT-based approaches [2, 3], especially for the
case of few snapshots and the case of cross-correlated
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sources. Moreover, unlike the ESPRIT-based approaches
in [2, 3], this proposed algorithm can also be applied to the
single-snapshot scenario. Unlike the tensor-ESPRIT
approach of [4], our algorithm is not limited to arrays
presenting shift invariance in each mode; the numerical
simulations show that the proposed method yields more
accurate results than tensor-ESPRIT at low SNR and for a
small number of samples.

APPENDIX. DERIVATION OF THE FISHER
INFORMATION MATRIX FOR THE DATA MODEL IN
SECTION VI

The K snapshots, collected by the L-element array
using a sampling period T can be written as

P
z=[uT)", -, z(K'TS)T]T = Zsp ®a(k,)
p=1

+ @), kT,

def
=n

27

where s, = [s,(T5), - - -, sp(KTS)]T, ® symbolizes the
Kronecker product, and n represents a LK x 1 noise
vector. All unknown but deterministic entities are collected
intoa 2P x 1 vector ¥ = [uy,...,up,vy,...,vp]. The
resulting Fisher information matrix J has its (i, j)th entry
equal to (i.e., (8.34) in [47])

aR IR
= K Tr| R SR (28
[J ), ; r|: “oyl 8[1#]‘,-:| Y

where R, represents the data spatial covariance matrix
and Tr[.] symbolizes the matrix trace operator.

The received data’s spatial covariance matrix, at a
given time instant kT, is given by

def

R.. = E{zT)2kT)"} =T+ Tui, (29
where
def P
Ly = E Zsp (kTs)®ap (kp)
p=1
H
P
Y s, kTy®a, (k)| f. (0
p=1
. 2 E (nkT)nkT)"} = 021, 31)

respectively denote the sources’ and noise’s spatial
covariance matrices, with the noise’s variance represented
as o and I, symbolizing an L x L identity matrix. We
conclude that:

1) For two zero-mean unit-variance complex-value
Gaussian signals that are statistically independent
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(Figs. 3-5),

with the pth source’s variance as o

2

2, oH

I, = E o,apa,,
p=1

2
p-

2) For two cross-correlated zero-mean unit-variance

complex-value Gaussian signals with a cross-correlation
coefficient p (Fig. 6),

2

H H 2. H

Ty, = pojoy (a1a) + aay’) + E o,a,a.
p=l1

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[91

[10]

[11]

2068

Sidiropoulos, N. D., Bro, R., and Giannakis, G. B.
Parallel factor analysis in sensor array processing.
IEEE Transactions on Signal Processing, 48, 8 (Aug. 2000),
2377-2388.

Wong, K. T., and Zoltowski, M. D.
Direction-finding with sparse rectangular dual-size spatial
invariance arrays.
IEEE Transactions on Aerospace and Electronic Systems, 34,
4 (Oct. 1998), 1320-1336.

Zoltowski, M. D., and Wong, K. T.
Closed-form eigenstructure-based direction finding using
arbitrary but identical subarrays on a sparse uniform cartesian
array grid.
IEEE Transactions on Signal Processing, 48, 8 (Aug. 2000),
2205-2210.

Haardt, M., Roemer, F., and Del Galdo, G.
Higher-order SVD-based subspace estimation to improve the
parameter estimation accuracy in multidimensional harmonic
retrieval problems.
IEEE Transactions on Signal Processing, 56, 7 (Jul. 2008),
3198-3213.

Bienvenu, G., and Kopp, L.
Principe de la goniométrie passive adaptative.
In Proceedings 7° Colloque sur le traitement du signal et des
images, GRETSI, Nice, France, 1979.

Schmidt, R. O.
A signal subspace approach to multiple emitter location and
spectral estimation. Ph.D. dissertation, Stanford University,
Stanford, CA, 1981.

Roy, R., and Kailath, T.
ESPRIT-estimation of signal parameters via rotational
invariance techniques.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37, 7 (Jul. 1989), 984-995.

Liang, J., Yang, S., Zhang, J., Gao, L., and Zhao, F.
4D near-field source localization using cumulant.
EURASIP Journal on Advances in Signal Processing, 2007, 1
(Jan. 2007), 1-10.

Liang, J.
Joint azimuth and elevation direction finding using cumulant.
IEEE Sensors Journal, 9, 4 (Apr. 2009), 390-398.

Guo, X., Miron, S., and Brie, D.
Three-way array analysis on polarized signals for
direction-finding and blind source separation.
In Proceedings IAR 2007, Grenoble, France, Nov. 2007.

Zhang, X., and Xu, D.
Deterministic blind beamforming for electromagnetic vector
Sensor array.
Progress in Electromagnetics Research, 84 (2008),
363-377.

(32)

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Guo, X., Miron, S., Brie, D., Zhu, S., and Liao, X.

A CANDECOMP/PARAFAC perspective on uniqueness of
DOA estimation using a vector sensor array.

IEEE Transactions on Signal Processing, 59,7 (Jul. 2011),
3475-3481.

Miron, S., Guo, X., and Brie, D.

DOA estimation for polarized sources on a vector-sensor array
by PARAFAC decomposition of the fourth-order covariance
tensor.

In Proceedings 16th EUSIPCO, Lausanne, Switzerland, Aug.
2008.

Gong, X.

Source localization via trilinear decomposition of cross
covariance tensor with vector-sensor arrays.

In Proceedings 2010 Seventh International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD 2010),
Yantai, Shandong, China, Aug. 2010.

Nion, D., and Sidiropoulos, N.

A PARAFAC-based technique for detection and localization
of multiple targets in a MIMO radar system.

In Proceedings. of IEEE International Conference on
Acoustics, Speech, and Signal Processing 2009, Taipei, Apr.
2009, 2077-2080.

Gong, X.-F,, Liu, Z.-W., and Xu, Y.-G.

Regularised parallel factor analysis for the estimation of
direction-of-arrival and polarisation with a single
electromagnetic vector-sensor.

IET Signal Processing, 5, 4 (Jul. 2011), 390-396.

Zhang, X., Ben, D., and Chen, C.

Coherent angle estimation in bistatic multi-input multi-output
radar using parallel profile with linear dependencies
decomposition.

IET Radar Sonar & Navigation, 7, 8 (Oct. 2013), 867-874.

Miron, S., Le Bihan, N., and Mars, J. L.

Vector sensor MUSIC for polarized seismic sources
localization.

EURASIP Journal on Advances in Signal Processing, 2005, 1
(Jan. 2005), 74-84.

Gong, X., Liu, Z., Xu, Y., and Ahmad, M. L.

Direction-of-arrival estimation via twofold mode-projection.
Signal Processing, 89, 5 (May 2009), 831-842.

Boizard, M., Ginolhac, G., Pascal, F., Miron, S., and Forster, P.
Numerical performance of a tensor music algorithm based on
HOSVD for a mixture of polarized sources.
In Proceedings 21st European Signal Processing Conference
(EUSIPCO 2013), Marrakech, Morocco, Sep. 2013.

Lim, L.-H., and Comon, P.
Blind multilinear identification.
IEEE Transactions on Information Theory, 60, 2 (Feb. 2014),
1260-1280.

Sundaram, K., Mallik, R., and Murthy, U.

Modulo conversion method for estimating the direction of
arrival.

IEEE Transactions on Aerospace and Electronic Systems, 36,
4 (Oct. 2000), 139-1396.

Goodman, N., and Stiles, J.

Resolution and synthetic aperture characterization of sparse
radar arrays.

IEEE Transactions on Aerospace and Electronic Systems, 39,
3 (Jul. 2003), 921-935.

Athley, F., Engdahl, C., and Sunnergren, P.

On radar detection and direction finding using sparse arrays.
IEEE Transactions on Aerospace and Electronic Systems, 43,
4 (Oct. 2007), 1319-1333.

Liao, B., and Chan, S.-C.

Direction-of-arrival estimation in subarrays-based linear
sparse arrays with gain/phase uncertainties.

IEEE Transactions on Aerospace and Electronic Systems, 49,
4 (Oct. 2013), 2268-2280.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 3 JULY 2015



[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

MIRON ET AL.: MULTILINEAR DIRECTION FINDING FOR SENSOR-ARRAY WITH MULTIPLE SCALES OF INVARIANCE

Hu, N., Ye, Z., Xu, X., and Bao, M.

DOA estimation for sparse array via sparse signal
reconstruction.

IEEE Transactions on Aerospace and Electronic Systems, 49,
2 (Apr. 2013), 760-773.

Pal, P, and Vaidyanathan, P. P.

Nested arrays: A novel approach to array processing with
enhanced degrees of freedom.

IEEE Transactions on Signal Processing, 58, 8 (Aug. 2010),
4167-4181.

Harshman, R. A.

Foundations of the PARAFAC procedure: Models and
conditions for an ‘explanatory’ multimodal factor analysis.
UCLA Working Papers in Phonetics, 16 (Dec. 1970), 1-84.

Carroll, J. D., and Chang, J.-J.
Analysis of individual differences in multidimensional scaling
via an N-way generalization of “Eckart-Young”
decomposition.
Psychometrika, 35, 3 (Sep. 1970), 283-319.

Kolda, T. G., and Bader, B. W.
Tensor decompositions and applications.
SIAM Review, 51, 3 (Sep. 2009), 455-500.

Bro, R., Harshman, R. A., Sidiropoulos, N. D., and Lundy, M. E.
Modeling multi-way data with linearly dependent loadings.
Journal of Chemometrics, 23, 7-8 (Jul.-Aug. 2009), 324-340.

Swindlehurst, A. L., Ottersten, B., Roy, R., and Kailath, T.
Multiple invariance ESPRIT.

IEEE Transactions on Signal Processing, 40, 4 (Apr. 1992),
867-881.

Kruskal, J. B.

Three-way arrays: Rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and
statistics.

Linear Algebra and Its Applications, 18, 2 (1977), 95-138.

Sidiropoulos, N. D., and Bro, R.

On the uniqueness of multilinear decomposition of N-way
arrays.
Journal of Chemometrics, 14, 3 (2000), 229-239.

Guo, X., Miron, S., Brie, D., and Stegeman, A.

Uni-mode and partial uniqueness conditions for
CANDECOMP/PARAFAC of three-way arrays with linearly
dependent loadings.

SIAM Journal on Matrix Analysis and Applications, 33, 1
(2012), 111-129.

Zhang, L., Huang, T.-Z., Zhu, Q.-F., and Feng, L.

Uni-mode uniqueness conditions for
CANDECOMP/PARAFAC decomposition of n-way arrays
with linearly dependent loadings.

Linear Algebra and Its Applications, 439, 7 (Oct. 2013),
1918-1928.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Bro, R., and Andersson, C. A.
Improving the speed of multiway algorithms. Part II:
Compression.
Chemometrics and Intelligent Laboratory Systems, 42, 1-2
(1998), 105-113.

Bro, R., Sidiropoulos, N. D., and Giannakis, G. B.
A fast least squares algorithm for separating trilinear mixtures.
In Proceedings of the International Workshop
Independent Component Analysis and Blind Signal
Separation (ICA’99), Aussois, France, Jan.
1999.

Rajih, M., Comon, P., and Harshman, R. A.
Enhanced line search: A novel method to accelerate
PARAFAC.
SIAM Journal on Matrix Analysis and Applications, 30, 3
(Jan. 2008), 1128-1147.

Tomasi, G., and Bro, R.
A comparison of algorithms for fitting the PARAFAC model.
Computational Statistics & Data Analysis, 50 (2006),
1700-1734.

Andersson, C. A., and Bro, R.
The N-way toolbox for MATLAB.
Chemometrics and Intelligent Laboratory Systems, 52 (2000),
1-4.

Sorber, L., Van Barel, M., and De Lathauwer, L.
Tensorlab v1.0.
Available: http://esat.kuleuven.be/sista/tensorlab/.
Accessed Feb. 2013.

Blake, A., and Zisserman, A.
Visual Reconstruction (Artificial Intelligence Series).
Cambridge, MA: MIT Press, 1987.

Roemer, F., and Haardt, M.
A closed-form solution for parallel factor (PARAFAC)
analysis.
in Proceedings of ICASSP, Las Vegas, NV, Mar. 2008,
2365-2368.

Sorensen, M., and De Lathauwer, L.
Tensor decompositions with Vandermonde factor and
applications in signal processing.
In Proceedings of the Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA,
Nov. 2012.

Sorensen, M., and De Lathauwer, L.,
Blind signal separation via tensor decomposition with
Vandermonde factor: Canonical polyadic decomposition.
1IEEE Transactions on Signal Processing, 61, 22 (Nov. 2013),
5507-5519.

Van Trees, H. L. Detection, Estimation, and Modulation Theory,
Part IV: Optimum Array Processing. New York, NY: John
Wiley & Sons, Inc., 2002.

Sebastian Miron graduated from Technical University of Iasi, Romania, in 2001 and
received the M.Sc. and Ph.D. degrees in signal, image, and speech processing from the

Institut National Polytechnique of Grenoble, France, in 2002 and 2005, respectively. He
is currently a maitre de conférence (associate professor) at Université de Lorraine,
France, and he is conducting research at the Centre de Recherche en Automatique de

7 Nancy (CRAN), Nancy, France.

5 He was conferred the Best Ph.D. Award by the Institut National Polytechnique of
: Y Grenoble in 2005. He is on the editorial board of Physical Communication journal since
{, ' 2012. His current research interests include vector-sensor-array processing,
spectroscopy and microscopy data processing, positive source separation,
multidimensional signal processing, and multilinear algebra.

2069



Yang Song obtained his B. Eng. degree in Communication Engineering in 2007 from
Zhejiang University City College, Hangzhou, Zhejiang, China. He received an M.Eng.
in 2008 and a Ph.D. in 2013, both in electronic and information engineering, from the
Hong Kong Polytechnic University, where he was a Research Associate until January
2014. Thereafter, he has been a visiting researcher at Universitat Paderborn, Paderborn,
North Rhine-Westphalia, Germany. His research interest relates to space-time signal
processing.

David Brie received the Ph.D. degree in 1992 and the Habilitation a Diriger des
Recherches degree in 2000, both from the Henri Poincaré University, Nancy, France. He
is currently full professor at the Department of Telecommunications and Networking of
the Institut Universitaire de Technologie, Université de Lorraine, France.

He is editor-in-chief of the Traitement du Signal journal since 2013. Since 1990, he
has been with the Centre de Recherche en Automatique de Nancy, France. His research
interests mainly concern inverse problems and multidimensional signal processing.

Kainam Thomas Wong (SM’01), earned the B.S.E. degree in chemical engineering
from the University of California, Los Angeles, California, in 1985, the B.S.E.E. degree
from the University of Colorado, Boulder, Colorado, in 1987, the M.S.E.E. degree from
the Michigan State University, East Lansing, Michigan, in 1990, and a Ph.D. degree in
electrical and computer engineering from Purdue University, West Lafayette, Indiana,
in 1996.

He was a manufacturing engineer at the General Motors Technical Center, Warren,
Michigan, from 1990 to 1991, and a senior professional staff member at the Johns
Hopkins University Applied Physics Laboratory, Laurel, Maryland, from 1996 to 1998.
He was a regular member of the faculty at Nanyang Technological University,
Singapore, in 1998, the Chinese University of Hong Kong in 1998-2001, and the
University of Waterloo, Waterloo, Ontario, Canada, in 2001-2006. Since 2006, he has
been with The Hong Kong Polytechnic University as an associate professor.

He was on the editorial boards of Circuits, Systems, and Signal Processing in
2007-2009, the IEEE Signal Processing Letters in 20062010, the IEEE Transactions
on Aerospace and Electronic Systems since 2012, the IEEE Transactions on Signal
Processing in 2008-2012, the IEEE Transactions on Vehicular Technology in
2007-2013, Physical Communication in 2012-2014, IET Microwaves, Antennas &
Propagation since 2014, and IET Radar, Sonar & Navigation since 2015. He is an
elected member of the IEEE Signal Processing Society’s technical committee on sensor
and multichannel processing (SAM), for 2013-2015. His research interest includes
sensor-array signal processing and signal processing for communications. He was
conferred the Premier’s Research Excellence Award by the Canadian province of
Ontario in 2003.

2070 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 3 JULY 2015



