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MUSIC Algorithm for Vector-Sensors Array
Using Biquaternions

Nicolas Le Bihan, Sebastian Miron, and Jérôme I. Mars

Abstract—In this paper, we use a biquaternion formalism to
model vector-sensor signals carrying polarization information.
This allows a concise and elegant way of handling signals with
eight-dimensional (8-D) vector-valued samples. Using this model,
we derive a biquaternionic version of the well-known array
processing MUSIC algorithm, and we show its superiority to
classically used long-vector approach. New results on biquaternion
valued matrix spectral analysis are presented. Of particular in-
terest for the biquaternion MUSIC (BQ-MUSIC) algorithm is the
decomposition of the spectral matrix of the data into orthogonal
subspaces. We propose an effective algorithm to compute such an
orthogonal decomposition of the observation space via the eigen-
value decomposition (EVD) of a Hermitian biquaternionic matrix
by means of a newly defined quantity, the quaternion adjoint ma-
trix. The BQ-MUSIC estimator is derived and simulation results
illustrate its performances compared with two other approaches
in polarized antenna processing (LV-MUSIC and PSA-MUSIC).
The proposed algorithm is shown to be superior in several as-
pects to the existing approaches. Compared with LV-MUSIC, the
BQ-MUSIC algorithm is more robust to modelization errors and
coherent noise while it can detect less sources. In comparaison with
PSA-MUSIC, our approach exhibits more accurate estimation of
direction of arrival (DOA) for a small number of sources, while
keeping the polarization information accessible.

Index Terms—Biquaternions and biquaternion-valued matrices,
Biquaternion MUSIC (BQ-MUSIC), eigenvalue decomposition
(EVD) of biquaternionic matrices, vector-sensor array processing.

I. INTRODUCTION

THE vector-sensors are now of common use in different
applications such as electromagnetics, communications,

seismic sensing, seismology, etc. These sensors record the
components of the observed nonisotropic field and allow the
recovery of polarization information. Depending on the applica-
tion and the type of sensors, one can record two (two-component
sensors) to six (three components of and three components
of for electromagnetic wave fields) signals on a collocated
sensor. The use of such sensors has proved its advantages in
increasing the performances of classical algorithms (due to
the redundancy of signals on the different components) and
represents at the same time the only possibility to recover
polarization information. There is a large number of studies on
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the extensions of classical signal/array processing techniques
to the vector-sensor case (see [1] and references therein).
Further, high-resolution array processing algorithms were
studied for the multicomponent case, mainly by Nehorai [2],
[3], Wong and Zoltowski [1], [4]–[7] and Li ([8]–[11]), for
different configurations and both for MUSIC- and ESPRIT-like
algorithms. Furthermore, the performances of vector-sensor
arrays were analyzed and quantified in [3] and [12]. In all these
contributions considering arrays of vector-sensors, the vector
dimension of the recorded signals was unfolded along the
distance (related to the number of sensors/aperture of the array)
dimension, resulting in the so-called “long-vector” approach.
This way of processing data originated from vector-sensors
has the main advantage of allowing, together with a rather
complicated parametrization of the data, the use of well-known
matrix algebra techniques over the real or the complex field.
However, the “long-vector” approach has the drawback of
destroying locally the vector-type of the signal because of the
reorganization of the data into a large vector.

In this paper, we propose an alternative way to process
signals from vector-sensor arrays. Instead of reorganizing data
into long vectors, we introduce a hypercomplex model for
multicomponent signals impinging on vector-sensors. This
model is based on biquaternions (quaternions with complex
coefficients) and allows the processing of multicomponent
signals using linear algebra algorithms over the biquaternions.
Consequently, the derivation of high-resolution techniques for
vector-sensors array is possible. We illustrate our approach by
deriving a Biquaternion MUSIC (BQ-MUSIC)-like algorithm
for this type of arrays. The use of biquaternions allows us to
skip the parametrization step used in long-vector techniques [3]
as it intrinsically includes the vector dimension in the process.
The authors previously proposed the use of quaternions to
process vector-sensor signals [13], [14]. In [13], a quaternion
model for three-components vector-sensor signals was used and
a subspace method was derived in the time domain, allowing
denoising of polarized waves. In [14], only two-component
vector-sensors arrays were considered. A quaternion modeliza-
tion of the output signals was used and a MUSIC algorithm
derived for direction-of-arrival (DOA) and polarization pa-
rameters estimation. The proposed technique in this paper is
a generalization of the one presented in [14] to the case of
three-component vector-sensor arrays. The use of biquater-
nions for signal modelization leads to new problems, such as
the diagonalization of the biquaternionic sample covariance
matrix. An original technique is proposed for this task.

Since biquaternions have not been widely studied in litera-
ture, there is a lack of known results on matrices with biquater-
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nion coefficients. We present here some novel results about
such matrices with emphasis on eigenvalue decomposition.
We provide a way to compute the eigenvalue decomposition
of a Hermitian biquaternion valued matrix and show its ap-
plication in a biquaternion MUSIC algorithm. The proposed
biquaternion MUSIC algorithm is then compared with the clas-
sical long-vector MUSIC and to the Polarization Smoothing
Algorithm (PSA)-MUSIC algorithm [15]; its superiority in
computational/robustness/resolution issues is demonstrated on
numerical examples.

The biquaternion approach developed here is part of a new
way of considering vector-sensor signals, whose global un-
derlying philosophy consists in considering that these signals
evolve on extended algebraic structures, rather than trying to
make the signal fit the already existing algorithms/concepts.1

The paper is organized as follows. In Section II, we introduce
biquaternions and their basic properties. Then in Section III, we
present a detailed study of biquaternion valued matrices with
particular attention to the eigenvalue decomposition problem.
This decomposition is introduced, and the link with orthogonal
decomposition and rank properties are illustrated. In Section IV,
the biquaternion model for polarized waves recorded on three-
component vector-sensor arrays is introduced. This model,
together with the eigenvalue decomposition (EVD) allows the
definition of a BQ-MUSIC algorithm described in Section V.
Simulation results and comparisons with the long-vector
approach and PSA-MUSIC are enlightened in Section VI. Con-
cluding remarks about this work are presented in Section VII.

II. BIQUATERNIONS

Biquaternions, also known as “complexified quaternions,”
are an eight-dimensional (8-D) algebra and consist of quater-
nion numbers with complex coefficients. They were discovered
by Hamilton in 1853 [17]. While Hamilton’s (real) quaternions
[18] are noted , the set of complex quaternions is noted

[19].
Definition 1: A complexified quaternion is given by

(1)

where and with elements of defined as

(2)

with and , . The following standard
relations between imaginary quaternion units hold:

(3)

with, in addition, the following relations between complex
imaginary unit and quaternion imaginary units:

(4)

1This approach has to be put in parallel with the one developed by Manton
[16], who developed the processing of signals evolving on manifolds.

meaning that any complex coefficient commutes with any
quaternion imaginary unit.

Thus, biquaternions form an 8-D vector space over with
basis:

(5)

Biquaternions form an associative algebra but not a normed
division algebra. The only 8-D normed division algebra are the
ones isomorphic to Cayley’s octonions (this is known as gener-
alized Frobenius and Hurwitz theorems, see [20] for details).

Biquaternions are isomorphic to Clifford algebra (the
Clifford algebra built over with basis and such
that ), with identifications, as follows:

and (6)

where are bivectors and is a pseudoscalar [21],
[22].

Next, we present a nonexhaustive list of properties for bi-
quaternions. The interested reader will find more material in
[19]. Note that (real) Hamilton’s quaternions are a special case
of biquaternions. As in the case of quaternions, any biquater-
nion can be seen as the sum of a scalar and a vector part, both
with complex valued coefficients, as follows:

(7)

where

(8)

At the same time, can be seen as the sum of a real and an
imaginary part, both being quaternion valued, as follows:

(9)

where

(10)

This notation of a biquaternion can be seen as an equivalent of
the Cayley–Dickson notation for real quaternions [20], and it
will be useful in the study of biquaternion valued matrices. Note
that a biquaternion with zero scalar part is called
pure.

Some known properties of complex and quaternions num-
bers, such as the multiplication and the addition, extend nat-
urally to biquaternions. For some others, the extension is not
trivial.

Definition 2: There exist three different conjugations over
. Thus, given a complex quaternion , it is possible to define

its conjugations, as follows:
• -conjugate: ;
• -conjugate: ;
• (Total) -conjugate: .

These definitions induce different possible definitions for
norms. We mention here a norm and a pseudonorm.
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Definition 3: The norm of a biquaternion , noted ,
is given by

(11)

Note that , and ; the
biquaternions are not a normed algebra under this norm, so in
general for .

It is possible to define a pseudo-norm satisfying the property
that the pseudo-norm of a product of biquaternions is equal to
the product of the pseudo-norms of the individuals.

Definition 4: The pseudo-norm of a biquaternion ,
noted , is given by

(12)

and it satisfies the following equality: for
. It has the drawback of being complex valued in general.

This involves that the pseudo-norm of a nonzero biquaternion
can vanish. For example, for the biquaternion

, its norm is while its
pseudo-norm is . This problem forbids a systematic use
of this pseudo-norm in biquaternion valued signal processing
for obvious reasons (problems in estimating the magnitude or
the energy of a signal for example). We also give the following
property that will be useful in the sequel.

Property 1: Any complex number with
, (i.e., ) commutes with any biquaternion

defined as in (1), as follows:

(13)

The proof is straightforward from the multiplication rules in (3)
and (4). We now introduce some material on matrices with bi-
quaternion valued coefficients and on their decomposition.

III. MATRICES WITH BIQUATERNION COEFFICIENTS

In this section, we present definitions and properties of bi-
quaternion valued matrices. The study of these matrices was not
paid much attention to in literature. In [23], Tian proved the ex-
istence of the eigenvalues and the eigenvectors for biquaternion
matrices as well as a few other properties. We present in this
section the definitions necessary for our purpose and we con-
centrate mainly on Hermitian biquaternion matrices as they will
be of interest in Section V.

A. Vectors and Matrices of Biquaternions

Biquaternions have mainly been used in formulations of elec-
tromagnetics [24] and special relativity [19], [25]. However, in
such studies, the case of matrices with biquaternions coefficients
has not been considered. We present here some results of a study
on such matrices with particular attention to the eigendecompo-
sition of Hermitian biquaternion matrices.

1) Biquaternion Valued Vectors: A biquaternion valued
vector is an element of . Equipped with the classical ad-
dition of vectors and the multiplication with a biquaternionic

scalar, is a (vector space over the ring
). The scalar product of two biquaternion valued vectors

is defined the following way:

(14)

where stands for total conjugation-transposition. With this def-
inition, two biquaternion valued vectors are said or-
thogonal iff

(15)

Based on the scalar product definition, the norm of a biquater-
nion valued vector is given by

(16)

where is the scalar part defined in (8). We now turn to
matrices with biquaternion coefficients.

2) Matrices of Biquaternions: A biquaternion valued matrix
with rows and columns is an element of . Given a
biquaternion valued matrix , one can define
the following[23], [26]:

• the dual matrix of : ;
• the transpose-conjugate of : .
A matrix is then called Hermitian if and

unitary if . Invertibility and the definition of
the inverse of a biquaternion valued matrix are defined similarly
to the real or complex case. Given two matrices
and , then the following equalities stand [23], [26]:

1) , ;
2) , ;
3) , if and are invertible;
4) , if is invertible.

These properties will be of use in the sequel.
3) Quaternionic Adjoint Matrix of a Biquaternion Valued

Matrix: In order to compute the eigenvalue decomposition of a
biquaternion valued matrix, we now introduce the quaternionic
adjoint matrix of a given biquaternionic matrix. A similar tech-
nique was employed by Lee and Brenner [27] in the study of
quaternion matrices. The use of such an “equivalent” quaternion
matrix is possible because any Clifford algebra is isomorphic to
a complex matrix algebra [28]. Consequently, any biquaternion
(and by extension any matrix of biquaternions) is isomorphic to
a complex matrix (by extension to a tensor product of complex
matrices). (For more details on isomorphisms between complex
matrices algebras and Clifford algebras, see [28, Ch. 11].)

Given a biquaternion valued matrix written as
, where , then its quaternionic ad-

joint matrix, noted , takes values in and has the
following expression:

(17)

Consider now the complex matrix defined as

(18)
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where is the identity matrix of dimension . It is
straightforward that the following equality holds:

(19)

It is also important to notice the two following properties of the
matrix that will be of use in the forthcoming calculations:

(20)

(21)

Property (20) can be demonstrated by direct calculation
while, for the equality (21), it can be proved by multiplication
on the left by and on the right by . Property (20) is then
used to fulfill the demonstration.

Lemma 1: The quaternion adjoint matrix of a Hermitian bi-
quaternion matrix is also Hermitian.

Proof: Consider a biquaternion valued Hermitian matrix

(22)

and its quaternion adjoint matrix . Substituting
(19) in (22), one can write

(23)

Using the fact that for biquaternion valued matrices
, (23) becomes

(24)

leading to

(25)

Thus is Hermitian.
In a similar way, using definition (17) and properties (20) and

(21), it is possible to prove that the quaternion adjoint matrix
conserves the unitary property of a biquaternion valued matrix.

Next, we make use of the quaternion adjoint matrix for the
computation of the eigenvalue decomposition of a biquaternion
valued matrix.

B. Eigendecomposition of a Biquaternion Valued Matrix

As in the quaternion case [29], the noncommutativity of
biquaternion multiplication leads to two possible eigenvalues,
namely the left and the right eigenvalues. However, in the
sequel, we will only consider right eigenvalues. This choice is
motivated by the link between biquaternionic right eigenvalues
and quaternionic eigenvalues of the quaternion adjoint matrix.
In the quaternion case, the theory of left eigenvalues is still not
complete [30], and this motivates our choice to consider only
right eigenvalues, which have been well understood for several
years now [31].

After a definition of (right) EVD for biquaternion valued ma-
trices, we present several lemmas and corrolaries that are helpful

for effective computation of the eigenelements of a biquaternion
matrix.

Definition 5: Given a biquaternion valued matrix
, then its eigenvalue decomposition is given

by

(26)

where is a biquaternion valued matrix containing
the eigenvectors of and is a diagonal matrix
containing eigenvalues of on its diagonal.

Next, we present some results showing how the eigenele-
ments of a biquaternion matrix can be obtained from the
eigenvalue decomposition of its quaternion adjoint matrix.
First, the (right) eigenvectors of a square biquaternionic matrix

can be obtained using the following lemma.
Lemma 2: Given a square biquaternionic matrix ,

then if is a right eigenvector of its quaternion adjoint
matrix , then , defined as

(27)

is a right eigenvector of .
Proof: Assume is a right eigenvector of , then the

following equality holds:

(28)

Using (19) and (27), one can write

(29)

Substituting (28) in (29) results in

(30)

so is a right eigenvalue of .
As a result, the eigenvalue decomposition of a biquaternion

valued matrix can be obtained from the eigendecomposition of
a double size quaternion valued matrix, the quaternion adjoint
matrix. As a consequence, it is possible to use algorithms de-
veloped for quaternion valued matrices for this calculation [13].
The following corollary states this fact.

Corollary 1: Consider a biquaternion valued matrix
and assume that its quaternion adjoint matrix has

the following EVD: , where and

j ( j is a subset of , isomorphic to , for which
the coefficients of the imaginary units and are null). The
eigendecomposition of is then given by

(31)

where and is the diagonal
matrix with the eigenvalues of as diagonal elements.

Proof: Assuming the EVD of can be written as

(32)
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with and j , then, by replacing (32)
in (19), one gets

(33)

Knowing that , then it is
possible to write

(34)

where is a diagonal matrix, and contains the
eigenvectors of on its columns, as previously shown.

The eigenvalues of are also the eigenvalues of . In the
general case, the eigenvalues of a biquaternion valued matrix
are quaternion valued. However, the possible values taken by
the eigenvalues are either in i, j, or k, which are, in the
biquaternion case, degenerate quaternions.2 This means that in
the biquaternion case, the eigenvalues are generally quaternions
with two or three null components.

Nevertheless, it is important to notice that the eigenvalues of
the quaternion adjoint matrix do not appear in conjugate pairs
along the diagonal of , as opposed to the quaternion case
where this happens for the eigenvalues of the complex adjoint
matrix [29], [31]. As a consequence, it is necessary to consider
all the eigenvectors and their associated eigenvalues to re-
build a whole biquaternionic matrix .

Note that in the case of symmetric octonion3 valued matrices,
it has been demonstrated that a 3 3 matrix has six independent
eigenvalues [32].

An interpretation to this large number of eigenvalues can be
given using isomorphisms. It has been shown that the algebra
of complexified quaternions is identical to that generated by
Pauli matrices (elements of ) [19], [28]. The space of
biquaternion valued matrices is then isomorphic to

, where denotes the tensor product of two
vector-spaces. As a consequence the dimension of the column
vector space of is given by

(35)

1) EVD of a Hermitian Biquaternionic Matrix: The high-
resolution vector-sensor array processing algorithm presented
in Section V is based on the decomposition of the covariance
matrix of the observations into orthogonal subspaces, using a
biquaternion model. This covariance matrix is biquaternionic

2Note that the biquaternion case is different from the quaternion case; as for
the latter, the eigenvalues of quaternion matrices are isomorphic to complex
eigenvalues.

3Octonions are the only 8-D normed division algebra [20]. They form a nonas-
sociative and noncommutative algebra.

Hermitian. Consequently, we now pay attention to the EVD of
a Hermitian biquaternion valued matrix.

A matrix is called Hermitian if . We
have already demonstrated (Lemma 1) that the quaternion ad-
joint matrix of a Hermitian biquaternionic ma-
trix is also Hermitian. Thus, .

As the eigenvalues of are the same as the ones of , and
due to the fact that the eigenvalues of a Hermitian quaternion
valued matrix are real valued [29], then the eigenvalues of a Her-
mitian biquaternion valued matrix are real as well. It is easy to
demonstrate (see [33] for the quaternion case) that for Hermitian
matrices, the right and left eigenvalues (and associated eigen-
vectors) are the same. We now prove that an important lemma,
well known for the real, complex, and quaternionic case, ex-
tends to biquaternions. This is fundamental for the construction
of any algorithm based on orthogonal decomposition of the ob-
served data.

Lemma 3: Given a Hermitian biquaternion valued matrix ,
then any two of its eigenvectors corresponding to two different
eigenvalues are orthogonal.

Proof: Consider two eigenvalues of ,
, and their associated eigenvectors .

Then, one can write

(36)

As and , then equality (36) involves
, which means that and are orthogonal.

The following numerical example illustrates the link between
the rank of a biquaternion valued matrix and its eigenvalue de-
composition. Consider a biquaternion valued vector of dimen-
sion 3, , given as (37), shown at the bottom of the page.

Then, the following matrix is Hermitian:

(38)

Using the classical definition for the rank of a matrix, by con-
struction has a rank equal to 1. The eigendecomposition of

gives two different non-null real eigenvalues:
and . The remaining four other eigenvalues are
null. The eigenvectors associated to the non-null eigenvalues are

and and have the numerical values of (39)
and (40), shown at the bottom of the next page.

It can be directly verified by calculation that and are
orthogonal. Thus, the eigendecomposition of can be written
as

(41)

(37)
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Now, comparing (41) and (38), one remarks that in order to
recover the information contained in , it is necessary to con-
sider two eigenvalues and their associated biquaternion eigen-
vectors. This result will be used in the vector-sensor HR array
processing algorithm derived in Section V.

We saw that in order to be consistent with the real, com-
plex, and quaternion valued matrix theory, the classical defi-
nition of the rank of a matrix needs to be revisited. Thus, the
following definition stands for rank definition for biquaternion
valued matrices.

Definition 6: The rank of a biquaternionic matrix
is given by

rank rank (42)

Now, with the presented material on spectral decomposition
of biquaternion matrices and the matrix algebra tools over ,
we are ready for developing our biquaternionic model and the
algorithm for vector-sensor array processing purpose.

IV. POLARIZED SIGNAL MODEL USING BIQUATERNIONS

Following the approach proposed in [14] for the processing
of signals recorded on two-component vector-sensors, we intro-
duce a biquaternionic model for polarized signals recorded on
three-component vector-sensors.

A. Three-Component Vector-Sensor Signals

Consider a three-component vector-sensor, recording the
three orthogonal components of an incident vector wave field,
yielding the output signals , , and . The three
components of the vector-sensor define an orthogonal basis in
the Euclidean 3-D space. If is the orthonormal basis
associated to the vector-sensor, the vector product relations
between the unit vectors fit perfectly the relationships
between the quaternionic units [see (3)]. Thus, the idea of
using quaternions/biquaternions to model the signals recorded
on the three components of a vector-sensor comes naturally.

The associated three-components pure quaternion valued
signal is then given by

(43)

Defining the Fourier transform of as a triplet of complex
Fourier transforms applied separately on each of the three com-
ponents, one gets

(44)

where , with 1, 2, 3 and with the
Fourier transform taking values in . Using the modulus-phase
representation, (44) can be rewritten as

(45)

where are the amplitudes and are
the phases of the signals recorded on the three components. In
the following, the frequency argument is omitted for clarity as
the proposed algorithm is derived for narrowband signals, or it is
applied at different frequencies independently. Considering the
first component as reference, one can rewrite the biquaternion
signal as the product between a pure biquaternion containing the
relative amplitude ratios and the phase shifts of the second and
the third components with respect to the first component, and a
complex number representing the absolute amplitude and phase
of the signal on the first component, as follows:

(46)

The expression for is given by

(47)

with , and ,
. In this model, contains the polarization

information of the signal, if we consider the first component as
reference.

B. Polarized Plane Waves

Now, given a set of equally spaced three-component
vector-sensors, recording the contributions of polarized
plane waves, using the biquaternion model, the recorded signal

is given by

...
(48)

where is the biquaternion valued polariza-
tion coefficient of the wave, containing its polarization pa-
rameters, is the propagation vector of the wave on the
array and is given (assuming plane waves contributions only) by

(49)

The vector contains unpolarized noise contributions
on the vector-sensor array. Also, the coefficients correspond

(39)

(40)
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to the magnitude contribution of the wave (at a fixed fre-
quency). In the following, we use the notation

(50)

where is called the polarized steering vector of the wave
and so that the observations can be written as

(51)

The biquaternion observation vector is built from the
observations (in frequency domain) on the three
components as

(52)

C. Long-Vector Approach

As a comparison, the long-vector approach classically used
in vector-sensor array processing [2], [3] makes use of the con-
catenated vector built the following way:

(53)

with . The long-vector approach allows, with addi-
tional parametrization, the use of classical matrix algebra algo-
rithms and was used to define MUSIC- and ESPRIT-like algo-
rithms for vector-sensor arrays [3], [8]. However, the use of long
vectors has some drawbacks, such as leading to “over computa-
tion” and breaking the local polarized structure of the data. This
last point has no deep consequences in the presented algorithm
but could be of importance in more complicated ones, for ex-
ample, if higher order statistics (HOS) are used. The use of long
vectors in a processing involving HOS would lead to (highly)
complicated structures in tensor valued cumulants or cost func-
tions. We claim here that the use of hypercomplex numbers (and
more generally the use of geometric numbers/algebras) can lead
to easier manipulation of vector valued signals.

V. BIQUATERNION MUSIC ESTIMATOR

The BQ-MUSIC algorithm is based on the decomposition
of the biquaternionic spectral matrix of the observation data
vector into signal and noise orthogonal subspaces. Using the
modelization and linear algebra tools previously presented, we
derive in the sequel an expression for this new BQ-MUSIC
estimator.

A. Biquaternionic Spectral Matrix

Since second-order statistics of the observed data are used in
the BQ-MUSIC, we now introduce the biquaternionic spectral
matrix. All the biquaternion valued signals are considered cen-
tered here.

1) Definition: Considering that the output of the vector-
sensor array is given in (51), then the spectral ma-
trix is defined as

(54)

The mathematical expectation is defined naturally over
, just like it is done over or [34]. Substituting (51) in (54)

and assuming decorrelation between the different sources (i.e.,

for ) and between sources and noise (i.e.,
), the biquaternionic spectral matrix takes

the following form:

(55)

where are the powers of the sources on the antenna and
are the biquaternionic source vectors describing

source contributions on the antenna. The matrix is given by
, where

is the power of the noise on the sensor. In order to build a
MUSIC estimator, it is necessary to decompose the observation
data spectral matrix into orthogonal subspaces, using the algo-
rithm derived in Section III-B-1).

B. BQ-MUSIC Estimator

As presented in (50), every polarized wave impinging on
the vector-sensor array is parametrized by five parameters, and
the proposed version of MUSIC aims to estimate the five of
them simultaneously. In order to do so, and as usual in MUSIC
approach, a parametrized steering vector is projected onto the
noise subspace built using the last eigenvectors of the spectral
matrix of the observations. The biquaternionic steering vector
has the following expression:

(56)

where

Then, the BQ-MUSIC consists of finding the set of parameters
that maximizes the following functional:

(57)

where , built with the last
eigenvectors of is the orthogonal biquaternionic projector on
noise subspace. One can see that the use of hypercomplex num-
bers allows an estimator expression very similar to scalar-valued
signal, without any “additional” structure in the projector, ex-
cept the algebra on which it is expressed. The functional
has maxima for the values of the parameters corresponding to
polarized plane waves that have impinged on the local vector-
sensor array. In the case where those parameters are unknown,
finding these maxima will consist in finding the extrema of a
5-D surface. The use of a biquaternionic formulation for po-
larized MUSIC estimator has not been studied for this opti-
mization problem. Consequently, the presented study does not
allow to conclude on possible advantages of the proposed ap-
proach among others on this aspect of the algorithm. We present
next some results for the long-vector and the biquaternion ap-
proaches regarding computational and orthogonality issues.

C. Computational Issues

If the three-component long-vector model (53) is used, the
spectral matrix is complex of size . Compared
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to this long-vector matrix having complex entries, the
spectral matrix in the biquaternionic approach has biquater-
nion-valued coefficients. As a biquaternion is composed of four
complex numbers, the biquaternion spectral matrix can thus be
represented on complex values. This way, the memory
requirements for data covariance representation are reduced by
a factor of 4/9, provided that a biquaternion model is used.

D. Orthogonality Issues

As we saw in Section V-B, BQ-MUSIC algorithm is based
on the orthogonality between biquaternion-vectors. We show
next that this orthogonality constraint implies stronger rela-
tionships between the three components of the signal than
the long-vector approach does. Consider two biquaternionic
vectors , with their expressions given by

(58)

The corresponding long-vector representations [see (53)] are
, as follows:

and (59)

By imposing the orthogonality constraint for the biquaternion
vectors

(60)

one gets the following relationships between the complex
components:

(61)

(62)

(63)

(64)

The orthogonality constraint for the long-vector approach

(65)

yields only (61), implying that

(66)

The reciprocal is not always true meaning that the biquater-
nionic orthogonality imposes stronger constraints between the
components of the vector-sensor array, and implicitly between
the signal and noise subspaces. This affects in a positive way the
robustness of BQ-MUSIC algorithm to different kinds of errors
as we show in the next section.

The following section compares some simulation results on
the resolution and robustness of the BQ-MUSIC estimator to
the long-vector approach and to PSA-MUSIC proposed by Ra-
hamim [15], which uses the polarization information to improve
the spectral matrix conditioning.

Fig. 1. Robustness to polarization parameters errors.

VI. SIMULATION RESULTS

By maximizing the functional (57) over the five parameters
simultaneously, it is possible to jointly estimate the DOA and
the polarization parameters for the sources impinging on the an-
tenna. For computational power reasons, we supposed in this
section that the polarization parameters were known or they
have been estimated previously and we focused only on the
estimation of the direction of arrival parameter . In practice,
this situation corresponds to DOAs estimation for sources of
known polarization, as it is often the case in electromagnetics.
Before presenting the simulation results, notice that on an array
of three-component vector-sensors, the BQ-MUSIC algo-
rithm allows detection of maximum sources while the
long-vector approach (LV-MUSIC) detects a maximum number
of sources. This reduction of the signal subspace dimen-
sion is directly related to the fact that a stronger orthogonality
constraint is imposed between signal and noise subspaces (as
shown in Section V-D). On the other hand, this stronger con-
straint increases the algorithm robustness to noise, model er-
rors and polarization parameters estimation errors as we show
in simulations.

First, we consider an array of 20 vector-sensors and seven
sources of known polarization parameters ,

impinging on the antenna. The simulated DOAs
for the sources are as follows: 50 , 35 , 20 , 0 , 10 ,
35 , 40 , and the SNR 30 dB. If the polarization parameters
are correctly estimated, the two algorithms (BQ-MUSIC and
LV-MUSIC) perform identically well. For the plots in Fig. 1,
we supposed that the estimated polarization parameters were
slightly biased (the perturbation bias has a equal to 5% of the
norm of the original vector). The DOA detection results for
the two algorithms are presented. The detection curves corre-
sponding to each of the seven sources were superposed in order
to have all results on the same plot (Fig. 1). The long-vector
approach undergoes a serious loss in resolution power, failing
to discriminate sources 6 and 7, while BQ-MUSIC performs a
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Fig. 2. RMS estimation error for modelization errors.

Fig. 3. RMS estimation error for one source in the presence of noncoherent
noise.

very accurate detection, proving to be more robust to polariza-
tion parameters estimation errors.

The second simulation tests the robustness of the algorithms
to modelization errors. The same set of sources is considered
as before. We assume that the model used for the source vectors

[(50)] is not accurate and we modeled this lack of knowledge
by an additive Gaussian noise of variable power. Fig. 2 plots the
root-mean-square (RMS) error for the estimation of the DOA of
source number 4 0 , versus the energy of the noise cor-
rupting the model. For each point on the image, 100 runs were
used. As expected, for a perfectly fitting model, the errors for the
two methods approach zero. As the error increases, BQ-MUSIC
overperforms the classical approach and seems to be more ro-
bust to modelization errors.

Fig. 3 illustrates the behavior of the two algorithms to non-
coherent noise on the sensors. A scenario with one source of
DOA 10 , impinging on a ten-vector-sensors array was consid-
ered. We supposed that the snapshots were corrupted by addi-
tive Gaussian, nonpolarized, spatially white noise. The polar-

Fig. 4. RMS estimation error for one source in the presence of coherent noise.

ization parameters of the source are supposed perfectly known.
For each point, 100 runs were used. We plotted the RMS es-
timation error for the source DOA estimation versus the SNR.
The proposed algorithm performs fairly well compared with the
long-vector approach, with only a slight loss of accuracy for
very low SNR.

In addition, we tested the robustness of the BQ-MUSIC algo-
rithm to coherent noise as it is well known that this is the weak
point of MUSIC-like algorithms. We considered the same con-
figuration as before, but this time, the additive noise is coherent
along the array and on the three components. Noncoherent noise
was also injected with a signal-to-noise ratio of 0 dB. The results
of the simulation are presented in Fig. 4 which plots the esti-
mation error for the DOA of the source versus the signal-to-co-
herent-noise ratio. The BQ-MUSIC algorithm proves to be more
robust to this kind of errors than its long-vector version. The
strange form of the detection curves for low SNR ( 10 dB) can
be explained by the fact that when the coherent noise becomes
important, it behaves as an interfering source, biasing the signal
subspace estimation and strongly perturbing the detection of the
targeted source. For high values of SNR, noncoherent noise be-
comes more important than the coherent one, and we fall into
the configuration previously studied.

As we mentioned at the beginning of this section, the “long-
vector” approach allows the detection of maximum number of
sources almost three times larger than BQ-MUSIC; therefore,
the comparison between algorithms is not completely fair. In
the sequel, we compare in simulations BQ-MUSIC with PSA-
MUSIC [15] a high-resolution technique based on PSA. The
idea behind this algorithm is to use the polarization information
to improve the estimation of the spectral matrix, by averaging
over the three components of the antenna. As a result, the infor-
mation on the polarization parameters is lost, which is not the
case for LV-MUSIC and BQ-MUSIC; the maximum number of
detectable sources is (the same as BQ-MUSIC).

We considered two scenarios, the first with six sources im-
pinging on a seven-vector-sensor array (Fig. 5) and the second
with only one source (Fig. 6). In the first case, the sources have
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Fig. 5. RMS estimation error in the presence of six sources recorded on seven
sensors, for different SNR.

Fig. 6. RMS estimation error in the presence of one source recorded on seven
sensors, for different SNR.

different polarizations and their DOAs are 50 , 35 , 20 ,
0 , 10 , 35 , 40 . In Fig. 5, we plotted the RMS estimation
error for the forth source with respect to the SNR (in decibels).
In the second, the same curve was plotted (Fig. 6), assuming
the presence of only one source of DOA equal to 20 in the
recorded data. For each point on the figures, 100 runs were used,
and the spectral matrix was estimated with 50 samples. One can
remark that when the number of sources is large (equal to the
limit of MUSIC algorithm), PSA-MUSIC performs better than
the biquaternion algorithm. This can be explained by the fact
that the estimation of the spectral matrix is more accurate in
the case of PSA-MUSIC, because the number of samples used
for estimation is three times larger than for BQ-MUSIC algo-
rithm (in the case of PSA the three components can be assim-
ilated to three snapshots). However, when the noise subspace
dimension grows, the biquaternion orthogonality constraint pre-
vails and BQ-MUSIC behaves better than PSA-MUSIC (Fig. 6).
The main advantage of our algorithm over PSA-MUSIC is the
preservation of the polarization information of the sources.

Meanwhile, if the polarization parameters are unknown, the
performance of BQ-MUSIC is expected to degrade. A version
of BQ-MUSIC including the estimation of polarization infor-
mation will be the focus of future work.

VII. CONCLUSION

In this paper, we proposed a MUSIC-like algorithm
(BQ-MUSIC) for three-component vector-sensor array pro-
cessing, based on biquaternions. The performances of this
algorithm are compared in simulations to the classical approach
(LV-MUSIC) based on the concatenation of the three compo-
nents in a long vector and with PSA-MUSIC, which performs
an average over the three components. Furthermore, we present
a technique for the decomposition of biquaternion-valued
matrices into eigenelements.

The BQ-MUSIC algorithm is based on a quaternionic model
of a polarized source, and it is well adapted to the acquisition ge-
ometry. The use of this model preserves the polarization infor-
mation and imposes a stronger orthogonality constraint between
the signal and noise subspaces. As a result, the proposed method
proves to be more robust to coherent noise, modelization errors,
and polarization parameters estimation errors. Nevertheless, the
use of biquaternions provides a more compact and elegant way
of handling multicomponent signals.

Also, this paper illustrates the high potentiality of high-di-
mensional algebras (and especially geometric algebras) to
model complex-structured data in signal processing.
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