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A CANDECOMP/PARAFAC Perspective on Uniqueness of
DOA Estimation Using a Vector Sensor Array

Xijing Guo, Sebastian Miron, David Brie, Shihua Zhu, and
Xuewen Liao

Abstract—We address the uniqueness problem in estimating the direc-
tions-of-arrival (DOAs) of multiple narrowband and fully polarized signals
impinging on a passive sensor array composed of identical vector sensors.
The data recorded on such an array present the so-called “multiple invari-
ances,” which can be linked to the CANDECOMP/PARAFAC (CP) model.
CP refers to a family of low-rank decompositions of three-way or higher
way (mutidimensional) data arrays, where each dimension is termed as a
“mode.” A sufficient condition is derived for uniqueness of the CP decom-
position of a three-way (three mode) array in the particular case where
one of the three loading matrices, each associated to one mode, involved in
the decomposition has full column rank. Based on this, upper bounds on
the maximal number of identifiable DOAs are deduced for the two typical
cases, i.e., the general case of uncorrelated or partially correlated sources
and the case where the sources are coherent.

Index Terms—CANDECOMP/PARAFAC uniqueness, identifiability, po-
larization, vector sensor array processing.

1. INTRODUCTION

The notion “vector sensor”” was formally introduced by Nehorai and
Paldi in [1], and, by contrast, the conventional ones are commonly
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called ““scalar sensors.” A typical “complete” electromagnetic (EM)
vector sensor consists of two orthogonal triads of dipole and loop an-
tennas with the same phase center, yielding a vector output containing
the measurements of all the six components of electromagnetic field
incident on the sensor. Therefore, an EM vector sensor is intrinsically
a polarization-diverse scalar sensor array, whereas it is different from
those conventional arrays, such as the ones studied in [2] and [3],
because, for a vector sensor, all the elements are configured to share
a common phase center. The EM vector sensors enable resolving the
DOAs of incident signals with arbitrary polarizations, a challenging
problem for the conventional scalar sensor arrays with all identically
polarized sensors. They gained popularity for improving the per-
formance of those high-resolution eigenstructure-based techniques,
such as ESPRIT [4]-[9], MUSIC [10]-[12], and its recent variants
[13]-[16], in disambiguating the DOAs of the superimposed signals.

In this context, a problem of primary importance is to find the
conditions under which the DOAs can be uniquely localized. It was
shown [17]-[19] that uniqueness is closely related to linear depen-
dence of the steering vectors. Some results on linear dependence
of the steering vectors for the conventional sensor arrays can be
found in [20]-[23]. In particular, a detailed characterization of linear
dependence of the steering vectors for a single complete vector sensor
is given in [24] while in [25] the case of dipole triad is investigated.
However, the problem becomes more complicated when an array
comprising multiple vector sensors is considered and only few studies
exist on linear dependence of the steering vectors of a vector sensor
array. Among them, [26] provides a link between linear dependence
of the steering vectors of a vector sensor array and that of a scalar
sensor array having the same sensor configuration. These results are
extended in a recent study [27] for analyzing a virtual array manifold
when higher-order statistics are used with EM vector sensors.

This paper proposes an original approach for studying DOA
identifiability with vector sensor arrays based on a CANDE-
COMP/PARAFAC (CP) model of the data. The idea of analyzing
data obtained from a sensor array with multiple invariance proper-
ties (see [28] for multiple invariance) by CP was first introduced by
Sidiropoulos et al. [29]. The CP decomposition, introduced indepen-
dently by Carroll and Chang [30] and Harshman [31], has been largely
used lately in various domains because of its attractive identifiability
properties under some mild conditions. For a general overview of CP
and its applications, see [32] and the references therein. Based on
Kruskal’s condition [33], Sidiropoulos et al. [29] also investigated iden-
tifiability of the data model for the conventional sensor array systems
characterized by multiple invariance. Observing that a sensor array
with all identical vector sensors also possesses multiple invariance, the
results of [29] can be extended to the case of vector sensor arrays [34].

Herein we present a sufficient condition (Theorem 1) on unique-
ness of the CP decomposition with a full column rank loading matrix.
Some of these results have been presented previously in [35]. The same
uniqueness condition was also provided independently by Stegeman
in a recent work [36]. However, the proof presented in this paper is,
to some extent, more condensed than that of [36]. It makes use of a
new result (Lemma 1) on the steering vectors of a vector sensor array.
This easy-to-check condition allows to study DOA identifiability for
polarized sources measured on a vector sensor array in two typical sce-
narios. The first one addresses the case of uncorrelated or partially cor-
related sources, which is given by a full rank signal matrix. Coupled
with uniqueness of CP, an upper bound on the number of resolvable
sources is derived. The second scenario considers the case of coherent
signals [37], for which we propose a CP formulation of the polariza-
tion smoothing algorithm (PSA) of [37]. Then we derive a sufficient
condition ensuring uniqueness of the DOA localization.

1053-587X/$26.00 © 2011 IEEE
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Fig. 1. Geometry of a vector sensor: {e., e, , ¢. } denotes the dipole triad and
{he,hy, h.} the loop triad.

The remainder of the paper is organized as follows. In Section II,
we introduce the vector sensor model and establish the link to CP. In
Section III, we briefly state some important existing results on identi-
fiability of the CP model, and then we present the main results of the
paper. Section IV applies the identifiability results to the two DOA es-
timation scenarios mentioned above. Finally, conclusions are drawn in
Section V.

II. SYSTEM MODEL

Let us consider a sensor array system of M displaced but otherwise
identical EM vector sensors deployed in the far-field of ' narrowband
sources. Fig. 1 illustrates one of these vector sensors. In accordance, a
Cartesian coordinate system is established where the reference vector
sensor is positioned at the origin. It is assumed that the signals are com-
pletely polarized and the propagation medium is isotropic and homo-
geneous. Each of these vector sensors forms a subarray of the entire
sensor system, with the manifold given by [1]
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for an incident signal with DOA (¢,) and polarization (a,3). In
(1), ¢ € [0,27) denotes the azimuth angle, i» € [—F, 3] is the el-
evation angle, « € (—3, %] is the orientation angle of the polariza-
tion ellipse and § € [— %, ] is the ellipticity angle. Throughout the
paper, we assume that the DOAs and the polarizations are unknown but
deterministic.

We denote by a set of three-dimensional vectors {r,,, }2/_;, the M
observation points where the vector sensors are positioned in the ref-
erence frame, and by u(¢,v¥) = [cos$cosy) sindcosy sin]T
the unit Poynting vector in the source direction. The expression for the
phase shifts induced by the displacements of the mth (m = 1,..., M)

vector sensor relative to the reference one is then given by a,,, (¢, ¢) =
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T
exp { 2rehpcet

a(é, ) = [ai(o, 1), ..., am (o, )], the steering vector of a virtual
scalar sensor array that has the same sensor configuration as the vector
sensor array [26]. Correspondingly, the steering vector of the entire
vector sensor array system is given by [1]1 (&, ¥, a, ) = a(¢,v) @
b(, ¢, «, 3) where @ denotes the Kronecker product. Now suppose
that the kth signal impinges on the array from a direction (¢, ¢ ), with
the polarization parameterized by (ax, 51 ). Inductively, the output of
the array at time ¢, i.e., y(¢), is obtained by summing up the contribu-
tions from all the K incident signals sy (#):

}, where A is the wavelength. Furthermore, define

K

y(t) =Y si(0)d(dn, vu. ar, Ai) = Ds(t) (¢

k=1

where D = [d((bl,’whal,ﬂl),...,d(@j{,’lﬂj{,()’jg,ﬁj{)] iS
a 6M x K matrix, and s(t) = [si(#),...,sx()]T is a K-
element vector. As we are investigating identifiability of the
model (2), only the noise free system is considered since the
uniqueness problem is decoupled from the estimation problem
by its nature [17]. Let A 2 [a(¢1,¢1),....a(dx,vx)], and
B £ [b(é1,¢1,a1,5).....b(¢x, Ur.ax, fx)]. Then, one ob-
serves D = A & B where & denotes the Khatri—-Rao (column-wise
Kronecker) product. In the sequel, we will occasionally omit the
explicit dependence on (¢, ¢k, @k, Ox), for notational simplicity.
If N snapshots at the discrete time instants {t,}5o_; are col-
lected, the available data can be organized into a 6/ X N matrix
Y = [y(ts),...,y(tn)] = DST, where S = [s(t1),---,s(tn)]" .
Observing the multiple invariances of the data model, Y can also be
expressed as

Y, BD,(A)

= : s’ =(A®B)S” 3)
BD,(A)

1>

Y :
Y

where D, (A) = diag(am1,...,amnr) denotes the diagonal matrix
with the mth row of A = [ami]axs as its diagonal, and Y,,, =
BD,,(A)ST. The factorization model (3) explicitly expresses an “un-
folded” version of the three-way CP model [29], [31] for the data ob-
tained with a vector sensor array.

III. UNIQUENESS ISSUES FOR THE THREE-WAY CP DECOMPOSITION

In this section, we start by introducing some basic concepts on the
CP decomposition. A three-way array (or tensor) X of size M X Px N
with typical element x,,,. is termed as a “rank-1" three-way array
if it is given by the “outer product” of the three vectors a, b and ¢
with the typical elements a.,,, b, and ¢, , respectively, in the element-
wise expression & ppn = @mbpcrn. Moreover, the three-way array X'
is rank-X if K is the minimum number of rank-1 tensors in the CP
decomposition

K
Lmpn = E a’vnkbpkcnk (4)
k=1

where a1, bpi, and ¢, are the typical elements of the three “loading
matrices” A(M x K),B(P x K') and C(N x K) for each mode. The
factorization (4) can also be expressed in the form of “slices” along
the first mode as X,, = BD,,,(A)CT,m = 1,..., M and in the
unfolded matrix form (cf. (3))

X4

EY

X =(AeB)C”. 5)

X M
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The CP decomposition of a tensor presents interesting uniqueness!
properties making it attractive in a wide range of applications. A most
well-known uniqueness condition is due to Kruskal [33], relying on the
concept of “Kruskal-rank,” or simply, k-rank:

The k-rank of a matrix A € CY** equals ka, if ka is the
maximum number of ¢ such that every £ columns of A are linearly
independent.

The link between the rank of a matrix A, denoted by rank(A.), and its
k-rank is given by the inequality ka < rank(A) < min(M, K); the
equalities hold if A has full rank.

Kruskal’s condition [33]

ka+k+kc>2K+2 6)

provides a sufficient condition for uniqueness of the CP decomposition
(5). Moreover, it becomes a necessary and sufficient condition for &' =
2, 3 [38]. For the case when one of the loading matrices, say C, is
full column rank, Jiang and Sidiropoulos [39] derived a necessary and
sufficient condition for identifiability of the CP model, which can be
stated as follows:

The CP decomposition is unique if none of the nontrivial? linear
combinations of the columns of A © B can be written as a tensor
product of two vectors.3

An easier-to-check, sufficient condition for uniqueness of the CP
model with a full column rank loading matrix C was also provided
in [39] (see also [36]). It depends on a prespecified M2 P? x w
matrix U whose elements are determined by the product of the second-
order minors of A and B (see [39] for the details on how to generate
U). Jiang and Sidiropoulos [39] have proven that if U has full column
rank then identifiability of the model is guaranteed. The same condi-
tion was derived independently by De Lathauwer in [40].

The necessary and sufficient condition of [39] is the cornerstone of
the main uniqueness result of this paper (i.e., Theorem 1 in the sequel)
and leads us naturally to recall the relationship between the rank of
A & B and identifiability of the CP model [41], i.e., CP is identifiable
only if A © B has full column rank. We introduce next a condition
ensuring full column rank of A © B.

Lemma I: Let A € CM>*¥ and B € C”*¥ be two matrices
consisting of nonzero columns. If either rank(A) 4+ kg > K + 1
orrank(B) + ka > K + 1 holds, then A ® B is full column rank.

Proof: See Appendix A. O

In [29], a similar lemma was presented but demanding ks + kB >
K + 1. Comparatively, it is a milder condition posed here in Lemma 1.
This lemma shows that a full column rank Khatri—-Rao matrix can be
generated with two rank-deficient matrices, which is also the basis of
“signal decorrelation” techniques such as spatial averaging [42] or the
polarization smoothing algorithm (PSA) [37]. This issue will be further
discussed in Section IV. Generally, the necessary and sufficient unique-
ness condition of Jiang and Sidiropoulos [39] is not easy to verify in
practice. Towards this end, we provide a sufficient condition for iden-
tifiability of the CP model with a full column rank loading matrix (see
also [35]) expressed in terms of rank and %-rank of the loading matrices.

Here, by uniqueness, we mean “essential uniqueness,” that is, if another set
of matrices (A, B, and C) also satisfy (5) exactly, there exists a permutation
matrix IT and three invertible diagonal scaling matrices A, A,, and A3 satis-
fying A; A, Ay = I, where I is the identity matrix, such that A = ATIIA,,
B = AIIA,, C = CIIA;.

2The nontrivial linear combination is referred to as a combination involving
at least two vectors.

3The tensor product of two vectors a and b is given by their element-wise
product (Kronecker product) a @ b.
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Theorem I: The CP model (5) is identifiable if the loading matrix C
is full column rank and the other two loading matrices A and B satisfy
the conditions 1) ka, ks > 2, and 2)

rank(A)+ kg > K +2 or rank(B)+ka > K +2. (7)
Proof: See Appendix B. O

The same condition was also proven independently by Stegeman
[36], who found it sufficient for full column rank of the prespecified
matrix U and hence arrived at the assertion of uniqueness (see [36] for
the details). This paper, however, provides (Appendix B) an alternative
proof, using Lemma 1. It is also worth mentioning that the condition
(7) is equivalent to Kruskal’s condition if rank(A) = ka.

As shown in [36], the sufficient uniqueness condition of [39] based
on the rank test of U is more relaxed than that of Theorem 1. How-
ever, the goal of this paper, besides providing an identifiability con-
dition efficient in use, is to find out the underlying link between the
numbers of vector sensors and of the identifiable sources. Computing
the prespecified matrix U from the elements of A and B is intrinsically
an element-wise nonlinear transformation. This may cause difficulties
in tracking the contribution of a specific parameter, e.g., DOA, to the
rank of this prespecified matrix. Hence, though Theorem 1 is more re-
strictive, it may provide useful perspectives on the uniqueness problem
associated with the DOA estimation. To get more insights into the un-
derstanding of the two sufficient conditions for the particular case of
the DOA identification problem, numerical simulations are conducted
in the next section.

IV. APPLICATIONS TO THE PROBLEM OF UNIQUENESS IN DOA
ESTIMATION WITH A VECTOR SENSOR ARRAY

In the sequel, based on the uniqueness results presented in the pre-
vious section, we derive upper bounds on the number of identifiable
source DOAs using a vector sensor array. Let us return to the DOA es-
timation problem posed in Section II, and recall the CP data model (3).
The question is, what is the maximum number of the sources, ', whose
DOAs can be uniquely identified from (3), without a priori knowledge
on the exact DOA/polarization parameters of the signals. We restrict
ourselves to the following two typical scenarios with respect to the level
of correlation among the impinging signals. In the first scenario the sig-
nals are assumed to be uncorrelated or partially correlated, implying
full column rank of the signal matrix S. In the second scenario, fully
correlated (coherent) signals are considered meaning that S is rank de-
ficient. A natural assumption considered for both scenarios is A1) the
DOAs of the signals are distinct. Unless otherwise mentioned, our study
will focus on the complete (I = 6 components) vector sensors, but the
obtained results apply with minor modifications to all types of trimmed
vector sensors.

A. The Case of Noncoherent Signals

We examine firstly the important case of A2) uncorrelated or par-
tially correlated signals. Thus, the matrix S in (3) is full column rank.
It has been proven [34] that for a linear equally spaced (LES) array with
M > K vector sensors the assumptions A7) and A2) are sufficient for
the DOA identifiability of all the K™ signals.

However, the assumption 34 > K required in [34] is not always
necessary. Herein we consider the DOA identifiability problem for a
sensor array of M < K, arbitrarily positioned, complete vector sen-
sors. To tackle this, one needs to know the linear dependence pattern of
the steering vectors a(¢, ¢) of the corresponding scalar sensor array,
and that of one vector sensor b(¢, ¢, a, 3).

For a(¢, ¢’) we follow the common assumption that A3) the manifold
of the corresponding scalar sensor array a(¢.,v) is free from rank-M
ambiguity, meaning that ko = M. This assumption is justifiable in
many cases, e.g., for an LES array a(¢, ¢) is a Vandermonde vector.
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Fig.2. A comparison between the sufficient conditions for DOA identifiability
given by Theorem 1 and the one based on matrix U [39]. The black region
corresponds to both conditions being satisfied, the dark gray indicates that only
the condition of [39] is verified and the clear shade of gray indicates that neither
of the two uniqueness conditions works.

Under the given conditions, we can deduce from Theorem 1 an upper
bound on the number A" of identifiable sources using a vector sensor
array

K < M + rank(B) — 2. ®)

For the same scenario, Kruskal’s condition (6) yields i < M +kp—2,
an upper bound which is more restrictive than (8).

Regarding the manifold of one vector sensor b(¢, ¥, a, 3), some in-
teresting results can be found in [24] and [25]. For instance, the manifold
of a complete vector sensor is free of rank-2 ambiguity [24], meaning
kB > 3. Moreover, higher ranks of B can be expected, depending on
the polarization parameters of the signals, but in general it holds that
rank(B) > 4 unless there exist four signals with identical ellipticity
angles [24]. Particularly, when the ellipticity angles for four out of the
K signals are identical and equal to 7, i.e., the four are circularly polar-
ized with the same spin, kg = 3 but rank(B) is still likely to be 6.

The typical example mentioned above highlights the following two
facts. The first one is that the number of signals that can be uniquely
localized by a vector sensor array is underestimated if Kruskal’s condi-
tion is used and there is a potential increase by applying (8). The second
is that the increase, however, cannot be very significant for the vector
sensors since the maximum of rank(B) is the number of components
of a vector sensor, which is no greater than 6.

In order to get further insights on the link between Theorem 1 and
DOA identifiability let us recall a result from [24], stating that for a
vector sensor array, the ambiguities become inevitable when I > 3M
signals are present. To sufficiently ensure uniqueness, our condition
simply excludes all the possible values of K, for which ambiguities
may occur, despite how unlikely it does happen. Therefore, a large gap
can be observed between the derived bound (8), sufficient for unique-
ness in localizing K signals without knowing exactly the true parame-
ters of the signals, and the bound necessary for uniqueness, ' < 3M.
In between the two bounds there is a domain where a general unique-
ness condition for our problem is still missing. From a practical point
of view, a part of this domain can be explored on a case-by-case basis
using the sufficient uniqueness condition of [39] based on the matrix U.
Fig. 2 illustrates a comparison between the two sufficient conditions for
uniqueness. For the simulations, we used an (M x K') matrix A with
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rank(A) = ka = M and a (6 x K') matrix B. We set kg = 3 unless
B becomes full column rank where kg = rank(B) = K. Meanwhile,
observe that B can be a full column rank matrix only if &' < 6. We
plotted the condition of Theorem 1 and the condition based on the rank
of U with respect to ka (= rank(A)) and rank(B) for four different
values of K. The black region in Fig. 2 corresponds to both uniqueness
conditions being satisfied, the dark gray indicates that only the second
condition (based on the matrix U) is satisfied while the clear shade
of gray corresponds to values of (ka , rank(B)) for which uniqueness
cannot be assessed by either of these two conditions. The white area
indicates cases that are impossible for a given /{'. One can see that the
uniqueness test based on the matrix U becomes interesting in prac-
tical situations that are not covered by Theorem 1, especially when the
number of components (i.e., ) is high. Although the general value of
this result cannot be assessed, simulations conducted with various re-
alizations of A and B (e.g., the entries of A and B randomly drawn
from a continuous distribution), yielded the same result each time.

B. The Case of Coherent Signals

Usually, coherence among the signals occurs as a result of multi-
path propagation environment and results in proportional columns in
the matrix S (3). This implies a maximum rank of S equal to i’ — 1 and
ks = 1. In spite of this, we can assume, without loss of generality, that
both assumptions A7) and A3) still hold. In the presence of correlated
sources, the eigenstructure-based DOA estimation techniques, such as
MUSIC, encounter difficulties. To tackle this problem, “signal decorre-
lation” techniques, such as the polarization smoothing algorithm (PSA)
[37], can be used for vector sensor arrays. The PSA can be regarded as
forming a new signal matrix $ 2 B & S such that § is full column
rank. Following Lemma 1, S is ensured to be full column rank if

K < kg + rank(S) — 1. 9)

The newly obtained data structure can thus be expressed as Y 2 AST.
To implement MUSIC-like algorithms on the new data Y, a funda-
mental requirement is M > K + 1, i.e., more vector sensors than

sources are needed [37]. Combining this condition with (9), one obtains

K < min{M, ks + rank(S)} — 1. (10)

Using the CP formalism of the data processed by the PSA, we show
next that (10) is not only an algorithm implementation requirement but
rather a structural condition to guarantee source DOAs identifiability.
We only consider the LES array. As there are more vector sensors than
sources one can divide the sensor array into L = M — K + 1 overlap-
ping subarrays, each consisting of I{ vector sensors. The vector sen-
sors numbered m = 1,..., K form the first subarray, those numbered
m = 2,..., I +1 form the second subarray, etc. LetJ;, [ = 1,..., L,
be the K x M selection matrices such that J;Y generates a K’ x I’ ma-
trix composed of the K rows of Y corresponding to the /th subarray.
Similarly to [28], using the new formulation, the data can be rearranged
as

Y J.A
Y = : = : sT.
Ju-wnY Jv—ki1A

(11)

We shall also introduce the following two matrices: H 2 J1A and A,
an L X K matrix consisting of the first L rows of A only. Under the
considered assumptions A, H and A are all Vandermonde matrices.
The matrix pencil J;A = HDI(A) is thus obtained, allowing to ex-
press (11) as the CP model

Y = (Ao H)ST. (12)
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Let us investigate next identifiability of the system(12). S is full column
rank if(9) is satisfied. Furthermore, given their Vandermonde structure,
we have kg = K and kx = L. Since M > K 4 1,then L > 2 and
the condition of Theorem 1, rank(A) + kg > K + 2, is satisfied.
Thus, under the given assumptions, the condition (10) guarantees that
the I\’ coherent signals can be uniquely localized. It should be noticed
that, since k5 = rank(A), the condition of Theorem 1 coincides with
Kruskal’s condition; hence, the same conclusion can also be drawn
using the latter. Particularly, in the special case where rank(S) = 1,
i.e., signals are all coherent, (10) reduces to

K < min(ks, M — 1), (13)

which recalls the result of [37] in the case of an LES array (with com-
plete vector sensors): K < min(6, M — 1). Nevertheless, the result
of [37] is not sufficient to ensure uniqueness and it can be regarded as
a derivation of (13) under the optimistic assumption that kg = 6. A
counterexample to this assumption is that for a complete vector sensor
(six components), one can have kg = 3 if four of the sources are cir-
cularly polarized with the same spin direction [24]. In this case, using
the PSA only may not be sufficient to ensure system identifiability.

V. CONCLUSION

In this paper we establish a link between uniqueness of the three-way
CP model and identifiability of the polarized source mixture recorded
on a vector sensor array. A sufficient condition, more relaxed than
Kruskal’s, for uniqueness of the CP decomposition of a three-way
array, when one of the loading matrices has full column rank, is also
provided. The proof for this condition is based on a newly derived
sufficient condition on full column rank of the Khatri—-Rao product
of two matrices. These new uniqueness results are applied to study
identifiability of the DOAs using a vector sensor array in the cases of
uncorrelated/partially correlated and coherent signals.

Generally, the uniqueness conditions derived in the paper are still
too strong but they provide some interesting insights on the analyzed
problem. In future work we aim at relaxing these conditions by finding
and excluding the real causes of the ambiguities through a more re-
fined analysis of the underlying physical phenomena. Furthermore, the
problem can also be addressed from a probabilistic perspective, fol-
lowing Wax and Ziskind [17] who derived a much weaker condition
ensuring unique localization of multiple sources “almost surely” by a
scalar sensor array. This provides another clue in pursuing a tighter
bound on the number of sources that can be uniquely localized using
a vector sensor array, for which De Lathauwer’s generic uniqueness
condition [40], properly adapted, could be very useful.

APPENDIX A
PROOF OF LEMMA

We need the following lemma for the proof.

Lemma 2 (Sidiropoulos and Liu [43]): Let A be an I x K matrix,
and A be an I X n matrix consisting of any n columns on A. Then
min(n, ka) < kz < n.

Proof of Lemma 1: The proof is somewhat similar to the one in
[26]. We prove the condition rank(A) + kg > K + 1 by contradic-
tion. Let us assume that A & B is rank deficient. Then, there exists
a set of scalars ¢1, ca. ..., ¢k, not all of which are zero, such that the
linear combination of the columns of A ) B weighted by them is equal
to zero. Let n be the number of nonzero elements among {c;c}f:l;
since none of the columns of A or B is zero, n # 1, therefore, we set
n > 2. Suppose, without loss of generality, that ¢i, ..., ¢, are the n
nonzero coefficients and ¢ = [c1, ¢, . . ., cn]T. Moreover, denote by
A € C"™" and B € C’*" the two matrices, consisting of the first n
columns of A and B, respectively, corresponding to the n nonzero co-

efficients. Then the assumption can be reformulated as (A ® B)c =0
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or, equivalently B[Adiag(c)]” = 0, where diag(c) is a diagonal ma-
trix containing the elements of vector ¢ on its main diagonal. In that
case the columns of the matrix [Adiag(c)]” all lie in the null space
of B, denoted by null(B). Let span(-) denote the subspace spanned
by the columns of a matrix. Then span([Adiag(c)]”) C null(B). As
the coefficients ¢y, ..., ¢, and columns of A are all nonzero, there
is at least one nonzero vector in the null space, meaning that n >
rank(B ). Thus, kg < n and, using Lemma 2, one obtains kg < kg <
rank(B), which, together with the rank-nullity theorem: rank(B) +

dim[null(B)] = n, yields

dim [null(B)] <n-—kg. (A1)
Since span([Adkiag(c)]T) C null(B) and diag(c) is full rank, one
obtains: rank([Adiag(c)]”) = rank(A) < dim[null(B)]. Using
(A1), the previous relation becomes

rank(A) < dim [null(B)] <n-ks. (A2)
Since A contains all the columns of A as well as the other (K — n)
columns, its rank cannot exceed rank(A ) by more than (K — n), that
is, rank (A) < rank(A) +K-n<(n—kp)+ K —-—n=FK —kgn.
Thus, we obtain rank(A )+ ks < I, which contradicts the condition:
rank(A)+ kB > K + 1.

The alternative condition rank(B) + ka > K + 1 can be proved in
a similar way by simply exchanging the roles of A and B. Combining
the two conditions, Lemma 1 follows. O

APPENDIX B
PROOF OF THEOREM 1

The proof is based on Jiang and Sidiropoulos’s condition [39], pre-
sented briefly in Section II. Once again the proof is conducted by con-
tradiction. Assume the decomposition is not unique, meaning that there
exist two vectors @ and b such that their tensor product @ & b equals
the linear combination of the columns of A © B weighted by some
coefficients ¢, .. ., cre € C. We assume that the first n > 2 elements

among ¢y, ¢a, ..., cx are nonzero, and correspondingly, A € CM*"

and B € C*™ are the two matrices consisting of the first 7 columns
of A and B. If we denote ¢ = [¢y, ¢a,...,c,]7 the assumption can be
expressed as

Next we analyze (B1) for the two possible cases d = 0 and d # 0.
If d = O it means that A © B is not full column rank. In view of
Lemma 1, this implies: rank(A) + kg < K + 1 which contradicts
the hypothesis of Theorem 1. Let us investigate now the case d # O.
First, one should note that condition 2) implies kg > 2. Equation (B1)

is equivalent to [B: b][Adiag(c): — a]” = 0 implying

"
rank |:Adiag(c)z —a < dim (null[]éf b]) (B2)

and b € span(B); hence span([B:b]) = span(B) and

rank([B:b]) =

rank(B). Let us consider the following two

cases with respect to a. a) If a ¢ span(A) then rank[Adiag(c): —
a] = rank(A) + 1. Using the rank-nullity theorem one gets

dim(null[B:b]) = n + 1 — rank([B:b]) = n + 1 — rank(B),
which, together with (B2) yields rank(A) + 1 < n 4+ 1 — rank(B),
or equivalently, rank(A) < n — rank(B) < n — kg which is
identical to (A2). Using a similar argumentation as in Appendix A,
it is straightforward to show that rank(A) < K — kg, and hence
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rank(A)+ ks < K which yields a contradiction. b) If & € span(A),

then rank[Adiag(c): — @] = rank(A). Then we can deduce from
(B2) that

rank(A) < n + 1 — rank(B). (B3)

If rank(B) = n then rank(A) < 1 which contradicts the hypoth-
esis ka > 2. Consequently, rank(]:%) < n which implies kg < n.
Then, following Lemma 2 (see Appendix A), one obtains that kg <
1'a11k(B). Similar to Appendix A, by taking into consideration the rest
K —n columns of A, it follows from (B3) that rank(A )+ kg < K+1,
contradicting the hypothesis and completing the proof of Theorem 1.
O
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SNR Estimation in a Non-Coherent BFSK Receiver With
a Carrier Frequency Offset

Syed Ali Hassan and Mary Ann Ingram

Abstract—This correspondence deals with the problem of estimating av-
erage signal-to-noise ratio (SNR) for a communication link employing bi-
nary frequency shift keying (BFSK) in the presence of a carrier frequency
offset (CFO). The transmitted symbols are corrupted by Rayleigh fading
and additive white Gaussian noise (AWGN). We treat the CFO as a nuisance
parameter and estimate it using a data statistics based estimator. This es-
timate is then used to design a maximum likelihood (ML) estimator to get
the estimates of SNR. We also derive the Cramér-Rao bound (CRB) for
the estimators and have shown the performance of both the data-aided and
non-data-aided estimators.

Index Terms— BFSK receiver, carrier frequency offset, Rayleigh fading,
SNR estimation.

I. INTRODUCTION

Estimates of signal-to-noise ratio (SNR) are used in many wire-
less receiver functions, including signal detection, power control al-
gorithms, link adaptation, and turbo decoding, etc. Furthermore, if the
radios are energy constrained, e.g., if they are in a sensor network, con-
stant envelope modulation and noncoherent demodulation are desirable
to reduce circuit consumption of energy. Frequency shift keying (FSK)
enables efficient power amplification in the transmitter and a simple
receiver design that employs envelope detection. However, the carrier
frequency offset (CFO) causes error in the estimation of SNR; this will
degrade the performance of systems that depend upon the knowledge
of SNR, e.g., amplify and forward (AF) cooperative algorithms [1].
Thus, in this correspondence, we estimate the SNR of a noncoherent
BFSK receiver in the presence of a carrier offset, treating the CFO as
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a nuisance parameter. The CFO estimation problem is quite tedious to
solve because of its highly nonlinear nature, hence analytical methods
cannot be directly applied to solve the problem at hand. Therefore,
in this correspondence we derive a maximum likelihood estimator for
the SNR that uses a moment-based CFO estimator. We also derive the
Cramér—Rao lower bound (CRB) for the SNR estimator. We provide
two types of SNR estimators: a data-aided (DA) estimator that uses the
pilot symbols and a non-data-aided (NDA) estimator that does blind
estimation on the received symbols.

Several authors have attacked the problem of estimating the SNR for
binary phase shift keying (BPSK) and FSK receivers under perfect syn-
chronization conditions. For example, [2] compares a variety of tech-
niques for SNR estimation in AWGN for M-PSK signals. Many ap-
proaches also include the channel effects such as multipath fading and
address the issue of SNR estimation for fading channels for BPSK, e.g.,
in [3]-[6]. In [7], the authors have estimated the average SNR for non-
coherent binary FSK (NCBFSK) receiver, assuming a Rayleigh fading
channel and unit noise power spectral density. However, in implemen-
tations, noise power must also be estimated. The authors in [8] and [9]
have derived the SNR estimators for the noncoherent MFSK receivers
for Rayleigh as well as block fading channels. However, they assume
perfect carrier synchronization at the receiver. The work in [10] and
[11] have addressed the problem of calculating the bit error probabili-
ties for NCFSK systems in the presence of CFO.

The rest of the correspondence is organized as follows. In the next
section, we describe the system model and the notations used for the
BFSK receiver operating in the presence of CFO. Section III treats the
derivations of the SNR estimators for the data-aided scenario in the
presence of a Rayleigh fading channel. Section IV considers the esti-
mators for non-data-aided case and in Section V, we will discuss the
simulation results for various estimators and overall estimator perfor-
mance in terms of mean-squared error and the CRB. The correspon-
dence then concludes in Section VL.

II. SYSTEM MODEL

Consider a Rayleigh fading communication system employing bi-
nary FSK modulation, where a block of data with k& symbols undergoes
symbol-rate fading. The received signal observed at the receiver end is
given as

r(t) = VE;a(t) exp (527 (fo + Fn + Af)E+6) + n(1),
0<t<T. melL2} ()

where E; is the signal power, T is the symbol time, f. is the carrier
frequency, and f,, is the BFSK frequency corresponding to the mes-
sage signal. The shift in the carrier frequency at the receiver is denoted
as Af and 6 is the unknown carrier phase. Without the loss of gen-
erality we will set # = 0, since we are dealing with the noncoherent
receiver. The noise at the receiver is n(t), which is AWGN and «(#) is
the Rayleigh fading envelope. Thus, the integrator output, matched to
the transmitted signal Sy, is given as
T
v = [OVE exp (=j2n(f+ fr)dt )

0

where we get the signal part, after simplifying the above equation, as

1 —exp(—j2rAfT)

J2r(m — 1)+ j2rAfT | mef{l2t 3

Ums = Pa |:

where P = Ej—T . For the sake of simplicity, we assume that the average
symbol energy is unity, i.e., > = 1, and thus the signal output after the
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