
SIAM J. MATRIX ANAL. APPL. c© 2012 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 111–129

UNI-MODE AND PARTIAL UNIQUENESS CONDITIONS FOR
CANDECOMP/PARAFAC OF THREE-WAY ARRAYS WITH
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Abstract. In this paper, three sufficient conditions are derived for the three-way CANDE-
COMP/PARAFAC (CP) model, which ensure uniqueness in one of the three modes (“uni-mode-
uniqueness”). Based on these conditions, a partial uniqueness condition is proposed which allows
collinear loadings in only one mode. We prove that if there is uniqueness in one mode, then the initial
CP model can be uniquely decomposed in a sum of lower-rank tensors for which identifiability can be
independently assessed. This condition is simpler and easier to check than other similar conditions
existing in the specialized literature. These theoretical results are illustrated by numerical examples.
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1. Introduction. In 1927 Hitchcock [13, 14] introduced a canonical polyadic
decomposition of a multiway array or tensor. The same decomposition, for three-
way arrays, was proposed later independently in psychometrics by Carroll and Chang
[4], who named it CANDECOMP (CANonical DECOMPosition) and in phonetics
by Harshman [11], who called it PARAFAC (PARAllel FACtor decomposition). In
this paper we use the abbreviation CP to address this kind of tensor decomposition,
which stands both for canonical polyadic and CANDECOMP/PARAFAC. Because
of its versatility and attractive identifiability properties, CP decomposition has been
widely used in various fields, such as chemometrics, the food industry [2], telecom-
munications, and signal processing [22, 21, 9]. For a general overview of CP and its
applications, see [18, 1] and the references therein.

CP decomposes a tensor (multiway array) as a sum of rank-one tensors; e.g., for
an I × J ×K three-way array X , its CP decomposition can be expressed as the sum
of R rank-one tensors

(1.1) X =

R∑
r=1

(ar ◦ br ◦ cr) + E ,
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where (ar ◦ br ◦ cr) is a rank-one tensor, formulated as the tensor outer products
(denoted by ◦) of ar (I × 1), br (J × 1), and cr (K × 1), namely, the loading vectors
associated to each of the three modes (dimensions), respectively. The integer R is also
frequently referred to as the order of the decomposition. Observe that the CP model
(1.1) clearly has two parts, i.e., the “structural part”

∑
r(ar◦br◦cr) and the “residual

part” E (I × J ×K). Since the uniqueness issues studied in this paper concern only
the structural part, the residual part E will be frequently omitted in what follows.

A more concise way to express the CP model (1.1) is

(1.2) X = [[A,B,C]],

where A = [a1 · · · aR], B = [b1 · · · bR], and C = [c1 · · · cR] are the loading
matrices for the three modes. It is also frequently formulated as the “unfolded”
matrix

(1.3) X � [X1 · · · XK ] = A(C�B)T ,

where Xk = [xijk]I×J , given xijk the typical element of X , and � denotes the Khatri–
Rao product (columnwise Kronecker product).

CP gained much popularity among the tensor decompositions thanks to its unique-
ness properties under mild conditions which are often met in applications. Herein,
by uniqueness, we understand “essential uniqueness,” meaning that if another set of
matrices Ā, B̄, and C̄ verify (1.2), then there exists a permutation matrix Π and
three invertible diagonal scaling matrices (Δ1, Δ2, Δ3) satisfying Δ1Δ2Δ3 = IR,
where IR is the Rth-order identity matrix, such that

Ā = AΠΔ1, B̄ = BΠΔ2, C̄ = CΠΔ3.

A milestone to the identifiability results of the CP model is the uniqueness con-
dition due to Kruskal [19] relying on the concept of “Kruskal-rank” or simply k-rank.
The k-rank of an I × R matrix A, denoted by kA, is the maximum value of � ∈ N

such that every � columns of A are linearly independent. By definition, clearly, the
k-rank of a matrix is less than or equal to its rank. Kruskal proved that [19]

(1.4) kA + kB + kC ≥ 2R+ 2

is sufficient for uniqueness of the CP decomposition in (1.2). Furthermore, it becomes
a necessary and sufficient condition in the casesR = 2 or 3 [29]. More accessible proofs
of (1.4) than [19] can be found in [27] and [20]. Recently, a more relaxed uniqueness
condition, for the special case where one of the loading matrices has full column rank,
was also provided by Jiang and Sidiropoulos [17] and De Lathauwer [6]. These results
have been generalized to tensors of an arbitrary order n (n ≥ 3) by Stegeman [25].

Linear dependence among the loading vectors may violate these uniqueness con-
ditions. In this case, CP decomposition may (but does not necessarily) encounter
difficulties. Cases where some loading vectors are uniquely determined, while other
subsets of loading vectors are subject to rotational indeterminacies, i.e., “partial
uniqueness” phenomena, were first reported by Harshman [11]. Recently, this is-
sue received much attention and some significant results can be found in [28, 3, 5, 26].
In this paper, we will consider only this type of partial uniqueness. More complicated
cases of partial uniqueness exist where there is a finite number of solutions only [28].

In this paper, we study the special case where Kruskal’s condition (1.4) is not met
and the linear dependencies may take the form of collinear columns in only one loading
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matrix, say, A. For this particular case we provide three sufficient conditions ensuring
that A can be uniquely identified. This phenomenon is called uni-mode uniqueness
in this paper. Furthermore, we prove that if A is identifiable, the rank-R CP model
can be uniquely decomposed in a sum of lower rank tensors according to a given
partition of A. Identifiability of the loadings can then be assessed independently for
each lower rank tensor. It should be pointed out that having collinear loading vectors
in A implies nonuniqueness (or at most partial uniqueness) of the other two modes
B and C if linear dependency of the corresponding loading vectors of B and C does
not exist [26, Lemma 4.6].

A systematic treatment of uniqueness for CP with linearly dependent loading
vectors according to a fixed pattern is presented in [26]. These types of decomposi-
tions are known as PARALIND or CONFAC and are introduced in [3] and [5]. Our
uniqueness conditions for CP also hold for PARALIND/CONFAC since the set of
alternative CP decompositions includes the set of PARALIND/CONFAC decompo-
sitions (with a fixed pattern of linear dependencies in the loading vectors). In the
PARALIND/CONFAC framework, we show that our uniqueness results are less re-
strictive than those in [26] in cases with only one loading matrix having collinear
columns and the k-ranks of the other two modes being high. Moreover, if one loading
matrix is unique, then the method of splitting up the uniqueness problem into a set
of uniqueness problems of lower rank tensors is much more convenient than showing
partial uniqueness for the complete decomposition, as was done in [26, section 6].

The remainder of the paper is organized as follows. We present our main results
on uni-mode uniqueness in section 2 and on partial uniqueness of the three-way CP
model with linear dependent loadings in section 3. Next, in section 4 these theo-
retical results are illustrated by numerical examples. In section 5.1 we present the
PARALIND/CONFAC decompositions, and some uniqueness results for this model
derived in [26] are also briefly recalled. In section 5.2 our results are compared to the
PARALIND/CONFAC results of [26]. Finally, conclusions are drawn in section 6.

2. Uni-mode uniqueness of the three-way CP with linearly dependent
loadings. Let us recall the CP model introduced in the previous section in which only
one matrix, namely, A, may present collinear loadings. Regarding the uniqueness
issues, two questions arise naturally. The first is under what conditions essential
uniqueness of the first mode loading matrix A is ensured. The second is whether
essential/partial uniqueness holds for the loadings in the other two modes. In this
section, we present three sufficient conditions to answer the first question, whereas an
answer to the second question will be provided in section 3. Throughout the paper,
we assume that B and C each have no collinear columns. Meanwhile, no assumptions
are made about the dependencies in the columns of A.

2.1. The uni-mode uniqueness conditions. The first condition for unique-
ness of the first mode loadings will be presented in the following theorem.

Theorem 2.1. Recall the CP model of a three-way array X given by (1.2). If A
has no zero columns and the condition

(2.1) rank(A) + kB + kC ≥ 2R+ 2

holds, the first mode loading matrix A is unique up to permutation and scaling of the
columns.

Proof. See Appendix A for the proof.
As we will see in section 5, condition (2.1) is satisfied in example (5.1). Although

kA = 1 as a result of the identical loadings in A, the rank of A is 3. On the other
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hand, kB = kC = 4 since both B and C have full column rank. The rank and the
k-ranks add up to 11 on the left-hand side of (2.1), whereas the sum on the right-hand
side is 10. Therefore, by Theorem 2.1, we arrive at the assertion of uniqueness of the
first mode loadings (A is essentially unique).

Observe that if kA = rank(A), the condition (2.1) becomes identical to Kruskal’s
condition (1.4), implying uniqueness of all the loading matrices A, B, and C. In the
case where kA < rank(A), however, the second and the third mode loading matrices
B and C may not necessarily be unique, as happens in the example (5.1).

In particular, if

(A) kB < rank(B) and kC < rank(C)

holds as well, the condition (2.1) can be further weakened, as stated in the following
by our second uniqueness condition.

Theorem 2.2. Let us recall the CP decomposition problem (1.2). If A has no
zero columns, (A) holds, and

(2.2) rank(A) + kB + kC ≥ 2R+ 1,

then the first mode loading matrix A is unique up to permutation and scaling of the
columns.

Proof. See Appendix B for the proof.
Both Theorem 2.1 and Theorem 2.2 are generalized by the third condition, as

shown below.
Theorem 2.3. In the CP decomposition (1.2), if A has no zero columns and

(2.3)

{
rank(A) + min(kB, kC) ≥ R+ 2,
rank(A) + kB + kC +max

(
rank(B)− kB, rank(C)− kC

) ≥ 2R+ 2

both hold, then A is unique up to permutation and scaling of the columns.
Proof. See Appendix C for the proof.
If rank(A) = R, then (2.3) implies the essential uniqueness of all three matrices

A,B, and C, as shown in [24] and [10].
Regarding the relationships between the three sufficient conditions, it is worth

noting that
1. though the second condition (2.2) appears to be slightly weaker than the first

one (2.1), it is subject to (A); hence, it cannot completely substitute for (2.1);
and

2. the third condition (2.3) is necessary both for (2.1) and for (2.2) under (A).
It should be pointed out that condition (2.1) follows immediately from (2.3) if

(B) kB = rank(B) and kC = rank(C)

holds.
The following diagram illustrates the relationships between the aforementioned

three conditions. In the diagram, we denote by → as “being sufficient for” and by =
as being “equivalent to.” The notations (A) and (B) denote the respective conditions
under which the sufficiency/equivalence holds.

(2.1)
��

(B)

(A) ���
��

��
��

�
(2.3)

(2.2)

(A)

��
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2.2. Kruskal’s early uniqueness results. In this subsection, we compare the
uniqueness conditions presented above with two of Kruskal’s early results reported
in [19].

Before Kruskal arrived at the now well-known uniqueness condition (1.4), he also
presented several others (see [19, pp. 114–122]) concerning the uniqueness problem
for the loadings of one mode only. Among these uni-mode-uniqueness results, two
are similar to the three conditions (2.1), (2.2), and (2.3) proposed in this paper and,
hence, draw our attention. Both of these results are reformulated in our terminology
as follows. In what follows, we will specify the two conditions as Kruskal’s uni-
mode-uniqueness (UM) conditions, respectively, to distinguish them from Kruskal’s
condition (1.4).

Kruskal’s first UM condition is given by [19, Theorem 3b],

(2.4)

{
rank(A) + min(kB, kC) ≥ R+ 1,
rank(A) + kB + kC +max(rank(B)− kB, rank(C)− kC) ≥ 2R+ 1,

which was claimed to be sufficient to ensure uniqueness ofA in the CP decomposition.
Particularly, when (B) holds, (2.4) reduces to [19, Theorem 3a]

(2.5) rank(A) + kB + kC ≥ 2R+ 1,

which is Kruskal’s second UM condition.
Observe that the first Kruskal’s UM condition is very close to our third condition

(2.3). Moreover, the former seems to be slightly weaker than the latter. Nonetheless,
it can be proved by a counterexample using the loading matrices

A = I4, B =

⎡
⎣ 1 0 0 b1

0 1 0 b2
0 0 1 0

⎤
⎦ , C =

⎡
⎣ 1 0 0 c1

0 1 0 c2
0 0 1 0

⎤
⎦ ,

with b1, b2, c1, and c2 nonzero, that Kruskal’s first UM condition is flawed. This
loading matrix configuration was first used by ten Berge and Sidiropoulos in [29].
More details on this counterexample can be found in the reference mentioned above.

Kruskal’s second UM condition (2.5) appears to be identical to our condition (2.2),
but the former only requires (B), while our condition is restricted to (A). Nevertheless,
since (2.5) was derived from (2.4), we claim that (2.5) is also flawed. This can be shown
by the following counterexample, which is adapted from the example of ten Berge and
Sidiropoulos [29]. Let A = I3 and

B =

[
1 0 b1
0 1 b2

]
, C =

[
1 0 c1
0 1 c2

]

with b1, b2, c1, and c2 nonzero. It is easy to verify that rank(A) = 3, rank(B) = kB =
2, and rank(C) = kC = 2. Hence, on the left-hand side of (2.5), rank(A)+kB+kC = 7
whereas on the right-hand side it equals 2R + 1 = 7. Clearly, the condition (2.5) is
satisfied; thus A should be unique according to [19]. However, the CP (1.2) does have
alternative solutions, e.g., the set

Ā =

⎡
⎣ 1 0 0

0 1 0
b1c1

1+b2c2
−1 1

⎤
⎦ , B̄ =

[
1 0 b1c2
0 1 1 + b2c2

]
, C̄ =

[
1 0 b2c1

1+b2c2
0 1 1

]
,

which clearly shows that A is not unique. This matrix configuration can equally be
used as a counterexample to Kruskal’s first UM condition (2.4).



116 X. GUO, S. MIRON, D. BRIE, AND A. STEGEMAN

3. A partial uniqueness condition. Based on Theorems 2.1 through 2.3, a
partial uniqueness condition for B and C can be proved. Consider first a partition of
matrix A in N submatrices:

(3.1) AΠΠΠA = [A1| . . . |AN ] with

N∑
n=1

Rn = R,

where Rn is the number of columns of the submatrix An and ΠΠΠA is a permutation
matrix. The partition is such that

(3.2) span(A) = span(A1)⊕ · · · ⊕ span(AN ),

where ⊕ denotes the direct sum of the subspaces. Hence, for each 1 ≤ n ≤ N it holds
[15]

(3.3) span(An) ∩
(
∪ 1≤i≤N

i�=n
span(Ai)

)
= {000}.

Consider also

(3.4) BΠΠΠA = [B1| . . . |BN ] and CΠΠΠA = [C1| . . . |CN ] ,

the partitioned matrices for the two other modes corresponding to the partition of A.
Then our partial uniqueness condition on B and C can be stated as follows.

Theorem 3.1. Consider a partition of A into N submatrices meeting the con-
ditions above. If A is essentially unique, then X can be uniquely decomposed into the
sum of N Rn-component lower rank tensors [[An,Bn,Cn]]. Inside each of these lower
rank tensors, the first mode loadings, i.e., the columns of An, can be uniquely deter-
mined. The submatrices Bn and Cn can be uniquely determined if the Rn-component
CP decomposition of [[An,Bn,Cn]] is unique.

Proof. See Appendix D for the proof.
In other words, Theorem 3.1 implies that if one of the conditions given by The-

orems 2.1 through 2.3 is satisfied, then the identifiability problem of [[A,B,C]] can
be divided into N independent identifiability subproblems of lower rank CP models
[[An,Bn,Cn]], with n = 1, . . . , N.

A direct consequence of this theorem is that if a submatrix An in the partition
of A has only one column, then the associated loadings in the second and the third
mode are uniquely identifiable. This is obvious since the associated lower rank tensor
is a rank-one three-way array which is proved to be essentially unique [12].

Bro et al. [3] and ten Berge [28] explored the cases where B and C are full column
rank. Obviously, our conditions are not restricted to this case and hold even if the two
modes present linear dependencies but only one mode (A) has proportional loadings.
This will be illustrated in the next section by numerical examples. A discussion on
the case with collinearity in more than one mode is provided in section 5.2 and in [26].

4. Numerical examples. We provide in this section two numerical examples to
validate the theoretical results on the partial uniqueness of the CP model, presented in
the previous section. For illustration we use simulated spectroscopy signals to which
we added white Gaussian noise with a signal-to-noise ratio of 20 dB. The PARALIND
algorithm [3] (see also section 5) with nonnegativity constraints was used to identify
the loadings.

Example 1. This first example aims at showing partial uniqueness of CP, as hap-
pens in the scenario where the mode one matrix A has a pair of identical columns.
Suppose that there are R = 6 components and the first mode matrix A contains
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Fig. 4.1. Example 1: Mode one loadings.
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Fig. 4.2. Example 1: Mode two loadings.

I = 10 points of the variation profiles of these sources with respect to some phys-
ical parameter. The second and third mode matrices B and C contain the source
variations with respect to some other parameters (e.g., the wavelength for B and the
temperature for C) and have 500 and 200 rows, respectively. Figure 4.1(a) shows the
profiles associated with each of the six components; the samples are marked by o.
Herein we assume that a6 = a5 such that rank(A) = 5 but kA = 1. This example is
different from those presented in [3] because we assume that neither B nor C has full
column rank. We suppose that b6 = b1+b2+b3+b4+b5 and c6 = c1+c2+c3+c4
so that kB = 5 and kC = 4. The second and the third mode loadings are shown in
Figures 4.2(a) and 4.3(a), respectively.

Figures 4.1(b), 4.2(b), and 4.3(b) show the estimates obtained from 20 repeated
runs for the three modes. As condition (2.1) is met, the results, slightly perturbed
by noise, show that the mode one loadings are completely identifiable. For the other
two modes, the first four loadings are uniquely identifiable, while the fifth and the
sixth are subject to rotational indeterminacies. This follows from dividing the initial
CP decomposition into two lower rank tensors according to Theorem 3.1: a first one
containing the first four loading vectors and a second one containing loading vectors
five and six. For the first lower rank tensor, Kruskal’s condition (1.4) is satisfied since
the k-ranks are 4, 4, and 4, and 4 components are present. For the second lower
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Fig. 4.3. Example 1: Mode three loadings.
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Fig. 4.4. Example 2: Mode one loadings.

rank tensor the k-ranks are 1, 2, and 2, and 2 components are present. Hence, here
Kruskal’s condition is not satisfied. This explains the numerical results.

Example 2. Now we consider the case where no identical loadings exist in A, but
linear dependence is present. The simulation is different from the previous one only
for the first mode for which a6 = a3+a4. The new profiles are shown in Figures 4.4(a),
4.5(a), and 4.6(a). This time, kA = 2, Kruskal’s condition (1.4) is still invalid, but
condition (2.1) is satisfied. The results (Figures 4.4(b), 4.5(b), and 4.6(b)) show that
in this case essential uniqueness is observed for all the three modes. Once again this
result can be explained by Theorem 3.1, dividing the initial decomposition into two
lower rank tensors: the first one containing the first, second, and fifth loadings and the
second containing the remaining loadings. In the first lower rank tensor the k-ranks
are 3, 3, and 3, and we have 3 components. In the second lower rank tensor the k-
ranks are 2, 3, and 3, and we have 3 components. It can be verified that in both lower
rank tensors Kruskal’s condition (1.4) is satisfied, which ensures uniqueness for all six
loading vectors in each of the three modes. Similar results are obtained if condition
(2.2) is used for the simulations.

5. Comparison to the PARALIND/CONFAC uniqueness results. In or-
der to analyze partial uniqueness, Bro et al. [3] and de Almeida, Favier, and Mota
[5] proposed to use prespecified matrices, known as constraint matrices, to describe
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Fig. 4.5. Example 2: Mode two loadings.
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Fig. 4.6. Example 2: Mode three loadings.

the linear dependence patterns in the loading matrices. These new models are called
PARAllel profiles with LINear Dependencies (PARALIND) [3] or CONstrained FAC-
tors (CONFAC) [5]. Instead of (A, B, C) in the conventional CP (1.2), the new
loading matrices are given by (A′ΨΨΨ, B′ΦΦΦ, C′ΩΩΩ), where A′, B′, and C′ are full-column
rank matrices and ΨΨΨ, ΦΦΦ, and ΩΩΩ are fixed constraint matrices containing the patterns
of linear dependencies. Note that PARALIND/CONFAC is a special case of CP.
Since the set of alternative CP decompositions includes the set of alternative PAR-
ALIND/CONFAC decompositions, the uniqueness conditions in sections 2 and 3 also
hold for PARALIND/CONFAC, that is, with A, B, C replaced by A′ΨΨΨ, B′ΦΦΦ, C′ΩΩΩ.

5.1. Uniqueness results for PARALIND/CONFAC. To illustrate the
PARALIND/CONFAC decompositions and the concept of partial uniqueness, we give
next an intuitive example, similar to the ones that can be found in [28] and [3]. Let
R = 4 and the rank-three matrix A = [a1 a2 a3 a3] be the first mode loading matrix.
Herein, A can also be expressed as A = A′ΨΨΨ, i.e., the product of the full-rank matrix
A′ = [a1 a2 a3] and the constraint matrix

(5.1) ΨΨΨ =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 1

⎤
⎦ .
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Moreover, we assume that the loading matrices of the other two modes, B andC, have
full column rank. It can be verified that we still have uniqueness for the first two rank-
one terms of the CP solution (i.e., (a1,b1, c1) and (a2,b2, c2)) as if no dependence
existed. The other two mode one loading vectors (i.e., a3 and a4 = a3) are still unique,
but the corresponding vectors in the other two modes suffer from rotational freedom.

In [26] several uniqueness results for PARALIND/CONFAC are proved. Below,
we will invoke some of them, and in section 5.2 we compare these results to our results
obtained in section 2. The main essential uniqueness result of [26] is the following.
Let ω(·) denote the number of nonzero elements of a vector. Define

(5.2) N∗ = max
j

(
rank(ΦΦΦdiag(ψT

j )ΩΩΩ
T )

)
,

where ψT
j denotes row j of ΨΨΨ.

Theorem 5.1. For fixedΨΨΨ, ΦΦΦ, ΩΩΩ, let (A′ΨΨΨ,B′ΦΦΦ,C′ΩΩΩ) be a PARALIND/CONFAC
solution with A′, B′, C′, and (ΦΦΦ �ΩΩΩ)ΨΨΨT having full column rank. If for any vector
d,

(5.3) rank(ΦΦΦdiag(ΨΨΨTd)ΩΩΩT ) ≤ N∗ implies ω(d) ≤ 1 ,

then A′ is unique up to permutation and scaling of the columns.
Proof. See [26, Theorem 4.2] for the proof.
By interchanging the roles of A′ΨΨΨ, B′ΦΦΦ, and C′ΩΩΩ, Theorem 5.1 also yields essen-

tial uniqueness conditions for B′ and C′. The following result is useful for proving
partial uniqueness.

Theorem 5.2. For fixedΨΨΨ, ΦΦΦ, ΩΩΩ, let (A′ΨΨΨ,B′ΦΦΦ,C′ΩΩΩ) be a PARALIND/CONFAC
solution with A′, B′, C′ having full column rank. If (ΦΦΦ�ΩΩΩ)ΨΨΨT has full column rank,
then the column space of A′ is uniquely determined. That is, for any alternative Ā′
we have Ā′ = A′ S for some nonsingular S.

Proof. See [26, Proposition 3.3] for the proof.

5.2. Comparison of uni-mode CP and PARALIND/CONFAC unique-
ness conditions. In the PARALIND/CONFAC framework, we compare Theo-
rems 2.1 through 2.3 to Theorem 5.1. First, we consider the examples of section 4.
We write the decomposition in Example 1 in PARALIND/CONFAC form with

(5.4) ΨΨΨ = [I5 e] , ΦΦΦ = [I5 f ] , ΩΩΩ = [I5 g] ,

where e = (0 0 0 0 1)T , f = (1 1 1 1 1)T , and g = (1 1 1 1 0)T . It can be verified that
N∗ = 2 (see (5.2)) and that

(5.5) ΦΦΦdiag(ΨΨΨTd)ΩΩΩT =

⎡
⎢⎢⎢⎢⎣

d1 + d5 d5 d5 d5 0
d5 d2 + d5 d5 d5 0
d5 d5 d3 + d5 d5 0
d5 d5 d5 d4 + d5 0
d5 d5 d5 d5 d5

⎤
⎥⎥⎥⎥⎦ ,

which can have rank 2 for d3 = d4 = d5 = 0 and nonzero d1 and d2. Hence, condition
(5.3) does not hold, and Theorem 5.1 cannot be used to show uniqueness of A.

Next, we consider Example 2. We have the same ΦΦΦ and ΩΩΩ as above, but now ΨΨΨ =
[I5 e] with e = (0 0 1 1 0)T . As in Example 1, we have N∗ = 2 and ΦΦΦdiag(ΨΨΨTd)ΩΩΩT
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has rank 2 for d3 = d4 = d5 = 0 and nonzero d1 and d2. Again, condition (5.3) does
not hold, and Theorem 5.1 cannot be used to show uniqueness of A. Theorem 5.1 is
not as powerful as Theorem 2.1 for these examples because if the constraint matrices
ΨΨΨ, ΦΦΦ, or ΩΩΩ contain columns with only few zeros, then there are few zeros in the matrix
ΦΦΦdiag(ΨΨΨTd)ΩΩΩT and it can have low rank without ω(d) ≤ 1 having to hold. Columns
with few zeros appear in the constraint matrices in the presence of high k-ranks (for
B and C), which is to the advantage of condition (2.1). This advantage still holds
with Theorems 2.2 and 2.3.

In cases where all three loading matrices have low k-rank, Theorem 5.1 is more
powerful. In [26, section 5], the following example is considered. LetA = [a1 a1 a3 a2],
B = [b2 b2 b1 b3], and C = [c1 c1 c1 c2]. It is shown in [26] that C′ = [c1 c2] is
essentially unique, by using Theorem 5.1 translated to mode three. However, since
rank(C) = 2, kA = kB = 1, max(rank(A) − kA, rank(B) − kB) = 2, and R = 4,
condition (2.3) translated to mode three does not hold. Since both (2.1) and (2.2) are
sufficient for (2.3), the two conditions do not apply, either.

An example from [26, section 5] with moderate k-ranks is the following. Let B
have full column rank, A = [a1 a1 a2 a2 a3 a3], and C = [c1 | c4 − c1 | c2 | c4 −
c2 | c3 | c4 − c3]. Using Theorem 5.2, it is shown in [26] that A is essentially unique.
We have rank(A) = 3, kB = 6, kC = 4, and R = 6, which implies that condition (2.1)
does not hold; nor does (2.3), which degenerates into (2.1) in this example. Moreover,
(2.2) does not apply, either.

The examples above show that Theorem 5.1 and Theorems 2.1 through 2.3 are
useful for different types of decompositions. Apart from that, the conditions of The-
orems 2.1 through 2.3 are easier to check than the condition of Theorem 5.1.

For checking uniqueness of the lower rank tensors in Theorem 3.1, Kruskal’s
uniqueness condition (1.4) was used in Examples 1 and 2. However, for the second
lower rank tensor of Example 1 this condition was not satisfied. Here, Theorem 5.2
can be used instead. We write the lower rank tensor in PARALIND/CONFAC form

with ΨΨΨ =
[1 1
0 0

]
and ΦΦΦ = ΩΩΩ = I2. Since (ΩΩΩ �ΨΨΨ)ΦΦΦT and (ΨΨΨ �ΦΦΦ)ΩΩΩT both have full

column rank, Theorem 5.2 translated to modes two and three yields that [b5 b6] and
[c5 c6] are subject to rotational indeterminacies.

In [26, section 6] a partial uniqueness condition is proved that uses the equivalence
lemma for partitioned matrices of [7]. However, this condition is rather complicated
to check. In case one of the loading matrices is essentially unique, splitting up the de-
composition into lower rank tensors is a more convenient way of checking uniqueness.

6. Conclusions. This paper presents three sufficient conditions for uni-mode
uniqueness of the three-way CP decomposition, which correct some uniqueness results
introduced by Kruskal in [19]. These new conditions are formulated similarly to the
well-known Kruskal’s condition (1.4) with the difference that identical/proportional
loadings in one mode are allowed. The mode for which the proportional loadings are
allowed is guaranteed to be essentially unique. Based on this, we also proved that if
one of these new conditions is met, the identifiability problem of the CP model can
be divided into independent lower order CP subproblems, allowing a more refined
analysis of the identifiability of the CP loadings.

Within the PARALIND/CONFAC framework of fixed linear dependencies in the
loading vectors, our uniqueness conditions are less restrictive than existing results
in cases with only one loading matrix having collinear columns and the k-ranks in
the other two modes being high. Moreover, if one loading matrix is unique, then
our method of splitting up the uniqueness problem into the uniqueness of lower rank
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tensors is much simpler than showing partial uniqueness for the global decomposition
problem.

As also noted in [26], within the PARALIND/CONFAC framework the uniqueness
results in this paper are also relevant for the study of uniqueness of the decomposition
in rank-(Lr, Lr, 1) terms, introduced in [8]. In this decomposition, we have A =
[A1| . . . |AN ], B = [B1| . . . |BN ], and C = [c1 . . . c1| . . . |cN . . . cN ], with Ar and Br

having Lr linearly independent columns, and cr is repeated Lr times in C, r =
1, . . . , N .

Appendix A. Proof of Theorem 2.1. The theorem is proved with the help
of the following three lemmas, among which Kruskal’s permutation lemma (Lemma
A.3) is the key to the proof.

Lemma A.1 (see Sidiropoulos, Bro, and Giannakis [21]). For any two matrices
A(I ×R) and B (J ×R),A�B has full column rank if kA + kB ≥ R + 1.

Lemma A.2 (see Sidiropoulos and Liu [23]). Let A be an I × R matrix and Ã
be an I × n matrix consisting of any n columns on A. Then min(n, kA) ≤ kÃ ≤ n.

Recall ω(x) denotes the number of nonzero elements of a vector x.
Lemma A.3 (see Kruskal’s permutation lemma [19]). Given two matrices A ∈

CI×R and Ā ∈ CI×R with kA ≥ 1, if for any x ∈ CI such that ω(xHĀ) ≤ R −
rank(Ā) + 1 it holds that ω(xHA) ≤ ω(xHĀ), then A and Ā are the same up to
permutation and scaling of columns.

Proof of Theorem 2.1. We follow the guidelines of the proof on Kruskal’s con-
dition provided by Sidiropoulos, Bro, and Giannakis [22]. See also Stegeman and
Sidiropoulos [27]. Assume that there exists another set of matrices Ā, B̄, and C̄ that
satisfy (1.3):

(A.1) A(C�B)T = Ā(C̄� B̄)T .

Then, for all x that satisfies ω(xHĀ) ≤ R − rank(Ā) + 1, we have

(A.2) (C�B)ATx∗ = (C̄� B̄)ĀTx∗,

which can be equivalently written as

(A.3) Bdiag(xHA)CT = B̄diag(xHĀ)C̄T .

For such an x, let γ = ω(xHA) and γ̄ = ω(xHĀ). Since the rank of the matrix
on the right-hand side of (A.3) can be no more than the rank of any of its factors,
the following inequality holds:

(A.4) rank[B̄diag(xHĀ)C̄T ] ≤ rank[diag(xHĀ)] = γ̄.

We now establish a relationship between γ and the rank of the matrix on the
left-hand side of (A.3). Assume, without loss of generality, that the first γ elements
of xHA are nonzero and B̃, C̃ are the corresponding matrices composed of the first
γ columns of B and C. It follows that

rank[Bdiag(xHA)CT ] ≥ rank(B̃) + rank(C̃)− γ

≥ min(γ, kB) + min(γ, kC)− γ,
(A.5)

where the first inequality is a consequence of Sylvester’s inequality [16] and the second
is due to Lemma A.2.
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Combining (A.3), (A.4), and (A.5) one obtains

(A.6) γ̄ ≥ min(γ, kB) + min(γ, kC)− γ.

Recall condition (2.1) of our theorem, i.e., rank(A)+kB+kC ≥ 2R+2. Knowing
that rank(A) ≤ R it follows that kB + kC ≥ R+2, which by Lemma A.1 implies that
C�B has full column rank and thus

(A.7) rank(A) = rank[A(C�B)T ] = rank[Ā(C̄� B̄)T ] ≤ rank(Ā).

The condition (2.1) can also be written as kB+kC−(R+1) ≥ R−rank(A)+1, which
together with (A.7) yields kB + kC − (R + 1) ≥ R − rank(Ā) + 1. Using Kruskal’s
permutation lemma condition ω(xHĀ) ≤ R− rank(Ā) + 1, we get

(A.8) kB + kC − (R+ 1) ≥ γ̄.

To complete the proof we analyze (A.6) with respect to the values of γ compared
to kB and kC. The following three situations can occur:

1. If γ > max(kB, kC), then by (A.6) and (A.8) one obtains kB+kC− (R+1) ≥
kB + kC − γ, which is impossible since γ < R + 1.

2. If min(kB, kC) < γ ≤ max(kB, kC) then (A.6) yields γ̄ ≥ min(kB, kC); it
follows that min(kB, kC)+max(kB, kC)− (R+1) = kB+kC− (R+1) ≥ γ̄ ≥
min(kB, kC) as a consequence of (A.8). This implies max(kB, kC) ≥ (R+1),
which is also impossible.

3. If γ ≤ min(kB, kC), then (A.6) yields γ̄ ≥ min(γ, kB) + min(γ, kC)− γ = γ.
So the only possible case is the third one, meaning that γ̄ ≥ γ, i.e., ω(xHA) ≤

ω(xHĀ). This implies by Lemma A.3 that Ā is essentially the same as A, which
completes the proof.

Appendix B. Proof of Theorem 2.2.
Proof. The proof is very similar to the previous one (Appendix A). Suppose that

there also exists [[Ā, B̄, C̄]] = [[A,B,C]]. Then, for all x that satisfies ω(xHĀ) ≤
R− rank(Ā) + 1, it can be easy shown by a rationale similar to the one in Appendix
A that

(B.1) γ̄ ≥ min(γ, kB) + min(γ, kC)− γ

and

(B.2) kB + kC −R ≥ R− rank(A) + 1 ≥ R− rank(Ā) + 1 ≥ γ̄,

where γ � ω(xHA) and γ̄ � ω(xHĀ).
Let us now examine the possible values for γ. The following three situations are

possible:
1. If γ > max(kB, kC), then it follows from (B.1) and (B.2) that kB + kC −R ≥
kB + kC− γ. This implies that γ ≥ R. Since γ ≤ R, thus γ = R. As a result,
diag(xHA) has full rank; hence, we obtain

(B.3) γ̄ ≥ rank[Bdiag(xHA)CT ] ≥ rank(B) + rank(C)− γ,

where the first inequality can be obtained from (A.3) and (A.4) and the
second is derived from Sylvester’s inequality [16]. From (B.2) and (B.3) we
can deduce that kB = rank(B) and kC = rank(C), which contradicts our
condition (A). Therefore, it is impossible having γ > max(kB, kC).
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2. If min(kB, kC) < γ ≤ max(kB, kC), then (B.1) yields γ̄ ≥ min(kB, kC).
Observe that min(kB, kC) +max(kB, kC)−R = kB + kC −R ≥ γ̄ as a direct
consequence of (B.2). It follows that min(kB, kC) + max(kB, kC)−R ≥ γ̄ ≥
min(kB, kC), implying max(kB, kC) ≥ R. This is also impossible because
max(kB, kC) < R according to (A).

3. If γ ≤ min(kB, kC), then following (B.1) we obtain that γ̄ ≥ min(γ, kB) +
min(γ, kC)− γ = γ.

Thus, γ̄ ≥ γ, i.e., ω(xHĀ) ≥ ω(xHA), which by Kruskal’s permutation lemma
(Lemma A.3) implies that Ā is essentially the same as A. The proof is com-
plete.

Appendix C. Proof of Theorem 2.3. The following two lemmas are key to
the proof.

Lemma C.1. Let A be an I × R matrix and Ã be an I × n matrix consisting of
any n columns of A. Then gA(n) ≤ rank(Ã) ≤ min(rank(A), n), where

(C.1) gA(n) =

⎧⎨
⎩
n, n ≤ kA;
kA, kA < n ≤ R+ kA − rank(A);
n+ rank(A)−R, n > R+ kA − rank(A).

Proof. Since the first inequality rank(Ã) ≥ gA(n) has been proved by Kruskal
(see [19, Proof that Theorem 3c ⇒ Theorem 3b]), herein we only provide some hints
for it. On the one hand, if n ≤ kA, from the definition of k-rank, we can deduce that
rank(Ã) = n. Furthermore, once n > kA, then rank(Ã) ≥ kA (see also Lemma A.2).
On the other hand, observe that by removing one column from A the rank cannot
be reduced by more than 1. Since Ã is A less (R − n) columns, the worst case for
rank(Ã) is rank(Ã) = rank(A) − (R − n) = n + rank(A) − R. As n decreases, it
reduces to kA at n = R + kA − rank(A). Therefore, it holds that rank(Ã) ≥ gA(n)
in general.

Then we verify the second inequality. Since the inequality is obvious for n ≥
rank(A), only the case n < rank(A) is interesting. As it is already known that
rank(Ã) = n for n < kA, we assume without loss of generality that kA ≤ n < rank(A).
Observe that rank(Ã) cannot be increased by more than 1 if appending one more
column to Ã. Therefore, rank(Ã) ≤ n for kA ≤ n < rank(A), which completes the
proof.

Lemma C.1 is also illustrated by Figure C.1: rank(Ã) equals n if n ≤ kA, whereas
for kA < n ≤ R, the point (n, rank(Ã)) is bounded in the grey area.

Lemma C.2 (see Guo et al. [10]). For any two matrices A(I ×R) and B(J ×R),
if kA + kB +max(rank(A)− kA, rank(B)− kB) ≥ R+1, then A�B has full column
rank.

Proof of Theorem 2.3. As we did for the proofs of Theorems 2.1 and 2.2, suppose
that there also exists [[Ā, B̄, C̄]] = [[A,B,C]]. For all x that satisfies ω(xHĀ) ≤
R− rank(Ā) + 1, from

rank[B̄diag(xHĀ)C̄T ] = rank[Bdiag(xHA)CT ] ≥ rank(B̃) + rank(C̃)− γ,

and using Lemma C.1, it can be deduced that

(C.2) γ̄ ≥ rank[B̄diag(xHĀ)C̄T ] ≥ gB(γ) + gC(γ)− γ � h(γ),

where γ, γ̄, ω(·), B̃, and C̃ are defined as in Appendix A. To prove the theorem we
must show that γ ≤ γ̄.
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rank(Ã) gA(n)

rank(A)

kA

kA kA + R − rank(A) R n

Fig. C.1. Illustration of Lemma C.1.

First observe that the conditions of (2.3) can be reformulated as

(C.3) R− rank(A) + 1 ≤ min
(
kB, kC, kB + kC +max(ζB, ζC)−R

)− 1 � q,

where ζB � rank(B)− kB and ζC � rank(C)− kC.
The second condition of (2.3) can be rewritten as

kB + kC +max(ζB, ζC) ≥ 2R− rank(A) + 2 > R+ 1.

Based on Lemma C.2, this means that B�C has full column rank. Therefore, (A.7)
also holds in this case, yielding

(C.4) rank(A) ≤ rank(Ā).

Using the results derived above, it can be easily shown that

(C.5) q ≥ R− rank(A) + 1 ≥ R− rank(Ā) + 1 ≥ γ̄ ≥ h(γ),

where the second, third, and last inequalities are due to (C.4), the assumption γ̄ ≤
R− rank(Ā) + 1, and (C.2), respectively.

Next, we will show that (C.5) does not hold for γ > min(kB, kC). To this end,
we will use some piecewise monotony properties of h(γ), observed first by Kruskal
[19]. Observing that rank(B) ≤ R and rank(C) ≤ R, it follows that min(kB, kC) ≤
min

(
kB+R−rank(B), kC+R−rank(C)

)
= R−max(ζB, ζC). Similarly, we can derive

max(kB, kC) ≤ R − min(ζB, ζC). The four values, i.e., min(kB, kC), max(kB, kC),
R − max(ζB, ζC), and R − min(ζB, ζC), are first order discontinuities of h(γ) and
divide the domain into five intervals on which h is linear, as shown next. Since, clearly,
min(kB, kC) ≤ max(kB, kC) ≤ R − min(ζB, ζC), only the following two cases are to
be considered with respect to the value of R−max(ζB, ζC): the first one corresponds
to max(kB, kC) ≤ R − max(ζB, ζC), whereas for the second case we assume that
R − max(ζB, ζC) < max(kB, kC). Using the definition (C.1), h(γ) can be explicitly
expressed as

(C.6)

h(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ, γ ≤ min(kB, kC);
min(kB, kC), min(kB, kC) < γ ≤ max(kB, kC);
kB + kC − γ, max(kB, kC) < γ ≤ R−max(ζB, ζC);
kB + kC +max(ζB, ζC)−R, R−max(ζB, ζC) < γ ≤ R−min(ζB, ζC);
rank(B) + rank(C)− 2R+ γ, R−min(ζB, ζC) < γ ≤ R,
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h(γ)

rank(B) + rank(C) − R

min(kB, kC)

min(kB, kC)
max(kB, kC)

R − max(ζB, ζC)

R − min(ζB, ζC) R γ

Fig. C.2. The graph of h(γ) in the first case: max(kB, kC) < R−min(ζB, ζC).

for the first case (see Figure C.2), and

h(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ, γ ≤ min(kB, kC);
min(kB, kC), min(kB, kC) < γ≤R −max(ζB, ζC);
min(kB, kC) + max(ζB, ζC)−R + γ, R−max(ζB, ζC) < γ ≤max(kB, kC);
kB + kC +max(ζB, ζC)−R, max(kB, kC) < γ≤−min(ζB, ζC);
rank(B) + rank(C)− 2R+ γ, R−min(ζB, ζC) < γ ≤R,

(C.7)

for the other (see Figure C.3). In what follows we show that minγ>min(kB,kC) h(γ) > q
for both considered cases, which contradicts (C.5).

Case 1. Observe that max(kB, kC) ≤ R −max(ζB, ζC) can be also expressed as
max(kB, kC) + max(ζB, ζC)−R ≤ 0, implying

min(kB, kC) ≥ min(kB, kC) + max(kB, kC) + max(ζB, ζC)−R

= kB + kC +max(ζB, ζC)−R.
(C.8)

A direct consequence of the above inequality is that q = kB+kC+max(ζB, ζC)−R−1.
Now we seek to contradict the inequality q ≥ h(γ) from (C.5).

Obviously, for γ > min(kB, kC), the minimum of h(γ) occurs whenR−max(ζB, ζC)
≤ γ < R−min(ζB, ζC) and equals (see Figure C.2 and (C.6))

(C.9) h̄ = kB + kC +max(ζB, ζC)−R > q.

Since h(γ) ≥ h̄ for γ > min(kB, kC), from (C.9) we obtain

h(γ) > q,

which is in contradiction with (C.5).
Case 2. Since max(kB, kC) > R−max(ζB, ζC), it holds that

min(kB, kC) < min(kB, kC) + max(kB, kC) + max(ζB, ζC)−R

= kB + kC +max(ζB, ζC)−R,
(C.10)

so q = min(kB, kC) − 1. Obviously, for γ > min(kB, kC), the minimum of h(γ) is
reached (see Figure C.3 and (C.7)) in the interval min(kB, kC) < γ ≤ R−max(ζB, ζC)
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h(γ)

rank(B) + rank(C) − R

min(kB, kC)

min(kB, kC)
R − max(ζB, ζC)

max(kB, kC)

R − min(ζB, ζC)

R γ

Fig. C.3. The graph of h(γ) in the second case: max(kB, kC) ≥ R−max(ζB, ζC).

and is given by

(C.11) h̄ � min
γ>min(kB,kC)

h(γ) = min(kB, kC) > q

which contradicts (C.5).
Since neither of the above cases is possible, (C.5) holds only if γ ≤ min(kB, kC),

implying h(γ) = γ. Hence, from (C.5), we finally arrive at the assertion γ̄ ≥ γ, i.e.,
ω(xHĀ) ≥ ω(xHA). Based on Kruskal’s permutation lemma (see Lemma A.3), it
means that Ā is essentially the same as A. The proof is complete.

Appendix D. Proof of Theorem 3.1.
Proof. Recall the unfolded matrix representation of the three-way CP model (1.3)

(D.1) X = A(C�B)T .

Consider then the following partition of A (after column permutations), which sat-
isfies (3.2): AΠA = [A1|A{1}], where A{i} denotes the matrix obtained from AΠA

after the extraction of the Ai submatrix. Analogously we denote BΠA = [B1|B{1}],
CΠA = [C1|C{1}], and C�B = P = [P1|P{1}] = [C1 �B1|C{1} �B{1}].

The essential uniqueness of A implies the essential uniqueness of A1 and A{1}.
Suppose now that there exist another two submatrices P̄1 = C̄1 � B̄1 and P̄{1} =
C̄{1} � B̄{1} such that

(D.2)
[
A1|A{1}

] [
P1|P{1}

]T
=

[
A1|A{1}

] [
P̄1|P̄{1}

]T
,

or equivalently

(D.3)
[
A1|A{1}

] [
P1 − P̄1|P{1} − P̄{1}

]T
= 000.

Property (3.3) yields in our case

(D.4) span(A1) ∩ span(A{1}) = {000},
meaning that (D.3) is equivalent to

(D.5)

{
A1(P1 − P̄1)

T = 000,

A{1}
(
P{1} − P̄{1}

)T
= 000.
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Using (D.5), it is straightforward to prove by induction that (D.2) is equivalent to the
following set of equations:

(D.6)

⎧⎪⎨
⎪⎩

A1(C1 �B1)
T = A1(C̄1 � B̄1)

T

...
AN (CN �BN )T = AN (C̄N � B̄N )T .

This means that given the essential uniqueness of A1, . . . ,AN , the three-way CP
model can be uniquely decomposed into N CP lower rank tensors as follows:

(D.7) [[A,B,C]] =

N∑
n=1

[[An,Bn,Cn]].

For each of these lower rank tensors, the An loading matrix is essentially unique
and the uniqueness of Bn and Cn can be locally assessed by analyzing the uniqueness
of the CP model [[An,Bn,Cn]].

Acknowledgment. The authors wish to thank Nikos D. Sidiropoulos (Technical
University of Crete, Greece), who provided insightful comments on the first draft of
the paper and pointed out the similarity of Theorem 2.1 to Kruskal’s early results
[19].
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