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Abstract: Probabilistic regularization (PR) is introduced to make
superdirective array beamforming robust against sensor characteristic
mismatches. The objective is to enlarge the directivity while ensuring
robustness with high probability. The PR problem is solved via the
second-order cone programming where the regularization parameter is
chosen through a statistical analysis of the system perturbations, based
on Monte Carlo simulations. Experiments are carried out on a minia-
turized 3� 3 uniform rectangular array without calibration. The results
show that for this particular array, the PR method is robust to sensor
mismatches and achieves a higher level of directivity compared with
other robust adaptive beamforming approaches.
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1. Introduction

Superdirective beamforming is sensitive to the distortions of the sensor characteristics,
i.e., the sensor gain, phase, and position. Array calibration can be used in practice to
alleviate the adverse effects caused by sensor mismatches. However, for underwater
applications, especially at low frequencies, high-quality calibration is difficult to
achieve because an anechoic laboratory environment is generally unavailable. Hence,
robust beamforming approaches are required to remedy this situation.

Many robust data-independent beamforming approaches have already been
proposed in array processing literature. In Refs. 1 and 2, the sensor characteristic mis-
match problem is tackled using redundant sensors, whereas in Ref. 3 robustness is
achieved using only the low-order “eigenbeams” for pattern synthesis. A weighted least
squares (WLS) method was introduced,4 which minimizes, from a statistical perspec-
tive, the mean deviation of the actual beam pattern from the desired one. This
WLS approach was further generalized5 by fully exploiting the degrees of freedom in
the weighting functions, and solved by the Tikhonov regularization. For the WLS
approach, the expectations are evaluated by integrations over a multidimensional grid,
which can be extremely large and computationally expensive. In Ref. 6, the statistical
analysis on the impact of the sensor mismatches is carried out using the more compu-
tationally efficient Monte Carlo (MC) simulation. Therein, the regularization parame-
ter that governs the tradeoff between directivity and robustness is determined by maxi-
mizing from the statistical perspective some performance measure such as the
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directivity index (DI) or the front-to-back ratio. This strategy inspired the present
work.

The robust adaptive beamforming was probably introduced by Cox et al.,7 and
is now more widely known as the diagonal loading (DL) approach. The DL imposes
an extra white noise gain (WNG) constraint on the standard Capon beamforming, to
ensure robustness against the sensor mismatches and can be efficiently solved via the
second-order cone (SOC) programming.8 The approach improves the robustness if
an optimal selection of the DL level is made; however, in practice, the DL level is
largely chosen in an ad hoc way due to the absence of a reliable rule. The general-
linear-combination-based robust Capon beamformer,9 i.e., the so-called GLC, and the
midway method10 are recent extensions of DL that can automatically determine the
DL level.

Other extensions of DL also exist, e.g., the worst-case performance optimiza-
tion proposed by Vorobyov et al.11 However, to ensure robustness in the worst case, a
very strong constraint is imposed, which negatively impacts the array directivity. We
propose to use a looser probabilistic constraint, in order to achieve a good compromise
between DI and robustness with high probability. Instead of directly solving this prob-
abilistic regularization (PR) problem, we solve a SOC programming problem where
the key is to determine an adequate regularization parameter. Several educated guesses
of the regularization parameter are made and for each guess, MC simulations are
carried out to test whether the probabilistic constraint holds in the presence of sensor
mismatches. The guess that marginally passes this test is the desired regularization
parameter and the corresponding beamformer weights provide the optimum solution
via the SOC programming.

2. The proposed approach

Consider a miniaturized acoustic sensor array composed of L elements, deployed in
the two-dimensional (2D) horizontal plane. In this plane, a narrowband plane wave
s(k), where k is the time index, of center (angular) frequency x, arrives from the azi-
muthal angle / with velocity c. The distance between any two adjacent sensors is
much smaller than the wavelength k¼ 2pc/x. The signal at the output of the sensor
array can be expressed as an L� 1 vector

x kð Þ ¼ as kð Þ þ n kð Þ; (1)

where a denotes the array manifold and n(k) the noise vector. The ‘th element of a is
given by

a‘ x;/ð Þ ¼ g‘ejw‘ejx x‘ cos /þy‘ sin /ð Þ=c; (2)

where g‘ and w‘ are the sensor gain and phase, respectively. It is worth mentioning
that, in the ideal case where the sensors are all identical, the term g‘ejw‘ can be directly
substituted with unity without loss of generality. The sensor position is determined by
the 2D coordinates (x‘, y‘).

The actual manifold vector ~a lies in the e-neighborhood of the nominal mani-
fold vector a, i.e., ~a 2 U a; eð Þ. Here, the distortion of ~a from a is measured by
d ¼ k~a � ak2, and e sets the upper bound on d. The sensor mismatches will inevitably
lead to a distorted beam pattern B /ð Þ ¼ wH ~a, where w denotes the vector of the beam-
former weights, and possibly cause a significant performance loss.

The worst-case performance optimization11 provides a solution with high
robustness against the sensor mismatches, expressed as

min
w

wHRw subject to jwH ~aj � 1; 8~a 2 U a; eð Þ; (3)

where

R ¼
XK

k¼1

x kð ÞxH kð Þ

is the sample covariance matrix and K is the training sample size. This problem is
found equivalent to11

min
w

wHRw subject to ekwk � wHa� 1;

= wHað Þ ¼ 0; (4)

where = �ð Þ denotes the imaginary part. This is a direct consequence of the triangle
inequality: jwH ~aj ¼ jwHaþ wH ~a � að Þj � jwHaj � kwkk~a � ak � jwHaj � ekwk. It is
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obvious that the constraint of Eq. (3) holds, i.e., jwH ~aj � 1, if jwHaj � ekwk � 1.
Furthermore, if = wHað Þ ¼ 0, then the condition jwHaj � ekwk � 1 reduces to ekwk
� wHa� 1, which is exactly the constraint of Eq. (4). Readers are referred to Ref. 11
for more details. Equation (4) expresses a SOC programming problem. Several sophis-
ticated softwares, such as the MATLAB CVX toolbox,12 are nowadays available to solve
the SOC problem efficiently.

Observe that the constraint of Eq. (3) is a very strong condition, inclined to a
high level of robustness, implying in return a directivity cutback. We propose a regu-
larization approach, namely, the PR, to achieve higher directivity while ensuring
robustness with an acceptable probability p,

min
w

wHRw subject to P jwH ~aj � 1
� �

¼ p; (5)

where P(�) denotes the probability measure. For notational simplicity, we denote

c ¼ jwH ~aj
in the subsequent discussions.

An explicit solution to this problem is not obvious. Alternatively, we solve the
SOC programming [Eq. (4)] where the upper bound e of the manifold distortion d is
replaced by a smaller value �e depending on a desired probability p. To estimate �e, the
statistics of the array perturbations in phase, amplitude, and position are needed; this
information can be accessed via the sensor and the array manufacturers. Several
guesses of �e are made, with the initial guess around the mean of d. Then, the value of
�e is increased at each trial by a fraction/multiple of d’s standard deviation. The mean
and the standard deviation of d are obtained by MC simulations, using the assumed
probability density functions of the perturbations. Then, given a certain pre-specified
probability p, trials are carried out based on MC simulation, to test whether the con-
straint of Eq. (5) is satisfied. The smallest value of �e that satisfies this constraint is
accepted.

A short summary of the proposed method is outlined hereafter:

(1) Perform MC simulations to derive the mean l and the standard deviation r of the
distortion d of the actual manifold vector ~a from the nominal manifold a.

(2) Make several guesses on �e in terms of l and r.
(3) For each guess, run MC simulations, where statistical realizations of the sample

covariance matrix R in the presence of sensor characteristic perturbations and the
guess of �e are substituted in problem (4) to find the corresponding beamformer filter
weights w by the SOC programming. Accept the guess if the constraint of Eq. (5) is
satisfied; otherwise, reject it.

(4) Choose from the accepted guesses the smallest one to be �e. Apply this �e in the SOC
problem (4) with the actual estimate of the covariance matrix R to derive the beam-
former weights, which provide the solution to the initial PR problem (5).

Notice that herein, MC simulations are carried in two different stages of the
algorithm. MC simulation is first used to obtain the statistics of the array perturba-
tions. Then, it is used to render the probability of c� 1, in order to test the validity of
the constraint of Eq. (5). Observe that in Ref. 6 MC simulation is only used to derive
the statistics of a performance measure such as the DI or the front-to-back ratio.

3. Experiments

At Harbin Engineering University, a miniaturized 3� 3 uniform rectangular array
(URA) has been built in order to test the performance of the proposed method. The
inter-sensor spacing d is set to 0.12 m. In practice, perturbations exist in the sensor
gains, phases, and positions. In this letter, these perturbations are assumed to be inde-
pendent and identically distributed among the sensors, and follow Gaussian distribu-
tions. Specifically, for any ‘ in between 1 and 9, the sensor gain g‘ � N(1, 0.1) and the
phase w‘ � N(0�, 10�). The sensor position perturbations are 2D random variables
with equal standard deviations for both dimensions, which are 3% of the inter-sensor
spacing d. The operating frequency is 300 Hz and the steering angle is 0�.

First, a statistical analysis is carried out to determine the value of the regulari-
zation parameter �e. Figure 1(a) shows the histogram of d ¼ k~a � ak2, obtained from
106 realizations of ~a. Herein, the mean of d equals l¼ 0.518 and the standard devia-
tion r¼ 0.119. The theoretical probability density function of the Gaussian distribution
with the same statistics is also illustrated for comparison. It is obvious that d largely
follows the Gaussian distribution N(l, r). Hence, if the regularization parameter
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�e ¼ lþ 3r ¼ 0:875, then d � �e with probability 99.85% at least. In this case, �e 	 e,
i.e., the upper bound of d, and the PR problem reduces to the worst-case performance
optimization.11

Once �e is determined, the weights w can be sought via solving the SOC pro-
gramming problem (4) with e substituted by �e. Then, we evaluate the chance that the
constraint c� 1 is satisfied. Figure 1(b) shows the probabilities of c� h with respect to
a real nonnegative constant h, for four different guesses of �e. Forty thousand realiza-
tions are drawn to generate one such curve. The point with respect to h¼ 1 indicates
the probability of c� 1, i.e., p in the constraint of Eq. (5). The exact values of p for
the four cases are tabulated in Table 1. Obviously, if

l � �e � lþ r

the constraint c� 1 is satisfied with a high probability of 79% to 96%.
In mid-November 2013, we carried out several experiments on Qiandao Lake

(Zhejiang province, China). The sensor array was deployed horizontally in the water
column. A sound source was placed in the far field of the array, transmitting rectangu-
lar continuous wave pulses with different carrier frequencies. The pulses were repeated
every second and each pulse lasted 20 cycles in terms of the carrier frequency. To test
the response of the array to all possible azimuthal incident angles, the array was
rotated around its center in the horizontal plane. For each incident angle, 30 pulses
were recorded. The dataset for 300 Hz, without calibration, is now used to examine the
performance of the proposed method.

Figure 2(a) illustrates the measured beam patterns for three different values of
the regularization parameter �e, where the main response axis of the array is steered at
0�. These beam patterns are generated as follows. For each incident angle, the squared
amplitudes of the pulses at the beamformer output are averaged over the 30 pulses; the
result is taken as the response of the array with respect to that incident angle. The
responses, normalized by the one corresponding to the steering angle, are plotted ver-
sus the incident angle to generate the so-called measured beam pattern. For this array,
the shape of these beam patterns is very close to the cardioid.

The case �e ¼ lþ 3r corresponds to the worst-case performance optimiza-
tion.11 With the decrease of �e, the directivity rises. This is consistent with Fig. 2(a).
The analysis shows that the optimum is around �e ¼ l. However, the obtained beam
pattern seems more attractive for the case of �e ¼ l� r. This does not contradict our
previous analysis, as it comes at a cost of an obvious reduction in WNG, which will
be discussed in the sequel.

In Fig. 2(b) the estimated values of the DI versus the WNG, for different val-
ues of �e are provided. Recall that the DI is defined in the 2D case as

Fig. 1. (Color Online) (a) Histogram of d compared to the probability density function of the Gaussian distribu-
tion with the same mean and standard deviation (smooth curve). (b) Probabilities of c to be greater than or
equal to the abscissa, for different values of �e.

Table 1. Probabilities of c� 1 for different values of the regularization parameter �e.

�e l � r l l þ r l þ 3r

p 43% 79% 96% 100%
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DI ¼ �10 log10
1

2p

ð2p

0
jB /ð Þj2d/

" #
: (6)

The integration in Eq. (6) is approximated in the present work by the summation over
the discrete incident angles. Therefore, these estimates are not very accurate because
the gaps between the incident angles are 5� and on most occasions 15�. The definition
of the WNG, widely used to measure the robustness of a beamformer, is given by

WNG ¼ 10 log10
jwHaj2

wHw
:

In Fig. 2(b), the tradeoff relation between DI and WNG is fairly obvious. We can also
observe a clear increasing trend of WNG with �e. However, for this sensor array, when
the regularization parameter reaches �e ¼ l� r, further reducing it brings no benefit; it
only reduces the level of robustness without improving the directivity. This can be seen
by comparing the two cases �e ¼ l� r and �e ¼ l� 2r, where the DIs both read
5.0 dB. This figure also shows an increase in the DI of about 0.7 dB when using the
PR with �e ¼ l, in contrast to the worst-case performance optimization (i.e., PR with
�e ¼ lþ 3r); this directivity gain comes at a cost of reduced robustness.

The proposed PR method is then compared with two other adaptive beam-
formers, i.e., the midway method10 and the WNG constrained regularization,8 namely
“WNC.” The results are shown in Fig. 3. Since there is no clear rule on how to choose
an appropriate WNG constraint, we simply set it to 0 dB for the WNC, obtaining one
beam pattern. For the PR, the regularization parameter is set to �e ¼ l. The obtained
beam patterns for the WNC and the PR are almost the same, with approximately
identical (measured) DIs of 4.9 and 5.0 dB, respectively. By contrast, the midway offers
a mild DI of 3.4 dB. The result of the delay-and-sum (DAS) beamformer, known to be
highly robust against the sensor mismatches, is also presented for comparison pur-
poses; it yields a poor DI of only 1.0 dB (measured).

4. Conclusions

In this letter, a robust beamforming method with PR is proposed. This method targets
higher directivity compared to other similar robust adaptive approaches while ensuring
robustness against the sensor mismatches with a certain probability. The PR problem
is solved through the SOC programming with several educated guesses of the regulari-
zation parameter �e, which regulates the tradeoff between directivity and robustness.
These guesses are tested in MC simulations to determine the optimal regularization
parameter; the corresponding beamformer weights provide the solution to the PR
problem. Experiments on a 3� 3 miniaturized URA without calibration were carried
out to verify the robustness of the proposed method to sensor mismatches; compari-
sons with other similar adaptive robust beamformers were also performed.

It is worth mentioning that, during these experiments, the optimum regulariza-
tion parameter �e was chosen in the range l � �e � lþ r to ensure robustness with a
probability between 79% and 96%, where l and r are the mean and standard deviation
of the possible array manifold distortions. We noticed that this relation between the
range l � �e � lþ r and the probability 79%� p� 96% is least dependent on the exact

Fig. 2. (Color Online) (a) Beam patterns for different regularization parameters. (b) DI versus WNG for differ-
ent values of the regularization parameter �e; for each point, the value of �e is indicated next to the square
marker.
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values of l and r. Thus, we conjecture that, in general, to meet similar robustness
probability requirements, the optimum �e should also be chosen in the range l � �e
� lþ r regardless of the exact array geometry and perturbation nature.
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