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This paper proposes a mode domain beamforming method for a 3� 3 uniform rectangular array of

two-dimensional (2D) acoustic vector sensors with inter-sensor spacing much smaller than the

wavelengths in the working frequency band. The acoustic modes are extracted from the particle ve-

locity observations in light of the source-sink pictures of the Taylor’s series multipoles [Wikswo

and Swinney, J. Appl. Phys. 56(11), 3039–3049 (1984)]. Then, similar to other mode domain meth-

ods, the modes are synthesized to obtain the desired beam pattern. The proposed method is limited

to the cases where five is the maximum order of the modes for pattern synthesis, meaning that the

directivity index in the 2D isotropic noise case can reach up to 10.4 dB. The proposed method has

been validated by field experiments. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4937759]

[MRB] Pages: 3873–3883

I. INTRODUCTION

The mode domain beamforming has become a widely

used technique in the design of superdirective microphone

arrays of spherical,1–5 circular,6,7 and linear apertures.8–11

Other than these microphone applications, this method is

also useful to develop superdirective hydrophone arrays with

miniaturized aperture.12–15 Such a technique is referred to as

“mode domain” processing because it is based on the decom-

position of the soundfield measurements into a series of

acoustic modes of different orders, i.e., the eigenfunctions of

the wave equation; the obtained acoustic modes are then syn-

thesized to fit the desired beam pattern.

A superdirective sensor array can be regarded from an

alternative perspective as a realization of the concept “higher

order acoustic sensor.”16–18 In this sense, due to its dipole

behavior, a particle velocity sensor is a first order acoustic

sensor. A particle velocity sensor can be physically imple-

mented by an accelerometer or by a subtractive array of two

closely positioned pressure sensors, which provides the

spatial gradient of the pressure. An acoustic vector sensor

(AVS) is usually composed of two or three collocated and

orthogonally oriented particle velocity sensors and possibly

an acoustic pressure sensor. It has been shown experimen-

tally that the AVS is advantageous over the omnidirectional

pressure sensor as it presents an increased gain against the

ambient noise and a higher angular resolution in virtue of the

directional capabilities of particle velocity sensors.19–23

Superdirectivity can be achieved by using an array of

AVS subject to stringent constraints on the aperture. The

uniform circular array (UCA) of two-dimensional (2D)

AVS24 is such an example. The 2D AVS refers to an AVS

consisting of only two independent particle velocity sensors.

Such a device is capable of measuring two of the three

orthogonal components of the particle velocity of the acous-

tic wave. A superdirective beamformer has also been

proposed for the short uniform linear array (ULA) of 2D

AVS.25 Unlike most superdirective ULAs that only comprise

the pressure sensors, the main response axis of this superdir-

ective ULA of 2D AVS can be freely steered to any direction

in the 2D space.

This paper introduces a superdirective mode domain

beamformer for a 3� 3 uniform rectangular array (URA) of

2D AVS with miniaturized aperture. Similar to Gur’s

ULA,25 the proposed beamformer design is also based on the

finite differences of the particle velocity measurements for

the extraction of the acoustic modes. The differential coeffi-

cients are obtained in light of the source-sink pictures of the
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Taylor’s series dipole, quadrupole, and multipoles of higher

orders.26 Field experiments have been carried out to test and

validate the proposed approach. The results show that, de-

spite its miniaturized aperture, the 3� 3 array is superdirec-

tive and the synthesized beam patterns are frequency

invariant over a broad band of several hundreds of hertz.

The miniaturized aperture makes this array attractive for

easy deployment and maintenance at sea, with possible

applications in underwater acoustic surveillance such as

target detection and direction of arrival (DOA) estimation.

II. SUPERDIRECTIVE BEAMFORMER FOR THE URA

A. The URA

Consider the 3� 3 URA of 2D AVS with inter-sensor

spacing a shown in Fig. 1, where a 2D Cartesian coordinate

system is also established with the origin coinciding with the

center of the array. Other than the uniform grid where the 2D

AVSs are positioned, by “uniform” we also mean that the main

response axes of the two particle velocity sensors of these 2D

AVSs are uniformly aligned along the x and the y directions,

providing observations of the two horizontal particle velocity

components of the incident acoustic wave. In addition to the

nine 2D AVSs, an omnidirectional pressure sensor is placed at

the center of the array. A low-frequency acoustic plane wave

arrives on the array at velocity c from angle /, measured from

the positive x axis. Herein, by “low-frequency,” we mean that

a/k� 1, where k denotes the wavelength.

Note that the pressure sensor and the particle velocity

sensor are different types of sensors. The sensitivity of the

pressure sensor is defined in terms of the sound pressure,

which is not the case for the particle velocity sensor.

Suppose, without loss of generality, that the pressure meas-

ured at the position (x,y) has unit magnitude and is given by

pðx; yÞ ¼ ejkðx cos /þy sin /Þ;

where j ¼
ffiffiffiffiffiffiffi
�1
p

and k¼ 2p/k denotes the wavenumber. The

time dependent part ejxt, where x¼ kc is the angular

frequency, has been omitted for simplicity. Accordingly,

from the two channels of the vector sensor, at the same point

of coordinates (x,y), we obtain

vxðx; yÞ ¼ Vejkðx cos /þ y sin /Þ cos /;

vyðx; yÞ ¼ Vejkðx cos /þ y sin /Þ sin /; (1)

where V is the amplitude of the particle velocity measure-

ments. In this paper, we assume, without loss of generality,

that the sensitivities of the pressure and the particle velocity

sensors are equivalent. This means that, for a given incident

wave, if the main response axis of the particle velocity

sensor coincides with the direction of the incident wave, the

outputs of the pressure sensor and the particle velocity sen-

sor are the same. In practice, this can always be obtained by

properly scaling the particle velocity measurements to have

V¼ 1. Under these circumstances, the array response can be

expressed as a (2Lþ 1)� 1 vector

vð/Þ ¼ ½ 1 aTð/Þ cos / aTð/Þ sin /�T ; (2)

with L¼ 9, where the operator (�)T denotes the matrix trans-

pose. The scalar “1” corresponds to the pressure measure-

ment and the other entries of vð/Þ to the particle velocity

measurements. The ‘th element of the vector að/Þ is given

by a‘ð/Þ ¼ ejkðx‘ cos /þ y‘ sin /Þ, where

x‘ ¼
�a; ‘ ¼ 1; 2; 3;

0; ‘ ¼ 4; 5; 6;

a; ‘ ¼ 7; 8; 9;

8><
>:

y‘ ¼
a; ‘ ¼ 1; 4; 7;

0; ‘ ¼ 2; 5; 8;

�a; ‘ ¼ 3; 6; 9:

8><
>:

B. The mode domain beamformer

The wavefield can be decomposed into a series of acous-

tic modes of different orders, also known as the multipole

expansion.26 In this paper, we are only interested in the

azimuth-dependent component of these modes. The 0th

order mode is azimuth independent and can be simply

denoted by one. The 1st, 2nd, 3rd, and higher order modes

correspond to dipole, quadrupole, octapole, etc. These modes

have a cosine component cos n/ and a sine component

sin n/, for 1� n�N, where N is the highest order of the

available modes. We define the vector of modes

bð/Þ ¼ ½ 1 bT
1 ð/Þ bT

2 ð/Þ �
T ;

where

b1ð/Þ ¼

cos /

cos 2/

..

.

cos N/

2
66664

3
77775; b2ð/Þ ¼

sin /

sin 2/

..

.

sin N/

2
66664

3
77775:FIG. 1. (Color online) Top view of the vector sensor array. A gray circle

denotes a 2D vector sensor whereas the smaller dark circle denotes an omni-

directional pressure sensor. The blue cross on the gray circle denotes the ori-

entations of the two main response axes of a 2D AVS.
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Once bð/Þ is obtained from the data, the pattern synthe-

sis step is very similar to the conventional ULA process-

ing.27 For example, if we choose

�b uð Þ ¼
1

2N þ 1
1 2bT

1 uð Þ 2bT
2 uð Þ

h i

as the steering vector (where u is the steering angle), the

beam pattern is given by

Bð/Þ ¼ �b
TðuÞbð/Þ ¼ 1þ 2

XN

n¼1

cos nðu� /Þ

¼
XN

n¼�N

ejnð/�uÞ: (3)

Observing the similarities between the last term and the

array response of the uniformly weighted ULA of 2Nþ 1

elements, we obtain27

B /ð Þ ¼ 1

2N þ 1

sin
2N þ 1

2
u� /ð Þ

sin
1

2
u� /ð Þ

: (4)

If a different steering vector �bðuÞ is used, the beam pattern

changes; see Ref. 25, for example. However, since the

pattern synthesis is analogous to the ULA case, in this paper,

we will focus on how to estimate the mode components

bð/Þ for the 3� 3 2D-AVS URA.

It should be pointed out that there exist some other

beamforming methods for superdirectivity where the pattern

synthesis step is completely different from the conventional

ULA case. The method of Ref. 28 is such an example;

therein superdirectivity can be achieved without the effort of

estimating the mode components. Instead, the approach in

Ref. 28 requires a priori knowledge of the DOA of the inci-

dent wave.

In Secs. II C–II E, we propose a method for obtaining the

acoustic modes of orders 1�N from the incident wave meas-

urements made by this 3� 3 2D-AVS URA. This method

consists of three steps: the mode extraction, the amplification,

and the decoupling. These steps establish a link between the

array response vð/Þ and the vector of modes bð/Þ. Then

the pattern synthesis step [Eq. (3)] can be used to obtain the

desired beam pattern in a similar way to the conventional

ULA case. The mode beamformer filter weights wðuÞ are

those satisfying Bð/Þ ¼ wðuÞHvð/Þ � �b
TðuÞbð/Þ.

C. The mode extraction

The main reason for having a pressure sensor positioned

at the center of the 2D-AVS URA is to directly obtain the

measurements of the 0th order acoustic mode due to the

omnidirectional property of the pressure sensor.

For the modes of order n	 1, the outputs of the 2D

AVS are multiplied by some constant coefficients and

summed up to produce the finite differences of the particle

velocities. The nth order finite difference of the particle

velocities are denoted by u
ðnÞ
p for p¼ 1,2, each

corresponding to one of the two mode components cos n/
and sin n/. It should be pointed out that the nth order finite

difference may not necessarily be exactly the nth order

mode, but it contains the nth order mode, as will be shown

in the sequel. We denote by v‘,x and v‘,y the the particle ve-

locity observations made by the two channels of the ‘th 2D

AVS, for ‘ 2 L ¼ f1;…; 9g, which are the (‘þ 1)th

and the (‘þLþ 1)th elements of vð/Þ, respectively [see

Eq. (2) for the definition of vð/Þ]. The finite differences

can then be formulated as

u
ðnÞ
1 ¼

X
‘

g
ðnÞ
‘;1v‘;x þ

X
‘

g
ðnÞ
‘;2v‘;y;

u
ðnÞ
2 ¼ �

X
‘

g
ðnÞ
‘;2v‘;x þ

X
‘

g
ðnÞ
‘;1v‘;y; (5)

where g
ðnÞ
‘;q is the constant coefficient associated with the ‘th

2D AVS for the nth order finite differences. Two sets of

coefficients SðnÞq ¼ fg
ðnÞ
‘;q ; ‘ 2 Lg are used for both channels

of the 2D AVS simultaneously, where the subscript q¼ 1,2

is used to indicate the two sets. Substituting Eq. (2) into

Eq. (5), we further obtain

u
ðnÞ
1

u
ðnÞ
2

2
4

3
5 ¼

X
‘

g
ðnÞ
‘;1 a‘ð/Þ

X
‘

g
ðnÞ
‘;2 a‘ð/Þ

�
X
‘

g
ðnÞ
‘;2 a‘ð/Þ

X
‘

g
ðnÞ
‘;1 a‘ð/Þ

2
66664

3
77775

cos /

sin /

" #
:

(6)

In the subsequent discussions, the 2 � 2 matrix in Eq. (6)

will be denoted by M(n) for the nth order finite difference. It

can be observed from Eq. (6) that the elements of M(n), say,

m
ðnÞ
ij ; i; j 2 f1; 2g, satisfy

m
ðnÞ
11 ¼ m

ðnÞ
22 ; m

ðnÞ
12 ¼ �m

ðnÞ
21 : (7)

We choose the finite difference coefficients g
ðnÞ
‘;q based on the

Taylor’s series multipoles described by the pictures of point

sources and sinks.26 Figure 2 shows the 2D-AVS URA

with different sets of differential coefficients in analogy to

the corresponding source-sink pictures of the multipoles.

Appendix A provides the detailed derivation of the finite

differences by order.

In summary, for each n�N� 5, we can derive a pair of

nth order differentials of the particle velocities u
ðnÞ
1 and u

ðnÞ
2 .

These differentials are grouped by order to form a (2Nþ 1)

� 1 vector

u ¼ ½ 1 u
ð1Þ
1 � � � u

ðNÞ
1 u

ð1Þ
2 � � � u

ðNÞ
2
�T : (8)

The element “1” in u denotes the normalized amplitude of

the pressure, which provides the 0th order mode. Then, the

mode extraction step can be concisely expressed by

u ¼ Gvð/Þ: (9)

The (2Nþ 1)� (2Lþ 1) matrix G can be partitioned into

blocks as
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G ¼
1

G1 G2

�G2 G1

2
64

3
75;

where the (n, ‘) elements of the subblocks G1 and G2 are,

respectively, given by the coefficients g
ðnÞ
‘;1 and g

ðnÞ
‘;2 . If N¼ 5,

the two subblocks G1 and G2 are given by

G1 ¼

0 0 0 0 1 0 0 0 0

0 �1 0 0 0 0 0 1 0

0 2 0 �2 0 �2 0 2 0

1 �2 1 0 0 0 �1 2 �1

�1 2 �1 2 �4 2 �1 2 �1

2
6666664

3
7777775

and

G2 ¼

0 0 0 0 0 0 0 0 0

0 0 0 �1 0 1 0 0 0

1 0 �1 0 0 0 �1 0 1

�1 0 1 2 0 �2 �1 0 1

0 0 0 0 0 0 0 0 0

2
6666664

3
7777775
:

The nth rows are associated with the nth order finite differen-

tials. For the cases N< 5, both subblocks are simply substi-

tuted by their first N rows.

Furthermore, it can be easily shown, using the equations

of Appendix A, that the relationship between the vector of

modes bð/Þ and the vector u is given by

u � KðRbð/Þ þ zÞ: (10)

In the above equation, the (2Nþ 1)� (2Nþ 1) matrix R can

be expressed as

R ¼
1

R1

R2

2
4

3
5: (11)

For N¼ 5, the two subblocks are

R1 ¼

1

0 1

0 0 1

0 0 0 1

�2 0 1 0 1

2
6666664

3
7777775
;

R2 ¼

1

0 1

0 0 1

0 0 0 1

�2 0 �1 0 1

2
6666664

3
7777775
:

Observe that R1 and R2 are lower triangular matrices,

where the (‘,k) elements are nonzero only if ‘ � k is

even. The vector z is given by z ¼ ½ 0 zT
1 zT

2 �
T ; where

z1 ¼ ½ 0 0 0 �1 0 �T , whereas z2 is a 5� 1 vector of

zeros. The matrix K is a complex block diagonal matrix

K ¼
1

�K
�K

2
4

3
5; (12)

with

�K ¼ diag 1 j 2j2 1

2
j3 1

16
j4

� �
and j ¼ jka:

For N< 5, the matrices R1, R2, and �K are substituted by

their respective upper left subblocks, resulting in three

N�N matrices. In accordance, the first N elements of the

vector z1 form the new vector z1, and z2 reduces to an N-ele-

ment vector of zeros.

So far, we have established a link between u and bð/Þ.
In order to obtain the vector of modes bð/Þ, the beamformer

still needs the following two steps.

D. The amplification

Observe that the elements of the diagonal matrix K are

of magnitude jjjn�1
. Since jjj ¼ ka < 1, it means that the

amplitudes of these differentials are imbalanced by order.

The reason is that the higher order mode components of the

incident wave are much weaker than those of lower orders.

To compensate this, we introduce the amplification step,

which is implemented by multiplying u by K�1 on the left,

yielding

h ¼ K�1u � Rbð/Þ þ z: (13)

FIG. 2. (Color online) Illustration of the 2D AVSs with their respective

coefficients. (a)–(e) illustrate one set of the coefficients for all the 5 modes.

(f)–(h) illustrate the other set of the coefficients for the modes of orders 2–4.

The highlighted circles denote the 2D AVS with nonzero coefficients. The

digit to the upper right of the 2D AVS is the coefficient associated with it,

where the sensor with a positive coefficient is marked by the solid circle and

the sensor with a negative weight is marked by the dashed circle.
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However, it comes at the cost of a sharp decrease in the

white noise gain (WNG), which will be shown in Sec. III.

E. The decoupling

As shown in Appendix A, a so-called “coupling” phe-

nomenon between the modes can be observed. That is, in the

finite difference terms u
ðnÞ
q , other than the nth order mode

components, there can also be some undesired (n � 2‘)th
order mode components for 1 � ‘ � bn=2c, where b�c
denotes the integer part of a number. This accounts for the

reason that R1 and R2 are lower triangular matrices and their

(‘,k) element is nonzero only if ‘ � k is even.

Therefore, a decoupling step is still necessary to resolve

the mixture of the modes. We can show that the vector of

modes bð/Þ can be obtained by solving

bð/Þ ¼ Dh (14)

with respect to D, termed as the decoupling matrix, subject

to the constraint that the unknown matrix D is independent

of the incidence angle /. We recall that the estimates u
ðnÞ
q

may contain the 0th order mode only if n is even and q¼ 1

(those associated with the cosine mode components). In this

case, the pressure observation, which provides an estimate of

the 0th order mode, is needed to decouple the mixture of the

cosine mode components of even orders.

It can be observed from Eq. (11) that there is no cou-

pling between the cosine and the sine mode components.

Hence, we can deduce that D is also a block diagonal matrix,

which can be expressed as

D ¼
1

d �D
~D

2
4

3
5: (15)

If we substitute Eqs. (15) and (13) into Eq. (14), we obtain

the two decoupled equations

b1ð/Þ ¼ dþ �DR1b1ð/Þ þ �Dz1; (16)

b2ð/Þ ¼ ~DR2b2ð/Þ: (17)

A reformulation of Eq. (16) yields

dþ �Dz1 þ ð�DR1 � IÞb1ð/Þ ¼ 0:

In this equation, only b1ð/Þ is dependent on /. Hence, this

equation holds for any / if and only if �D ¼ R�1
1 . It follows

that d ¼ �R�1
1 z1. Similarly, we can derive from Eq. (17)

that ~D ¼ R�1
2 , and finally obtain

D ¼
1

�R�1
1 z1 R�1

1

R�1
2

2
4

3
5: (18)

Since R1 and R2 are lower triangular matrices, the decou-

pling matrix D has the following properties:

(1) �d‘;k ¼ 0 for ‘> k, where �d‘;k denotes the typical element

of �D, i.e., �D is a lower triangular matrix.

(2) �d‘;k 6¼ 0 only if ‘ � k is even (see Appendix B for the

proof).

(3) �d‘;‘ ¼ 1.

(4) The properties (1)–(3) also apply to ~D.

At this stage, we have obtained bð/Þ � DK�1Gvð/Þ af-

ter the mode extraction, amplification, and decoupling steps.

By substituting bð/Þ in Eq. (3) the desired beam pattern is

obtained. Taking the pattern synthesis step into considera-

tion, we can express the beamformer filter weights wðuÞ for

the 3� 3 2D-AVS URA in matrix form as

wHðuÞ ¼ �b
TðuÞDK�1G: (19)

III. PERFORMANCE

A. Directivity

The 2D directivity index (DI) of this beamformer is

given in decibels by27

DI ¼ 10 log10 2p
ð2p

0

jBð/Þj2 d/

" #�1

: (20)

Substituting Eq. (4) in Eq. (20), we obtain

DI � 10 log10ð2N þ 1Þ (21)

by analogy with the conventional ULA of 2Nþ 1 elements.

For N¼ 5, the value of DI is 
10.4 dB. It is immediate from

Eq. (4) that the 3 dB beamwitdth of the beamformer is 
29.09�

and the first sidelobe, which occurs at / ¼ u646:94�, is

�13.02 dB relative to the main lobe.

Figure 3 shows the beam pattern obtained by using the

proposed method. The main lobe is steered at 60�. It is

worth noting that the beam pattern available in practice

FIG. 3. (Color online) A comparison of the practical beam pattern with the

theoretical beam pattern. The steering angle is 60�. The practical beam pat-

tern is given by the thick dashed curve and the theoretical beam pattern by

the thin solid curve.
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Bð/Þ ¼ wðuÞHvð/Þ is not equal to the theoretical beam

pattern given by Eq. (4). Therefore, in this paper, Bð/Þ
¼ wðuÞHvð/Þ is referred to as the “practical” beam pattern

to distinguish it from the theoretical one. The theoretical

beam pattern is also provided in Fig. 3 for comparison pur-

poses. A small divergence of the side lobes of the practical

beam pattern from the theoretical one can be observed in

this case. The reason for this small difference is that the

practically obtained acoustic modes are only approxima-

tions of the theoretical modes. Hence, the synthesized

beam pattern presents errors. These errors are small, but

they appear more significant compared to the side lobe

magnitudes than to the magnitude of the main lobe.

The DI is also computed in Fig. 4. It can be noticed that

the DI is almost frequency independent at low frequencies,

i.e., for a/k< 1/2p. Hence, in this paper, the required condi-

tion a/k� 1 can be understood as a/k< 1/2p.

B. WNG

Superdirective arrays are known to be sensitive to the

spatially uncorrelated noise. In contrast to the ambient noise,

this kind of noise is mainly due to nonacoustic causes, e.g.,

the self-noise of the sensor. The WNG is a widely used mea-

sure of robustness of a beamformer against the spatially

uncorrelated noise given by27

WNG ¼ 1=kwðuÞk2; (22)

where k � k denotes the Euclidean norm of a vector. Figure 5

plots the WNG of the proposed beamformer for different

orders N. The WNG is evaluated numerically versus a/k.

The maximum response axis is steered at 60�. It is clearly

shown that the WNG is dependent both on the frequency and

the order N. One can observe that, especially at low-

frequencies, reducing N by 1 improves radically the WNG.

This is due to the fact that the subtractions of the observa-

tions across the sensors intrinsically decrease the power of

the desired signal, whereas the power of the spatially uncor-

related noise adds up. The higher order mode components of

the incident wave are much weaker than those of lower

orders, which decrease with the order of the mode n by a fac-

tor (2pa/k)n�1 (see, e.g., Ref. 29). The mode amplification

step handles the imbalanced amplitudes of the mode compo-

nents, at the cost of a sharp increase in the uncorrelated noise

power.

For comparison purposes, the WNG of Gur’s subtractive

beamformer for the ULA of 2D AVS25 is also illustrated in

Fig. 5. Let us take a closer look at the case a/k¼ 0.016, for

example. The values of the WNG for the two methods are

tabulated in Table I. In the case of N¼ 1, both methods use

only one AVS and, therefore, their WNGs is exactly the

same. For N¼ 2 and N¼ 3, the proposed method yields a

higher WNG because we choose the sensors with the largest

possible spacing to extract the acoustic modes of order 2 and

3. When N¼ 4, this spacing advantage no longer holds.

However, as more sensors are used, we still get a higher

WNG. This advantage becomes even less significant for the

case of N¼ 5.

It should be pointed out that all these comparisons are

performed under the condition that the same DI is achieved

for both URA and ULA. We observed that in some cases the

higher WNG of the URA benefits from its larger inter-sensor

spacing compared to the ULA. Although a larger inter-

sensor spacing results in lower spatial correlation of the

ambient noise measured across the sensors, it does not neces-

sarily reduce the ambient noise rejection ability of the array.

The reason is that the correlation of the desired signals

between any two sensors is also reduced. As a matter of fact,

the DI, which is an index that measures the ambient noise

rejection ability of an array, is broadband constant as long as

FIG. 4. (Color online) The directivity index versus the inter-sensor spacing

in wavelengths. The beam is steered at 60� and the highest order of the

modes is N¼ 5.

FIG. 5. (Color online) The WNG versus the inter-sensor spacing in wave-

lengths. The beam is steered at 60� and the highest order of the modes is

N¼ 5. The solid line denotes the WNG of the proposed method applied to

the 3� 3 URA, whereas the dashed line denotes the results of Gur’s method

applied to a five-element ULA.

TABLE I. The comparison of the two methods in terms of the WNG (dB)

for a/k¼ 0.016.

N 1 2 3 4 5

Proposed 2.5527 �12.0497 �36.0252 �66.6228 �104.6546

Gur 2.5527 �21.0371 �48.8274 �77.8534 �107.5202
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a/k< 1/2p, as it can be seen in Fig. 4. Hence, at low frequen-

cies, increasing the inter-sensor spacing to obtain a higher

WNG is always preferred until the array aperture reaches its

limit.

Next, we examine analytically the influence of the

WNG on the array gain (AG). Consider the simple case in

which the ambient noise is isotropic. We denote the power

of the correlated ambient noise by e2. Moreover, suppose

that all the 2D AVSs are identical. Denote by r2 the power

of the spatially uncorrelated noise and by l the sensitivity of

the AVS. Since e � r and the self-noise of the pressure

sensor is even smaller than the self-noise of the AVS in the

underwater environment, the input signal-to-noise ratio

(SNR) at each 2D AVS is given by

SNRi ¼
l2

l2e2 þ r2
� 1

e2
:

The beamformer reduces the power of the ambient noise to

(le)2/DI, but it also increases the self-noise to kwðuÞk2r2.

Consequently, the SNR at the output end of the beamformer

can be formulated by

SNRo ¼
l2

leð Þ2

DI
þ kw uð Þk2r2

:

Then the AG can be expressed as

AG ¼ SNRo

SNRi
�

leð Þ2

leð Þ2

DI
þ r2

WNG

;

where we have used Eq. (22). This equation can be further

reformulated as

1

AG
¼ 1

DI
þ r

le

� �2 1

WNG
: (23)

It is obvious that WNG < AG < min½DI; ðle=rÞ2WNG�.
As it can be seen in Eq. (23), the AG is dependent on

the power ratio of the ambient noise and the spatially uncor-

related noise, e2/r2. Even though the power of the spatially

uncorrelated noise r2 is often negligible compared with the

ambient noise e2, the AG is low because the WNG of

a superdirective array can be also very small, as shown in

Fig. 5. Hence, the AVS of high quality, meaning small self-

noise variance r2 and high sensitivity, is much preferred in

the superdirective array design. If the quality of the AVS is

not high enough such that DI� ðle=rÞ2WNG, the AG

becomes close to ðle=rÞ2WNG. In this case, as illustrated by

Fig. 5, slightly reducing N can significantly increase the

WNG. Thus, higher AG can be achieved at the cost of a mild

decrease in the DI.

IV. EXPERIMENTS

A prototype of the 3� 3 URA of 2D AVS has been

developed at Harbin Engineering University, which allows

us to test the proposed beamforming method in real-world

experiments. The inter-sensor spacing a of this prototype is

fixed to 0.12 m, such that the array aperture is constrained to

<0.5 m.

The proposed method is tested first in an anechoic water

tank. A sound source is fixed in the far field of the array,

transmitting rectangular continuous wave pulses. The pulses

are repeated every second and each pulse lasts 20 cycles in

terms of the carrier frequency. At the receiver, the AVS

array is rotated in the horizontal plane, which is equivalent

to moving the source through all the possible azimuthal

angles. The rotation stops every 5�. For each angle, we wait

a little while before starting the measurements again in order

to let the array return to the state of rest. Once the measure-

ment starts, it takes 30 s before we rotate the array again

with another 5�. Thus, 30 pulses are recorded for each inci-

dent angle.

Moreover, the rectangular pulses inevitably undergo

some distortions due to the transmitting transducer and the

receiving sensor. The distorted rising edge of the pulse may

take several cycles before the pulse reaches the stable status.

The falling edge of the pulse is mixed with some interfer-

ence caused by the reverberant acoustic field. Therefore, a

time window is used to truncate the received signals, con-

serving only the steady parts of the received pulses. For each

incident angle, the magnitudes of the pulses at the beam-

former output are averaged over 15 pulses (out of the 30

pulses) and squared; the result is taken as the power of the

received pulse. The power of these pulses is further normal-

ized by that of the pulse obtained from the main response

axis. The power of the pulses is plotted versus the incident

angles to generate the measured beam pattern. For example,

the results for the frequency bin of 170 Hz are shown in Fig.

6; the main response axis is steered at direction 0�. It can be

observed that the measured beam patterns, denoted by the

discrete squares, are in good agreement with the theoretical

beam patterns for N¼ 2 and N¼ 3. When the 4th order

modes are used to synthesize the beam pattern, the measured

side lobes start to diverge slightly from the theoretical side

lobes. This phenomenon is even more obvious when N is

increased to 5. This is mainly due to the fact that the WNG

decreases drastically while N goes up, as shown in Fig. 5. In

other words, this 5th order array is too sensitive for frequen-

cies below 170 Hz. In this case, better results could be

obtained by reducing N.

Figure 7 shows the beam patterns measured at 200 Hz.

The results are similar to those obtained at 170 Hz. A close

comparison of the beam patterns obtained at 170 Hz and at

200 Hz for N¼ 4 and N¼ 5 shows that the beam patterns

obtained at 200 Hz are even less accurate than the ones

obtained at 170 Hz. This is somewhat misleading as the

WNG at 200 Hz should be higher. A possible explanation is

that the sensitivity of the AVS that we used is not completely

constant over the low frequencies. It is lower at 200 Hz than

at 170 Hz. According to Eq. (23), the AG also decreases with

the sensitivity of the AVS. Hence, a performance loss at

200 Hz is observed.

In mid-November 2013, we have carried out several

experiments in Qiandao Lake in southern China. The water
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tank experiment setup is largely reproduced in the lake

except that, to save time, during some of these experiments,

the array was not necessarily rotated with a 5� angular step.

For example, Figs. 8 and 9 show some of the beamforming

results obtained at 200 and 300 Hz, respectively. The theo-

retical beam patterns are also illustrated for comparison pur-

poses. It is clearly shown that, by using the proposed

superdirective beamformer, directional responses can be

obtained in practice with this miniaturized 3� 3 URA of 2D

AVS. Comparing these results to those obtained in the

anechoic water tank, we can see that the measured beam pat-

terns from the lake diverge more from the theoretical beam

patterns. The main reason for this is that the acoustic envi-

ronment in the lake is much more complex than in the water

tank. The assumption of isotropy of the ambient noise is

probably violated.

We arrive at the conclusion that for low frequencies,

and given the type of 2D AVS that we used, the maximum

FIG. 7. (Color online) The beam patterns measured in the water tank at

200 Hz for 2�N� 5; the other settings are similar to Fig. 6.

FIG. 8. (Color online) The beam patterns measured in the lake at 200 Hz for

2�N� 5; the other settings are similar to Fig. 6.

FIG. 6. (Color online) The beam patterns measured (the red squared

markers) in the water tank at 170 Hz for 2�N� 5. The theoretical beam

patterns (the thin blue curves) are also illustrated for comparison purposes.

FIG. 9. (Color online) The beam patterns measured in the lake at 300 Hz for

2�N� 5; the other settings are similar to Fig. 6.
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order of the modes for pattern synthesis should be con-

strained to N� 4, to ensure robustness of the superdirective

3� 3 URA of 2D AVS.

V. CONCLUDING REMARKS

In this paper, a mode domain beamformer design is pro-

posed for a miniaturized 3� 3 URA of 2D AVS. This

method uses the finite differences of the particle velocity

observations to extract the directional acoustic modes, which

are then synthesized in order to obtain the desired beam pat-

tern. To validate this method, both laboratory and lake

experiments have been carried out. It is shown that our

approach readily provides a practical solution to low-

frequency beamforming with a directivity index around

10.4 dB. The proposed method is limited to the use of the

3� 3 URA of 2D AVS and the maximum order of the modes

for pattern synthesis seems to be five. The analytical analysis

and the experimental results indicate that an extension of the

proposed approach to a 4� 4 or larger scale array for higher

order mode beamforming is less interesting. Moreover, when

the quality of the 2D AVS is poor, higher AG can be

achieved by reducing the maximum order of the modes.
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APPENDIX A: RELATION BETWEEN THE FINITE
DIFFERENCES OF THE PARTICLE VELOCITIES AND
THE TAYLOR’S SERIES MULTIPOLES

It can be seen from Eq. (1) that the 1st order mode com-

ponents cos / and sin / can be obtained directly from the

particle velocity at the origin. Thus, we only need to use the

2D AVS at the center of the array alone to extract the 1st

order mode components; the chosen AVS is highlighted in

Fig. 2(a). Readers are referred to Ref. 26 for the analogy

between Fig. 2(a) and the source-sink picture of the monop-

ole. In accordance, the coefficients are given by

g
ð1Þ
‘;1 ¼

1; ‘ ¼ 5;

0; otherwise

(

for 8‘ 2 L. These coefficients form the set Sð1Þ1 . The ele-

ments of the other set Sð1Þ2 are simply given by g
ðnÞ
‘;2 ¼ 0 for

8‘ 2 L. In this case, we obtain

Mð1Þ ¼ 1 0

0 1

� �
:

It follows from Eq. (6) that u
ð1Þ
1 ¼ cos / and u

ð1Þ
2 ¼ sin /,

which are the desired 1st order mode components.

By analogy with the source-sink picture of a dipole,26

we derive the estimates of the cosine and the sine compo-

nents of the 2nd order mode. In the 2D setup, there are only

two forms of dipoles. Correspondingly, two sets of coeffi-

cients, Sð2Þ1 and Sð2Þ2 , are obtained for the 2D-AVS array.

Figures 2(b) and 2(f) illustrate the 2D AVS with their respec-

tive coefficients under the two cases. Figure 2(b) corre-

sponds to the first case where the coefficients are given by

the set Sð2Þ1 . The 2D AVS associated with the two nonzero

coefficients forms a subarray along the x axis and the particle

velocity measurements made at the two positions are sub-

tracted. The array factor of this subarray (i.e., the array

response obtained as if the responses of all the array ele-

ments is omnidirectional27) is exactly the (1,1) element of

the matrix M
(2), given by

m
ð2Þ
11 ¼ j sinðka cos /Þ � j cos /;

where j¼ jka and we have used sin x � x for small x to

obtain the above approximation. This is justified because,

herein, ka is very small. Analogously, in the case of Sð2Þ2 , we

obtain

m
ð2Þ
12 ¼ �j sinðka sin /Þ � �j sin /:

which is the array factor of the 2D-AVS subarray corre-

sponding to the coefficient set Sð2Þ2 . It is immediate from

Eq. (7) that

Mð2Þ � j cos / �j sin /
j sin / j cos /

� �
:

Substituting it into Eq. (6), we obtain u
ð2Þ
1 � j cos 2/ and

u
ð2Þ
2 � j sin 2/.

To obtain the 3rd order mode components cos 3/ and

sin 3/, we use the quadrupole. The Taylor’s series quadru-

poles include two forms of axial quadrupoles along the two

orthogonal axes and a lateral quadrupole in the 2D case.26

The two Taylor’s series axial quadrupoles can be merged to

form another form of quadrupole (see Ref. 26 for the

details). We base the choice of the coefficient set Sð3Þ1 on this

quadrupole. Figure 2(c) shows the 2D AVS array in this

case. The 2D AVS with nonzero coefficients form a lager

subarray than in the 2nd order mode case. The array factor

now is given by

m
ð3Þ
11 ¼ 4 cosðka cos /Þ � 4 cosðka sin /Þ

� �2ðkaÞ2ð cos2 /� sin2 /Þ ¼ 2j2 cos 2/;

where we have used the approximation

cos x � 1� x2

2
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for small values of x. The other set of coefficients Sð3Þ2 are

determined in light of the source-sink picture of the Taylor

series lateral quadrupole.26 The coefficient set Sð3Þ2 is illus-

trated with the 2D-AVS URA in Fig. 2(g). Thus, another

subarray is obtained with the array factor

m
ð3Þ
12 ¼ �ð2jÞ2 sinðka sin /Þ sinðka cos /Þ

� �2j2 sin 2/;

leading to

Mð3Þ � 2j2 cos 2/ �2j2 sin 2/
2j2 sin 2/ 2j2 cos 2/

� �
:

Using Eq. (6), we obtain that u
ð3Þ
1 � 2j2 cos 3/ and u

ð3Þ
2

� 2j2 sin 3/.

In a similar way we can obtain the 4th and the 5th order

mode components. For the 4th order modes, we use the

Taylor’s series octapoles26 to determine the coefficients.

There are two forms of octapoles in the 2D case. The corre-

sponding coefficient sets are illustrated by Figs. 2(d) and

2(h). By similar arguments, we obtain

m
ð4Þ
11 ¼ 4j sinðka cos /Þð1� cosðka sin /ÞÞ
� �2j3 cos / sin2 /;

m
ð4Þ
12 ¼ 4j sinðka sin /Þð1� cosðka cos /ÞÞ
� �2j3 sin / cos2 /;

which yield

Mð4Þ � �2j3 cos / sin2 / �2j3 sin / cos2 /
2j3 sin / cos2 / �2j3 cos / sin2 /

� �
:

It follows that u
ð4Þ
1 � ð1=2Þj3ð�1þ cos 4/Þ and u

ð4Þ
2

� ð1=2Þj3sin 4/.

The differential of the Talyor’s series octapole with

respect to either axis produces the 4th order multipole. The

coefficient set Sð5Þ1 can be obtained in light of such a 4th

order multipole. Figure 2(e) shows the 2D AVS associated

with the coefficients of Sð5Þ1 . In this case, all 2D AVS are

associated with nonzero coefficients. That is, all of them are

used to estimate the 5th order mode components. The array

factor is given by

m
ð5Þ
11 ¼ �4ð1� cosðka cos /ÞÞð1� cosðka sin /ÞÞ

� �j4 cos2 / sin2 /:

It is not clear whether there also exists another form of 4th

order multipole that can be described by nine point sources

and sinks on the 3� 3 grid. In other words, we have no clue

how to obtain the second nontrivial coefficient set Sð5Þ2 for

this 3� 3 2D-AVS URA yet. Hence, we simply set the dif-

ferential coefficients g
ð5Þ
‘;2 ¼ 0 for all ‘ 2 L. Then, we obtain

m
ð5Þ
12 ¼ 0

and, as a consequence, the matrix

Mð5Þ � �j4 cos2 / sin2 / 0

0 �j4 cos2 / sin2 /

" #
:

Once again, using Eq. (6) we get u
ð5Þ
1 � ð1=16Þj4ð�2 cos /

þ cos 3/þ cos 5/Þ and u
ð5Þ
2 � ð1=16Þj4ð�2 sin /� sin 3/

þ sin 5/Þ.
This approach ends with N¼ 5 and whether it can be

extended for the higher order modes remains unclear at

the current stage. In practice, it is not so interesting to

extract the higher order modes because the method

becomes too sensitive if N	 5. This has been demon-

strated in Sec. III.

It should be noted that for 1� n� 5, the estimates u
ðnÞ
1

and u
ðnÞ
2 consist only of the cosine or the sine mode compo-

nents, respectively. In addition, for the 4th and the 5th order

modes, the estimates also have undesired lower order mode

components. In other words, other than the nth order mode

components, the estimate u
ðnÞ
q also contains the undesired

(n � 2‘)th order mode components for 1 � ‘ � bn=2c,
where b�c denotes the integer part of a number. This phe-

nomenon can be seen as “coupling” between the modes due

to the finite difference errors. For instance, u
ð5Þ
1 is such a

mixture. We can further deduce that the estimate u
ðnÞ
q con-

tains the 0th order mode only if n is even and q¼ 1,

e.g., u
ð4Þ
1 .

APPENDIX B: PROOF OF THE SECOND PROPERTY
OF THE DECOUPLING MATRIX

We base the proof of the second property on the follow-

ing lemma.

Lemma: If a lower triangular matrix R has the property

that its (‘,k) elements are nonzero only if ‘ � k is even, its

inverse D¼R
�1 has the same property.

Proof: It is clear that the (‘,k) elements of R are zeros if

‘ � k is odd. The lemma is proved if we can show that for

any ‘,k satisfying ‘> k and ‘ � k is odd, the (‘,k) element of

D, denoted by d‘,k, is also zero. It is known that30

d‘;k ¼
�1ð Þ‘þk

rm
k;‘

det Rð Þ
; (B1)

where detðRÞ is the determinant of the matrix R and rm
k;‘ is

the (k,‘) minor of R, i.e., the determinant of the (n � 1)� (n
� 1) matrix that results from deleting row k and column ‘ of

R. We denote this (n � 1)� (n � 1) matrix by Rk,‘, which is

also a lower triangular matrix. Hence, the determinant of the

lower triangular matrix Rk,‘, i.e., the minor rm
‘;k, equals the

product of the diagonal elements of the matrix Rk,‘.
30 It is

obvious that the (k,k) element of Rk,‘ is rkþ1,k, which is a

zero. Moreover, all the next ‘ � k � 1 diagonal elements of

Rk,‘, which are denoted by rkþ2,kþ1,…,r‘,‘�1, are also equal

to zero. Therefore, the minor rm
‘;k ¼ 0. Substituting it into Eq.

(B1), we obtain d‘,k¼ 0. The proof is complete.

It is immediate from this lemma that the second prop-

erty holds true.
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