
A generalized approach for Boolean matrix factorization

Rodrigo Cabral Fariasa,˚, Sebastian Mironb

aUniversité Côte d’Azur, CNRS, I3S Laboratory, 06900 Sophia-Antipolis, France
bUniversité de Lorraine, CNRS, CRAN, 54000 Nancy, France

Abstract

In this paper, we propose a generalized framework for fitting Boolean matrix factorization models to

binary data. In this generalized setting, the binary rank-1 components of the underlying model can

be combined by any Boolean function, thus extending the standard Boolean matrix factorization

model, where the combination is restricted to the logical ‘OR’ function. We introduce two algorithms

relying on a relaxation of the binary constraints on the factors of the model and on a polynomial

representation of the Boolean function that combines the rank-1 components. One of the algorithms

is based on the gradient descent optimization method, while the other is based on block coordinate

descent. A detailed presentation of the algorithms is given, along with numerical experiments both

on simulated and real datasets. A comparison with other algorithms from the literature is presented

in the standard Boolean matrix setting allowing to assess the advantages and shortcomes of the

proposed methods in terms of factor retrieval and data denoising performance, convergence behavior

and time complexity.

Keywords: Binary data, Binary matrix factorizations, Boolean matrix factorizations, Data mining.

1. Introduction1

Binary data matrices are one of the most natural ways of numerically encoding data in many2

applications. They can encode yes/no answers to surveys, voting records, tables indicating the3

presence or absence of traits of a group of individuals or indicating the proximity between the4

individuals, implicit feedback or thresholded explicit feedback (grades) in audio/video streaming5

platforms, input/output relationships in digital circuits, among many others. For this reason, a large6

number of data mining techniques specially tailored for binary data matrices have been developed7

˚Corresponding author
Email address: Rodrigo.CABRAL-FARIAS@univ-cotedazur.fr (Rodrigo Cabral Farias)
URL: https://www.i3s.unice.fr/rcabral/en/home (Rodrigo Cabral Farias)

Preprint submitted to Signal Processing December 21, 2022

recently. Among these techniques, a diverse number of models and algorithms relying on matrix8

factorizations have appeared in the last two decades. They have been successfully used in a great9

number of applications such as text mining [1], recommender systems [2–4], genetics [5, 6], protein10

complex prediction [7], role mining [8] and telecommunications [9, 10].11

Different factorization models for binary matrices have been proposed in the literature. One12

group of models [2, 11–14] relies on a modification of logistic regression where a logistic function is13

applied to a constrained matrix factorization model such as principal component analysis (PCA).14

Most models of this group are named logistic PCA or binary PCA. Although the matrix factors15

are not constrained to be binary, the use of the logistic function allows the model to constrain the16

elements of its output matrix to lie in the interval r0, 1s. A generalized version of logistic PCA,17

based on the family of mean-parameterized Bernoulli models, was recently studied in [15].18

Another model, called binary matrix factorization (bMF) [16], directly factorizes the data matrix19

into two binary matrices. This model is equivalent to a decomposition of the data matrix into a20

sum of rank-1 binary matrices. A major issue for fitting optimally a bMF model to data is the21

discrete nature of the model parameters, which makes the underlying optimization problem difficult22

to be solved. It has been shown that fitting a single component bMF model is already a NP-hard23

problem [17]. Due to its hardness, algorithms for bMF do not aim to solve exactly the original fitting24

problem. A class of methods, such as the association rules algorithm (ASSO) [18] or formal concept25

analysis (FC) [19], rely on low complexity iterative rules that extract in a greedy-like manner binary26

rank-1 components that are expected to approximate the optimal ones. A revisited version of the27

FC-based algorithms of [19], significantly faster, was recently introduced in [20]; another variant,28

that uses the minimum description length principle (MDL) for factor selection was proposed in [21].29

A different approach, called the penalty function algorithm (PF) [16], solves a relaxed version of the30

underlying fitting problem. In PF, the bMF factor elements are relaxed to the nonnegative orthant,31

while a penalization term forcing the factors to be close to binary is added to the original data fitting32

objective function. Such a relaxation allows to use multiplicative gradient algorithms to retrieve the33

factors in a similar manner as for nonnegative matrix factorization (NMF) [22].34

The limitations of bMF appear whenever its expected rank-1 components have overlapping sup-35

ports. In this case, the sum of the rank-1 components does not lead to a binary matrix. One36

way to counter this issue is to assume that the presence of a ‘1’ in the data matrix is due to the37

contributions of several ‘1’ in the rank-1 terms. Note that this corresponds to simply replacing the38

arithmetic sums in the decomposition model by logical ‘OR’ operations. This leads to a particular39

2

matrix factorization model, called Boolean matrix factorization (BMF).40

A modification of the PF algorithm explicitly tailored for BMF has been proposed in [23]. The41

authors propose to apply a threshold function to the bMF model, such that the output matrix42

elements are either 0 or 1. Since the threshold function is not differentiable, to be able to use a43

multiplicative gradient algorithm as in the PF algorithm, a smooth approximation of the threshold44

function is used. The resulting BMF method is called post-nonlinear PF algorithm (PNL-PF).45

A heuristic model selection algorithm for estimating the number of binary sources in the BMF46

setting was also proposed in [24], based on stability criteria. This method constructs an ensemble of47

random matrices that are slight perturbations of the initial matrix to test the stability of the Boolean48

decomposition. Other algorithms have also been developed under a stochastic setting, where the49

elements of the factors are supposed to be random [25, 26].50

In this paper, we propose an approximate factorization approach for binary valued matrices that51

generalizes BMF to arbitrary Boolean “sum” functions. Instead of considering combinations of the52

rank-1 components with logical ‘OR’, we assume that an arbitrary Boolean function with known53

truth table is used. Our approach is based on the relaxation of the binary constraints, as in PF and54

PNL-PF, but instead of representing the behavior of the logical combiner with a threshold function,55

we represent it as a multivariate polynomial of the elements of each component. Since a multivariate56

polynomial is a differentiable function, such a representation allows developing a gradient algorithm57

for fitting the generalized BMF model, without the need to resort to smooth approximations, as in58

PNL-PF. We also propose a generalized BMF approximation algorithm based on block coordinate59

descent. The algorithm alternatively updates the columns of the factors to be retrieved in a similar60

manner as in hierarchical alternating least squares (HALS) for NMF [27]. Since the multivariate61

polynomial representing the logical combiner is multilinear in the elements of the components, the62

updates required in the block coordinate descent algorithm can be obtained in closed-form.63

We present implementation details of our approach in the specific case of of BMF approximation,64

and under this setting we compare the performance of the two resulting algorithms with state-of-the65

art BMF methods. The performance of the methods are evaluated in terms of denoising and factor66

retrieval capabilities, but also in terms of convergence behavior, time complexity and sensitivity to67

initializations. To illustrate our approach in a more practical setting, we apply one of the proposed68

methods to retrieve the BMF of 4 real datasets. Finally, we also show simulation results concerning69

the application of the general version of the proposed algorithms to retrieve factorizations where70

the component combining functions are the logical exclusive ‘OR’ (‘XOR’) and the 3-term majority71

3

function.72

1.1. Outline73

In Section 2, we present the binary and Boolean factorization models along with the polynomial74

representation of the general Boolean factorization. We introduce two algorithms for the generalized75

Boolean factorization in Section 3 and illustrate their implementation in the specific case of BMF.76

Section 4 shows the results of the conducted numerical experiments to compare the performance of77

the proposed algorithms with state-of-the art methods. Results on 4 real datasets are also given.78

We also provide numerical simulation results in a more general setting, where the data do not follow79

the standard BMF model. Finally, we conclude the paper in Section 5.80

1.2. Notations81

Scalars are represented by lower case letters x, while vectors are represented by bold-face lower82

case letters x. Bold-face upper case letters X are used to represent matrices. A single subscript xi83

is used to represent the i-th element of a vector or the i-th column of a matrix xi (i-th column of84

X). A double subscript xij denotes the pi, jq-th element of a matrix. Superscripts (or subscripts)85

of the form x1:n denote the tupple px1,x2, ¨ ¨ ¨ , xnq.86

Matrix transpose is denoted XT, while the Frobenius norm of a matrix is symbolized by }X}F .87

To denote a matrix of size I ˆ J with all elements equal to 1, we use 1IˆJ . The symbol d denotes88

the Hadamard (entry-wise) matrix product and DiagpX1, X2, ¨ ¨ ¨ , Xnq denotes a block diagonal89

matrix with matrices X1, X2, ¨ ¨ ¨ , Xn in its diagonal blocks. The column-major vectorization of90

a matrix is denoted vecpXq.91

Logical ‘OR’ is symbolized by _ and the same symbol is used for its entry-wise matrix version.92

Logical ‘XOR’ is denoted by ‘.93

2. General binary and Boolean factorizations94

We are interested in exactly or approximately decomposing a I ˆ J data matrix Y with binary95

elements yij P t0, 1u , for pi, jq P t1, 2, ¨ ¨ ¨ , Iu ˆ t1, 2, ¨ ¨ ¨ , Ju, into R ě 2 binary rank-1 matrices96

X1:R
“

!

X1, X2, ¨ ¨ ¨ , XR
)

. Each binary Xr with r P t1, 2, ¨ ¨ ¨ , Ru is written as97

Xr
“ arb

T
r , (1)

where ar and br are vectors of sizes I and J respectively and with their elements constrained98

to be binary rarsi P t0, 1u , for pi, rq P t1, 2, ¨ ¨ ¨ , Iu ˆ t1, 2, ¨ ¨ ¨ , Ru, rbrsj P t0, 1u , for pj, rq P99

4

t1, 2, ¨ ¨ ¨ , Juˆt1, 2, ¨ ¨ ¨ , Ru . The vectors ar and br can be stored in matricesA “ ra1, a2, ¨ ¨ ¨ , aRs100

and B “ rb1, b2, ¨ ¨ ¨ , bRs. As presented in [23] and [28], different decompositions can be considered101

depending on how one precisely defines the way that Xr are combined to approximate Y . If we102

specify a function f : t0, 1u
R

Ñ Y Ă R defined on R binary inputs and resulting in a value on a103

finite subset R of the integers, general binary factorization corresponds to approximate the elements104

of Y as follows:105

yij « f
`

x1
ij , x

2
ij , ¨ ¨ ¨ , xR

ij

˘

“ f
`

x1:R
ij

˘

“ f pai,1:Rbj,1:Rq , (2)

where ai,1:Rbj,1:R “ tai1bj1, ai2bj2, ¨ ¨ ¨ , aiRbjRu. Denoting the matrix resulting of the element-wise106

application of fp¨q to the rank-one matrices X1:R simply by fpX1:R
q, the approximation problem107

(2) can be cast as the following minimization problem:108

minimize FpA,Bq “
1

2
}Y ´ fpX1:R

q}
2
F

pwhere X1:R
“

␣

X1
“ a1b

T
1 , ¨ ¨ ¨ ,XR

“ aRb
T
R

(

q,

with respect to A P t0, 1u
IˆR , B P t0, 1u

JˆR .

(3)

A solution for this problem is guaranteed to exist since the cardinal of the feasible set is finite.109

If a solution A‹, B‹ of (3) achieves FpA,Bq “ 0, we say that it is an exact factorization of Y . In110

the data analysis literature, 3 common types of factorization problems which are special cases of the111

general form above are the following:112

Binary matrix factorization (bMF). When fpx1:R
ij q “

řR
r“1 x

1:R
ij is the usual sum on R. See the left113

column of Tab. 1 for an example when R “ 2. We say that A and B are approximate factors of Y ,114

since in this case Y « ABT.115

Boolean matrix factorization (BMF). When fpx1:R
ij q “

ŽR
r“1 x

1:R
ij is the R-term logical ‘OR’. See116

the middle column of Tab. 1 for an example. Similarly to the previous case, we can say that A and117

B are approximate Boolean factors of Y , since Y « A ^ BT where p¨ ^ ¨q is the matrix product118

defined in the Boolean semi-ring (sums are replaced by logical ‘OR’).119

F2 matrix factorization (F2MF). When fpx1:R
ij q “

ÀR
r“1 x

1:R
ij is the R-term modulo-2 sum, that120

is, a cascade of R logical ‘XOR’ operations applied sequentially to x1:R
ij . In this case, we can write121

Y « AdBT, where p¨ d ¨q is the matrix product in the F2 field (Galois field of two elements). Here122

the sums are replaced by logical ‘XOR’. Therefore, we call this model F2 matrix factorization.123

Observe that if one wants to factorize a binary data matrix Y without errors using bMF, its124

factors should contain columns with disjoint supports. This is due to the presence of possible values125

larger than 1 in the outputs of the sum operation for bMF (see Tab. 1).126

5

Inputs Output

xp1q, xp2q bMF (`) BMF (_) F2MF (‘)

0, 0 0 0 0

0, 1 1 1 1

1, 0 1 1 1

1, 1 2 1 0

Table 1: Results for different fp¨q with R “ 2 inputs used in different factorizations.

For a given Y , the characteristics of its factorization such as rank or uniqueness may change127

depending on the chosen fp¨q. Before focusing on algorithms for general Boolean factorizations,128

which are the main contribution of this paper, we briefly illustrate with some toy examples, some129

important differences between factorizations with different fp¨q.130

2.1. Ranks and uniqueness of binary factorizations131

As in standard matrix factorizations, the minimal number of columns R for which exact factor-132

izations of Y exist is called the rank of Y and we denote it rankf pY q:133

rankf pY q “ min
!

R |Y “ f
´

X1:R
¯

,A P t0, 1u
IˆR ,B P t0, 1u

JˆR
)

. (4)

Following the denominations in [23, 28], if fp¨q is the standard sum, we call this rank the binary rank134

and we denote it rankt0,1upY q. If fp¨q is the logical ‘OR’ then this rank is the Boolean rank and it135

is denoted rankBpY q. We call it F2 rank, when the combining function is the modulo-2 sum and we136

denote it rankF2pY q. In what follows, we give some toy examples from the literature to illustrate137

the fact that these ranks can be different for a given matrix. Consider the 3 ˆ 3 binary matrix [18]138

Y 1 “

»

–

1 1 0

1 1 1

0 1 1

fi

fl . (5)

Minimum rank decompositions of Y 1 for bMF and BMF are139

Y 1 “

»

–

1

1

0

fi

fl

»

–

1

1

0

fi

fl

T

`

»

–

0

0

1

fi

fl

»

–

0

1

0

fi

fl

T

`

»

–

0

1

1

fi

fl

»

–

0

0

1

fi

fl

T

“

»

–

1

1

0

fi

fl

»

–

1

1

0

fi

fl

T

_

»

–

0

1

1

fi

fl

»

–

0

1

1

fi

fl

T

and the same factors of bMF can be used for F2MF. Thus, we have rankF2
pY 1q “ 3, which is140

larger than rankBpY 1q “ 2. Note also that the rank of Y 1 on the reals is rankpY 1q “ 3, since the 3141

columns of Y 1 are linearly independent.142

One can easily find cases where the relations between these ranks are different from the previous143

example. Consider a matrix Y 2 which is equal to Y 1 except for the central element rY1s2,2 which is144

6

flipped to zero. Then the BMF factors for Y 1 give an exact F2MF for Y 2 with a minimum number145

of columns. In this case, rankBpY 2q “ rankpY 2q “ 3, but rankF2pY 2q “ 2.146

By increasing the size of the data matrix, one can also find cases where the rankpY q ă rankt0,1upY q.147

For example, for [29]148

Y 3 “

»

—

—

–

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

fi

ffi

ffi

fl

,

we have rankpY 3q “ 3, while rankt0,1upY 3q “ rankBpY 3q “ 4.149

When the rank-one components Xr have disjoint supports, all of the previously mentioned ranks150

coincide. Thus, for [23]151

Y 4 “

»

—

—

–

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

fi

ffi

ffi

fl

, (6)

rankt0,1upY 4q “ rankBpY 4q “ rankF2
pY 4q “ rankpY 4q “ 2, and one exact decomposition corre-152

sponding to this rank has factors153

A “ B “

»

—

—

—

—

–

1 0

1 0

0 1

0 1

fi

ffi

ffi

ffi

ffi

fl

, (7)

for all factorizations presented above, but also for factorizations on R.154

In data mining applications, for interpretability reasons, it is expected that factors A and B155

could be retrieved uniquely from the data up to joint column permutations. It is well-known that,156

in general, matrix factorization over the real numbers is not unique. For F2MF, the factorization157

is unique only when R “ 1, since for R ě 2 one can find binary T , T 1, different from permutation158

matrices, such thatAdBT
“ pAdT qdpBdT 1

qT. Regarding bMF and BMF, the binary constraints159

on A and B allow to retrieve unique factors under some particular conditions (see [23, 28, 30–32]160

for details on uniqueness conditions).161

2.2. Polynomial representation of a general Boolean function162

We focus in this paper in solving problem (3) where fp¨q is a general Boolean function f :163

t0, 1u
R

Ñ t0, 1u.164

We consider a two-step approach: in the first step, we apply an optimization algorithm to solve165

a relaxed version of (3) where the binary constraints are dropped. The elements of A and B are166

7

either allowed to lie on R or on the interval r0, 1s. In the second step, the resulting approximations167

of A and B, denoted Â and B̂, are projected onto the set of binary values. This projection PBp¨q168

corresponds simply to a thresholding operation. For example, for the elements of Â:169

”

PBpÂq

ı

ir
“

$

’

&

’

%

0 , for âir ă 0.5,

1 , for âir ě 0.5.

(8)

To apply this approach, the Boolean function fp¨q must be represented by another function f̄ defined170

for real inputs. f̄ should be defined in such a way that both functions are equal for binary inputs.171

In this work, we define f̄p¨q relying on the fact that any Boolean function of R variables x “172

rx1, x2, ¨ ¨ ¨ , xRs
T
can be written as a multivariate polynomial. For any x P t0, 1u

R
, the following173

polynomial achieves the same values as fp¨q [33]:174

f̄pxq “
ÿ

wPW1

$

&

%

ź

i|wi“1

xi

ź

j|wj“0

p1 ´ xjq

,

.

-

, (9)

where W1 “

!

w P t0, 1u
R

|fpwq “ 1
)

.175

Examples of polynomial representation of simple Boolean functions are the following:176

• Logical ‘OR’ with R “ 2, (x1 _ x2):177

f̄ORpx1, x2q “ p1 ´ x1qx2 ` x1p1 ´ x2q ` x1x2. (10)

• Logical ‘XOR’ with R “ 2, (x1 ‘ x2):178

f̄XORpx1, x2q “ p1 ´ x1qx2 ` x1p1 ´ x2q. (11)

• 3-term majority:

f̄MAJpx1, x2, x3q “ 1p
ř

i xiqě2px1, x2, x3q “ p1 ´ x1qx2x3 ` x1p1 ´ x2qx3

` x1x2p1 ´ x3q ` x1x2x3. (12)

Observe that with this representation, the number of terms in the polynomial depends on the car-179

dinal ofW1 (number of input combinations such that fpxq “ 1). If the setW0 “

!

w P t0, 1u
R

|fpwq “ 0
)

180

has a smaller cardinal than W1, then it may be more convenient to use another equivalent form of181

f̄p¨q:182

f̄pxq “ 1 ´
ÿ

wPW0

$

&

%

ź

i|wi“1

xi

ź

j|wj“0

p1 ´ xjq

,

.

-

. (13)

8

Note that in the case of x1_x2, the representation above leads to f̄ORpx1, x2q “ 1´p1´x1qp1´x2q183

and the corresponding R-term version of ‘OR’ has a simple expression:184

f̄ORpx1, x2, ¨ ¨ ¨ , xRq “ 1 ´

R
ź

r“1

p1 ´ xrq. (14)

In the rest of the paper, we use representation (13), since it allows an easier presentation of the185

algorithms that we propose in the specific case of BMF.186

3. Algorithms187

Two properties of f̄p¨q are interesting from an optimization point of view: this function is differ-188

entiable and it is multilinear in its inputs. Since f̄p¨q is differentiable, gradient descent can be applied189

to attempt solving the corresponding relaxed versions of (3). Multilinearity of f̄p¨q with respect to190

its inputs implies that this function is also multilinear in the columns of A and B. Therefore, if we191

use a block-coordinate descent approach to attempt minimizing relaxed (3), and we set the blocks192

of variables to be the columns of A and B, the block updates will be given by the solutions of193

simple linear least squares problems. As a consequence, each of these properties leads to a different194

algorithm for solving relaxed (3). These algorithms are detailed next.195

3.1. Gradient descent (GD) algorithm196

In the first algorithm, we consider a relaxed version of (3) where elements of the factors are197

allowed to lie in R. To force the solution to be close to binary, we introduce a penalty term GpA,Bq198

in the objective function as in [16, 23]. The expression of this penalty term is199

GpA,Bq “
1

2

#

I
ÿ

i“1

J
ÿ

j“1

R
ÿ

r“1

“

a2
irp1 ´ airq

2
` b2jrp1 ´ bjrq

2
‰

+

. (15)

Note that this penalty is minimal whenever all elements of the factors are ‘0’ or ‘1’. The new200

optimization problem we have to solve is the following:201

minimize HpA,B;λq “ FpA,Bq ` λGpA,Bq

with respect to A P RIˆR,B P RJˆR,
(16)

where λ ą 0 is a given value. Since this penalty term is differentiable, HpA,B;λq is differentiable.202

Therefore, we can apply the standard gradient descent algorithm to find its critical points.203

In standard gradient descent, the entries of the parameters vector θ “
“

vecpAqT vecpBqT
‰T
,204

where vecpAq “

”

aT
1 , a

T
2 , ¨ ¨ ¨ , aT

R

ıT

and vecpBq “

”

bT1 , b
T
2 , ¨ ¨ ¨ , bTR

ıT

, are estimated jointly. The205

9

estimate θ̂k of the parameter vector at iterate k is given by206

θ̂k “ θ̂k´1 ´ γk ∇θHpθq|θ“θ̂k´1
, (17)

where γk is the step-size of the algorithm and ∇θHpθq|θ“θ̂k´1
is the gradient vector of Hp¨q with207

respect to all parameters θ evaluated at θ “ θ̂k´1.208

Gradient expressions. The full gradient vector can be written as a function of the partial gradients209

with respect to A and B as follows210

∇T
θHpθq “

”

∇T
vecpAqHpA,Bq ∇T

vecpAqHpA,Bq

ı

(18)

and the partial gradients are211

∇T
vecpAqHpA,Bq “

„

BHpA,Bq

Ba11
¨ ¨ ¨

BHpA,Bq

BaI1
¨ ¨ ¨

BHpA,Bq

Ba1R
¨ ¨ ¨

BHpA,Bq

BaIR

ȷ

, (19)

212

∇T
vecpBqHpA,Bq “

„

BHpA,Bq

Bb11
¨ ¨ ¨

BHpA,Bq

BbJ1
¨ ¨ ¨

BHpA,Bq

Bb1R
¨ ¨ ¨

BHpA,Bq

BbJR

ȷ

. (20)

The elements of ∇vecpAqHpA,Bq are given by213

BHpA,Bq

Bai1r1

“ ´

#

J
ÿ

j“1

”

yi1j ´ f̄px1:R
i1j q

ı Bf̄px1:R
i1j q

Bxr1

i1j

bjr1

+

` λai1r1 p1 ´ ai1r1 qp1 ´ 2ai1r1 q (21)

for i1 P t1, ¨ ¨ ¨ , Iu and r1 P t1, ¨ ¨ ¨ , Ru, where the expression of the partial derivatives of f̄p¨q are

Bf̄px1:R
i1j q

Bxr1

i1j

“
ÿ

w P W0,

wr1 “ 0

«

ź

s|ws“1

xs
i1j

ff«

ź

s1|w1
s “ 0,

s1 ‰ r1

p1 ´ xs1

i1jq

ff

´
ÿ

w P W0,

wr1 “ 1

«

ź

s|ws “ 1,

s ‰ r1

xs
i1j

ff«

ź

s1|w1
s“0

p1 ´ xs1

i1jq

ff

. (22)

The pj1, r1q element of ∇vecpBqHpA,Bq for j1 P t1, ¨ ¨ ¨ , Ju, r1 P t1, ¨ ¨ ¨ , Ru is214

BHpA,Bq

Bbj1r1

“ ´

#

I
ÿ

i“1

”

yij1 ´ f̄px1:R
ij1 q

ı Bf̄px1:R
i,j1 q

Bxr1

i,j1

ai,r1

+

` λbj1r1 p1 ´ bj1r1 qp1 ´ 2bj1r1 q. (23)

The partial gradients can be written in vector form as a function of A and B as follows

∇vecpAqHpA,Bq “ ´Diag pE d P1, ¨ ¨ ¨ , E d PRq vecpBq

` λvecpAq d p1IRˆ1 ´ vecpAqq d p1IRˆ1 ´ 2vecpAqq ,

∇vecpBqHpA,Bq “ ´Diag
´

ET
d PT

1 , ¨ ¨ ¨ , ET
d PT

R

¯

vecpAq

` λvecpBq d p1JRˆ1 ´ vecpBqq d p1JRˆ1 ´ 2vecpBqq , (24)

10

where E is the model error matrix215

E “ Y ´ f̄
`

X
1:R

˘

“ Y ´ 1IˆJ `
ÿ

wPW0

«

ô

s|ws“1

X
s

ff

d

«

ô

s1|w1
s“0

p1IˆJ ´ X
s1

q

ff

(25)

and P r1 are I ˆ J matrices given by

P r1 “
ÿ

w P W0,

wr1 “ 0

«

ô

s|ws“1

Xs

ff

d

«

ô

s1|w1
s “ 0,

s1 ‰ r1

p1IˆJ ´ Xs1

q

ff

´
ÿ

w P W0,

wr1 “ 1

«

ô

s|ws “ 1,

s ‰ r1

Xs

ff

d

«

ô

s1|w1
s“0

p1IˆJ ´ Xs1

q

ff

. (26)

Step-size, penalty constant and initializations. In the simplest version of the algorithm the step-size216

γk can be set to a small constant value. The penalty factor λ may be chosen as variable through217

iterations: λ is set to a value close to zero in the first iterations and its increased up to a high target218

value.219

Since the cost function being minimized is highly nonconvex, gradient descent may converge220

to spurious critical points. For this reason, it is important to test different initializations of the221

algorithm and pick the solution which gives the best data fitting. The algorithm can be initialized222

each time with different random elements for the factor updates Â and B̂. The elements of Â223

and B̂ can be drawn from independent and identically distributed (iid) uniform samples: âir „224

U r0, 1s , b̂ir „ U r0, 1s , for i P t1, ¨ ¨ ¨ , Iu , j P t1, ¨ ¨ ¨ , Ju and r P t1, ¨ ¨ ¨ , Ru.225

3.2. Projected Hierarchical Alternating Least Squares (PHALS) algorithm226

In the second approach, named projected hierarchical alternating least squares (PHALS), the227

cost function is minimized with respect to each a1, ¨ ¨ ¨ , aR, b1, ¨ ¨ ¨ , bR in an alternating manner,228

similar to the hierarchical alternating least squares (HALS) method [27]. The minimization with229

respect to each column is performed by relaxing the binary constraints to RI , RJ . After updating230

all the estimates of a column of a factor, we project elements of the updated factor onto the interval231

r0, 1s to prevent the updates to converge to negative or large positive values.232

Suppose that we want to update the estimate âr1 of ar1 , all other columns of the factors are then

considered to be equal to âr with r ‰ r1 and b̂r for r P t1, ¨ ¨ ¨ , Ru. The updated âr1 is then given

11

by the minimization of

FPHALSpar1 q “
1

2

I
ÿ

i“1

J
ÿ

j“1

!

yij ´ 1 ` air1 b̂jr1 p̂r
1

ij ` p1 ´ air1 b̂jr1 qq̂r
1

ij

)2

“
1

2

I
ÿ

i“1

J
ÿ

j“1

”

yij ´ 1 ` q̂r
1

ij ` air1 b̂jr1 pp̂r
1

ij ´ q̂r
1

ijq

ı2

, (27)

where233

p̂r
1

ij “
ÿ

w P W0,

wr1 “ 1

«

ź

s|ws “ 1

s ‰ r1

âisb̂js

ff«

ź

s1|w1
s “ 0

s ‰ r1

p1 ´ âisb̂jsq

ff

(28)

and q̂r
1

ij is similarly defined except that the summation is done through w P W0 whose wr1 “ 0.234

The cost function FPHALSpar1 q can be rewritten as FPHALSpar1 q “
řI

i“1 Fipair1 q, where, for a235

given i1,236

Fi1 pai1r1 q “

J
ÿ

j“1

´

yi1j ´ 1 ` q̂r
1

i1j ` ai1r1 b̂jr1 pp̂r
1

i1j ´ q̂r
1

i1jq

¯2

. (29)

Observe that each term Fipair1 q of the cost function depends only on one of the air1 , thus the elements237

of Âr1 can be obtained separately by minimizing Fi1 pai1r1 q. The function Fi1 pai1r1 q is quadratic on238

ai1r1 , therefore its unconstrained minimum can be easily obtained. For a given i1, it is239

âi1r1 “

J
ř

j“1

”

pyi1j ´ 1 ` q̂r
1

i1jqpq̂r
1

i1j ´ p̂r
1

i1jqb̂jr1

ı

J
ř

j“1

”

b̂jr1 pq̂r
1

i1j ´ p̂r
1

i1jq

ı2
. (30)

Once âr1 has been completely updated, the arrays p̂ri,j and q̂rij have to be recalculated for the240

update of the next âr. When all columns of Â have been updated, the projection of its elements241

onto r0, 1s is given by242

”

PU pÂq

ı

ir
“

$

’

’

’

’

&

’

’

’

’

%

0 , for âir ă 0,

âir , for 0 ď âir ď 1,

1 , for âir ą 1.

(31)

A similar procedure is applied to the updates b̂r. The updates before projection of its elements for243

j1 P t1, 2, ¨ ¨ ¨ , Ju are244

b̂j1r1 “

I
ř

i“1

”

pyij1 ´ 1 ` q̂r
1

ij1 qpq̂r
1

ij1 ´ p̂r
1

ij1 qâir1

ı

I
ř

i“1

”

âir1 pq̂r
1

ij1 ´ p̂r
1

ij1 q

ı2
. (32)

12

After executing K updates of all columns of Â and B̂ with PHALS, the elements of Â and B̂245

are projected on the set of binary values with PBp¨q (8).246

The full algorithm using PHALS to obtain an approximate generalized Boolean factorization is247

given in Algorithm 1.248

3.3. Algorithms for BMF249

In the specific case of BMF, the most popular Boolean factorization used in practice, the expres-250

sions of different quantities of the underlying algorithms can be easily written for any R. In this251

subsection, we detail these expressions.252

By relying on (14), BMF can be written in matrix form as follows:253

f̄
´

X1:R
¯

“

R
ł

r“1

Xr
“ 1IˆJ ´

R
ô

r“1

p1IˆJ ´ Xr
q (33)

For given X1:R, the reconstruction error E can be written as254

E “ Y ´ 1IˆJ `

R
ô

r“1

p1IˆJ ´ Xr
q “ Y ´ 1IˆJ `

R
ô

r“1

´

1IˆJ ´ arb
T
r

¯

. (34)

The P r1 matrices (26) required in GD are255

P r1 “

R
ô

s “ 1

s ‰ r1

p1IˆJ ´ X
sq “

R
ô

s “ 1

s ‰ r1

`

1IˆJ ´ asb
T
s

˘

. (35)

For PHALS, the quantities that vary depending on the choice of the Boolean function f̄p¨q are256

p̂r
1

ij and q̂r
1

ij . For BMF, we have p̂r
1

ij “ 0 for all possible tuples pijr1q, while q̂r
1

ij can be written in257

matrix form as P r1 above for r1 P t1, ¨ ¨ ¨ , Ru:258

Qr1 “ P r1 “

R
ô

s “ 1

s ‰ r1

`

1IˆJ ´ asb
T
s

˘

. (36)

4. Numerical experiments259

In this section, we present the results of numerical experiments concerning the proposed algo-260

rithms. We focus first on the BMF setting, that is, when the combining function fp¨q is the ‘OR’261

function. Under this setting, we compare the performance of the algorithms with 3 other BMF262

methods from the literature on simulated noisy binary data. In the first and second simulation263

13

Algorithm 1 Projected hierarchical alternating least squares for general Boolean factorization

(PHALS)

Require: Y , R, K.

1: Initialize Â, B̂ with random i.i.d. uniform elements âir „ U r0, 1s , b̂ir „ U r0, 1s, for i P

t1, ¨ ¨ ¨ , Iu, j P t1, ¨ ¨ ¨ , Ju and r P t1, ¨ ¨ ¨ , Ru.

2: for k P t1, ¨ ¨ ¨ , Ku do

3: Update Â:

4: for r P t1, ¨ ¨ ¨ , Ru do

5: Update each column of Â:

6: for i P t1, ¨ ¨ ¨ , Iu do

7: Update elements of âr (30): âi1r1 “

J
ř

j“1

”

pyi1j ´ 1 ` q̂r
1

i1j
qpq̂r

1

i1j
´ p̂r

1

i1j
qb̂jr1

ı

J
ř

j“1

”

b̂jr1 pq̂r
1

i1j
´ p̂r

1

i1j
q

ı2

8: end for

9: for r1 P t1, ¨ ¨ ¨ Ru and r1 ‰ r do

10: Update p̂ijr1 with (28) for r1 ‰ r and q̂ijr1 in a similar manner.

11: end for

12: end for

13: Project onto r0, 1s (31): Â :“ PU pÂq

14: Update B̂:

15: for r P t1, ¨ ¨ ¨ , Ru do

16: Update each column of B̂:

17: for i P t1, ¨ ¨ ¨ , Ju do

18: Update elements of b̂r (32): b̂j1r1 “

I
ř

i“1

”

pyij1 ´ 1 ` q̂r
1

ij1 qpq̂r
1

ij1 ´ p̂r
1

ij1 qâir1

ı

I
ř

i“1

”

âir1 pq̂r
1

ij1 ´ p̂r
1

ij1 q

ı2

19: end for

20: for r1 P t1, ¨ ¨ ¨ Ru and r1 ‰ r do

21: Update p̂ijr1 and q̂ijr1 .

22: end for

23: end for

24: Project onto r0, 1s (31): B̂ :“ PU pB̂q

25: end for

26: Project onto t0, 1u (8): Â :“ PBpÂq, B̂ :“ PBpB̂q

14

settings, the data are drawn from random BMF models which are then perturbed by binary flipping264

noise. In the first setting, the performance of the algorithms is presented for different number of265

columns R of A and B, and the probability of binary flipping the data (equivalent to noise intensity)266

is kept constant. In the second setting, R is kept constant and results are shown for different values267

of the probability of binary flipping. Simulation results will then be presented concerning the sen-268

sitivity of the proposed methods to initialization, convergence behavior and time complexity. The269

presentation of simulation results on BMF is then followed by its application to real datasets. We270

apply PHALS to retrieve the BMF of the following datasets: the congressional voting dataset [34]1,271

the zoo dataset [34]2, the New and Old Worlds (NOW) paleontological database [35] and the United272

Nations voting dataset [36]3. We end the section by presenting performance results for PHALS and273

GD for simulated data generated with fp¨q equal to the XOR with two inputs (XOR-2) and to the274

3-term majority function (MAJ-3).275

4.1. Performance for different R276

In what follows, the performances of the two proposed algorithms PHALS and GD are compared277

to 3 state-of-the-art methods for BMF discussed in the introduction: ASSOciation rules algorithm278

(ASSO) [18], the Formal Concept (FC) analysis based algorithm [19] and the Post-NonLinear Penalty279

Function (PNL-PF) algorithm [23]. We have also included in the simulations a version of GD that280

is initialized with PHALS, we will denote that version of GD as PHALS`GD.281

In this set of simulations, the data matrix Y is a 20 ˆ 20 matrix corresponding to a perturbed282

version of a BMF with R components X “
R
Ž

r“1
arb

T
r . The noise matrix is binary N P t0, 1u283

and the perturbation consists in flipping the elements of X. Therefore, the elements of Y can be284

written using the logical ‘XOR’: yij “ xij ‘ nij . The elements of N are drawn iid from a Bernoulli285

distribution nij „ Bppnq where pn “ Ppnij “ 1q.286

For a given data matrix Y , PHALS and GD are initialized at random ninit “ 3 times and the287

solution achieving the least reconstruction error FpÂ, B̂q is kept. For PHALS+GD, GD is initialized288

with the best of the 3 initializations of PHALS. PNL-PF is initialized with the result of NMF [22]289

applied to the data. The NMF algorithm is initialized randomly as PHALS and GD. ASSO and FC290

do not require initializations.291

1https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
2https://archive.ics.uci.edu/ml/datasets/Zoo
3https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LEJUQZ

15

GD and PNL-PF are executed with KGD{PNL-PF “ 2000 iterations for each simulation, while292

PHALS is executed KPHALS “ 1000 iterations. The step-length of GD is set to a constant γk “ γ “293

0.1 and its hyperparameter λ is increased linearly from 0.01 to 10. The threshold value τ for ASSO294

(see [18]) is fixed to 0.9.295

Under each different simulation setting, N “ 100 random data matrices Y n (n “ 1, . . . , N)296

are generated, each with a random pair pXn,Nn
q. Each Xn with a given R is obtained from297

randomly generated factor matrices An and Bn. The elements of An and Bn are iid samples298

from Bernoulli distributions air „ Bppaq, bir „ Bppbq where pa “ pb “ 0.4. After applying the299

algorithms on all Y n, their performances in terms of normalized mean square errors (NMSE) of300

prediction of Xn and retrieval of An and Bn are evaluated. The expressions of these NMSE301

are the following: NMSEX “
1

NIJ

N
ř

n“1

›

›

›

›

Xn
´

R
Ž

r“1
ân
r

´

b̂
n

r

¯T
›

›

›

›

2

F

, NMSEA “
1

NIR

N
ř

n“1

›

›

›
An

´ Â
n
›

›

›

2

F
,302

NMSEB “
1

NJR

N
ř

n“1

›

›

›
Bn

´ B̂
n
›

›

›

2

F
. Since the elements of all matrices are binary, these NMSE can303

be interpreted as error rates. Note that, due to the permutation ambiguity on the estimation of304

the factors, their columns should be permuted to match in the best possible way those of the true305

factors before the evaluation of the NMSE.306

The evolution of the NMSE for the BMF methods is shown in Fig. 1a for pn “ 0.1 and R P307

t2, ¨ ¨ ¨ , 6u. As intuitively expected, for most methods, larger values of R lead to larger NMSE both308

on prediction of X and on the retrieved factors. One can also observe that there is no significant309

difference in performance between the PHALS, GD and PHALS+GD. PNL-PF has a moderately310

inferior performance compared to the proposed methods, while ASSO and FC achieve a significantly311

inferior performance in terms of retrieving X, A and B. ASSO and FC do not seem to be adapted312

to the approximation setting where noise is present, which has been also observed in previous studies313

[23].314

4.2. Results for different pn315

The second simulation setting is very similar to the previously presented one, except that, in316

this case, R is kept to a constant value, R “ 3, and pn is varied from 0 to 0.3 by increments of 0.02.317

Fig. 1b displays the performances of the methods. One can see that, as it is naturally expected, the318

performances degrade as pn increases. As in the previous setting, all the proposed methods seem319

to lead to similar performances and they achieve a superior performance compared to the other 3320

methods from the literature. Observe also that as pn gets close to 0.3 all NMSE of the proposed321

methods are close to 0.3 and for values smaller than pn ă 0.3 the NMSE seem to be smaller than pn.322

16

0

0.05

0.1

0.15

0.2

NMSEX

0
0.2
0.4
0.6
0.8

NMSEA

2 3 4 5 6
0

0.2
0.4
0.6
0.8

R

NMSEB

(a)

0

0.1

0.2

0.3

NMSEX

Initial

PHALS

GD

PHALS+GD

ASSO

FC

PNL-PF

0

0.2

0.4

NMSEA

0 0.1 0.2 0.3
0

0.2

0.4

pn

NMSEB

(b)

Figure 1: NMSE for the prediction of X of size 20 ˆ 20 and retrieval of its BMF factors A and B. The factorization

algorithms are executed on a noisy version Y of X. The noise acts by flipping the elements of Y with probability

pn. The curves named “Initial” in the top subfigures indicate the NMSE of predicting X simply using Y . In (a), the

number of columns of matrices A and B varies from 2 to 6, while pn “ 0.1. In (b), R “ 3 and pn is varied from 0 to

0.3 with increments of 0.02.

Note, on the top figure, that predicting X using the noisy data is as efficient as using the proposed323

methods for pn “ 0.3.324

Finally, one can see that, when pn “ 0, the NMSE on the factors is not zero. This may be due325

to convergence of the algorithms to factorizations which are not global minima of (16) or to the non326

uniqueness of the approximation of some realizations Y n. However, since NMSE are very small for327

pn “ 0, it seems that the occurrence of such issues is very rare.328

4.3. Simple example with unique decomposition329

From the previous simulation results, it seems that ASSO and FC are not adequate in the BMF330

approximation setting. Therefore, in what follows, we focus on comparing only PHALS, GD and331

PNL-PF.332

As previously presented, the algorithms may converge to wrong Â and B̂, even in the exact333

factorization setting (pn “ 0) when the underlying factorization is unique. Due to the non convexity334

of the underlying cost functions, not all initializations Â and B̂ lead to the original factors. To try335

to assess to which extent the algorithms are prone to this behavior, we have tested them on 3 small336

17

Y 1 Y 4 Y 5

PHALS 99 100 96

GD 79 100 48

PHALS`GD 99 100 96

PNL-PF 100 66 72

Table 2: Success rate S% for retrieving the exact BMF for 3 different matrices Y 1, Y 4 and Y 5 using ninit “ 100

different random initializations.

exact factorization problems with unique factorizations. The 3 considered data matrices are Y 1 (5),337

Y 4 (6) and the following 5 ˆ 5 matrix from [23]:338

Y 5 “

»

—

—

—

—

–

1 1 0 0 0

1 1 0 0 0

0 1 1 1 0

0 1 1 1 1

0 1 1 0 1

fi

ffi

ffi

ffi

ffi

fl

.

The matrices Y 1 and Y 4 have rank 2, while Y 3 has rank 3. PHALS, GD and PNL-PF are applied339

to these data with ninit “ 100 random initializations Â
i

0, B̂
i

0, i P t1, ¨ ¨ ¨ , ninitu. The number of340

iterations for all algorithms is K “ 2000. Parameters γk and λ of GD have been set as in the previous341

simulations. For each algorithm and each data matrix we have calculated the success rate S% in342

percent of retrieving A and B from data: S% “

”

card
´!

i|Â
i

“ A and B̂
i

“ B
)¯

{ninit

ı

ˆ 100,343

where cardp¨q denotes the cardinal of a set and Â
i
, B̂

i
are the output factors of an algorithm when344

initialized with Â
i

0 and B̂
i

0. The success rates are displayed in Tab. 2. We observe that the algorithm345

which seem less prone to converge to spurious factors is PHALS. GD and PNL-PF may converge to346

spurious factors, but they do not seem to behave equally through the examples. From the results,347

we can also note that applying GD initialized with the resulting factors from PHALS does not lead348

to an improvement in the success rate.349

4.4. Convergence350

To compare the convergence behavior of PHALS, GD and PNL-PF, we generate 3 random Y k
351

in the same manner as in Subsec. 4.1 for R equal to 2, 4 and 6. We then apply the 3 algorithms352

with ninit “ 100 and K “ 500. At each iteration k P t1, ¨ ¨ ¨ , Ku, we evaluate the overall changes in353

the factors using the following quantity: ∆k “
}Âk´Âk´1}

2
F `}B̂k´B̂k´1}

2
F

}Â0}2F `}B̂0}2F
, where Âk and B̂k are the354

k-th updates of the factors for a given algorithm. The quantity ∆k is small whenever the factors355

do not change in consecutive iterations. Therefore, if ∆k reduces as k increases, the algorithm is356

converging. Fig. 2 shows some statistics on ∆k for each algorithm. The statistics displayed are357

18

the median, the 5-th and 95-th percentiles of ∆k evaluated with the ninit “ 100 available values for358

each k. The overall behavior we can observe from this figure is that PHALS is the fastest method359

in terms of convergence, while GD is the slowest. One can also note that the 95-th percentile of360

∆k increases as R increases. Although PHALS is much faster than the other methods to converge,361

when R increases, some initializations may lead it to converge slowly or not to converge at all.362

Remarks on convergence guarantees: in their present form, we are not able to give theoretical363

guarantees on convergence of the iterates of GD and PHALS.364

Concerning GD, as presented above, it seems that in practice the algorithm converges, if the365

constant step-size γk “ γ is chosen sufficiently small. However, theoretical guarantees for convergence366

of GD require that a global Lipschitz constant of the gradient of the objective function exists.367

Unfortunately, this does not seem to be true for the objective in (16). A possible way to ensure368

convergence is to use an adaptive step-length γk given by backtracking line-search [37]. With this369

modification, since the cost function is analytic and coercive, convergence of GD is guaranteed using370

the results from [38].371

PHALS is a block coordinate descent algorithm. For this class of algorithms, convergence of the372

iterates can be ensured, for example, using the results of [39]. To use the results of [39], the objective373

function should be separately strongly convex in each block of variables a1, ¨ ¨ ¨ , aR, b1, ¨ ¨ ¨ , bR.374

Unfortunately, this cannot be guaranteed, and, in practice, one can see that for difficult factorization375

cases (large R), some initializations may lead to non-converging iterates. One possibility to solve376

this issue is to add proximal terms to the objective function at each update. For the updates of ar,377

one should add ρ}ar ´ âr}22, where ρ ą 0 is a pre-defined constant and âr is the most recent update378

of ar. Similarly, for the updates br, the term ρ}br ´ b̂r}22 should be added. With modified updates379

considering this additional terms, it may be possible to use the results of [39] to ensure convergence380

of the iterates.381

4.5. Time complexity382

Using a similar simulation setting from the previous subsection, we have also measured the383

execution time for the 3 algorithms to finish 2000 iterations. The statistics on execution time4 for384

100 runs of the algorithms and for R P t2, ¨ ¨ ¨ , 6u are shown in Tab. 3. We observe that PNL-PF385

takes much less time than the other methods. GD is from 10 to 40 times slower than PNL-PF and we386

4These simulations are realized in Scilab version 6.1.0 with a processor Intel®CoreTM i7-7820HQ, 2.90GHz and

with 16GB of RAM.

19

0 100 200 300 400 500
10−36

10−27

10−18

10−9

100

k

∆
k

(a) R “ 2

0 100 200 300 400 500
10−36

10−27

10−18

10−9

100

k

(b) R “ 4

0 100 200 300 400 500
10−36

10−27

10−18

10−9

100

k

5− 95% GD

Median PHALS

5− 95% GD

Median GD

5− 95% PNL-PF

Median PNL-PF

(c) R “ 6

Figure 2: Statistics about the overall changes ∆k (4.4) in the updates Âk and B̂k for GD, PHALS and PNL-PF

for the approximate factorization of 3 noisy binary matrices of size 20 ˆ 20. Each matrix is generated by randomly

drawing a binary BMF model with a given R, then applying binary flipping noise. The subfigures are generated with

different values of R, they are indicated in the subcaptions. The statistics are evaluated for ninit “ 100 different

random initializations. The extremes of the bands (5% ´ 95%) around the median are the 5-th and 95-th percentiles

of ∆k.

R “ 2 3 4 5 6

PHALS

5-th percentile 0.844 1.547 2.188 3.0313 4.281

Median 0.703 1.297 2.000 2.906 3.938

95-th percentile 0.610 1.219 1.813 2.781 3.750

GD

5-th percentile 1.734 2.734 3.438 24.438 32.688

Median 1.547 2.359 3.281 23.422 30.500

95-th percentile 1.406 2.219 3.141 22.313 29.125

PNL-PF

5-th percentile 0.203 0.250 0.234 1.000 0.984

Median 0.156 0.172 0.172 0.672 0.719

95-th percentile 0.094 0.125 0.125 0.422 0.469

Table 3: Statistics on total execution times in seconds for approximate R-component BMF of 20ˆ20 binary matrices.

The statistics are evaluated for 100 runs of the 3 algorithms with K “ 2000 iterations in each run.

can clearly see a large relative increase in execution for GD when passing from R “ 4 to R “ 5. Such387

an increase can also be observed in a lesser extent in PNL-PF, while in PHALS the relative increase388

is smaller than a factor of 2. Since real datasets may be of sizes much larger than 20ˆ 20, it is clear389

from these simulations that GD cannot be reasonably used in practical data analysis problems with390

the implementation used in this work.391

4.6. Discussion on the results392

In terms of approximation performance PHALS leads to better results than PNL-PF at the393

expense of a longer execution time per iteration and of a risk of producing slowly or non converging394

20

iterations for large values of R (in our simulations mainly for R ě 6). Note however that for small395

R, ∆k for PHALS decreases much faster than for PNL-PF, thus if a threshold on ∆k is used as396

convergence criterion to stop the algorithm, the longer execution times of PHALS iterations are397

compensated by its much faster convergence.398

4.7. Real datasets399

In what follows, we obtain the approximate BMF of different real binary datasets. From the400

previous results on factorization performance obtained through simulations, factorization results401

are expected to be mostly similar for PHALS, GD and PNL-PF. Therefore, we have applied only402

PHALS to factorize the real datasets. For each of the datasets, ninit “ 10 random initializations are403

used and the best solution in terms of data reconstruction error is selected. The maximum allowed404

number of iterations is set to KPHALS “ 2000 and a convergence criterion based on ∆k is used as405

an additional stopping criterion.406

US Congressional voting dataset. We first apply PHALS to a dataset containing 16 key votes of the407

United States congress for the year 1984 [34]5. The votes of 435 representatives are coded by binary408

values: ‘1’ for a vote in favor of the proposed bill and ‘0’ for a vote against it. Missing votes in a409

given bill have been replaced by the corresponding majority vote. This allows to fully encode the410

dataset into a binary matrix of size 435 ˆ 16. The dataset also contains information on the party411

of each representative (democrat or republican). Since there are 2 parties, PHALS is applied to the412

dataset with R “ 2. The dataset plot and an illustration of the results are given in Fig. 3 (a-d).413

One can clearly observe that the patterns related to each component have almost disjoint support,414

indicating an opposing voting pattern for each component. The error rate on the reconstructed415

data using the retrieved BMF model is of 20%. By comparing the grouping of the representatives416

encoded by matrix Â with the information on the parties of each candidate, we found that PHALS417

can predict the party of the representative with an accuracy of 77%.418

Zoo dataset. We also applied PHALS to a dataset containing the information on the presence or419

absence of a given feature, for example hair, feathers, milk, for different animals. The dataset [34]6420

contains 15 binary features and an integer feature with the number of legs. These features are given421

for 101 animals. The animals in the dataset are categorized in 7 classes: mammals, birds, reptiles,422

5https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
6https://archive.ics.uci.edu/ml/datasets/Zoo

21

fishes, amphibians, insects and a class containing many different invertebrate animals (e.g. crab,423

worm, octopus). We have encoded the integer variable corresponding to the number of legs using424

one-hot encoding. We apply PHALS to the resulting 101 ˆ 19 binary matrix to try to group the425

animals by looking at the patterns given by the columns of Â. The algorithm is applied with R in426

the range 2 to 7 and the data reconstruction error for these values of R are respectively 0.170, 0.116,427

0.0928, 0.0771, 0.0693 and 0.0620. One can clearly see that beyond R “ 3 the improvement on data428

reconstruction obtained by increasing R is mild. This result seems to be similar to what has been429

presented in [23] for the analysis of the same dataset with PNL-PF.430

The dataset and an illustration of the results for R “ 3 are given in Fig. 3 (f-i). To simplify431

the interpretation of the results, the rows of the matrices, which correspond to different animals,432

have been reordered to correspond to continuous blocks of animals of the same category. Reordering433

has been carried out using the same order of the classes mentioned above, thus the first block of434

animals correspond to mammals, the second to birds, etc. One can observe that component 1 clearly435

corresponds to a continuous block of animals, in these case mammals. The second component mostly436

group together birds with two exceptions, fruitbat and vampire, which are also present in the group437

of mammals. The third group contains mostly fishes, but also some mammals (e.g. dolphin) and438

birds (e.g. penguin). Many insects and animals from the last category of invertebrate animals are439

not contained in any components. As the number of components is increased to R “ 7, it has been440

observed that the retrieved BMF is not able to clearly separate the 7 underlying categories.441

Paleontological dataset. Following closely [15, 40], we analyze data containing information on the442

localization of fossil mammals [35]. The objective is to apply PHALS to factorize a binary data443

matrix where the rows correspond to different genera of fossil mammals and the columns correspond444

to the different localities where they have been found. The data obtained from [35] is preprocessed445

in a similar manner as in [15, 40]. Fossils of small mammals are excluded from the dataset and446

only those retrieved in Europe are considered. We also removed genera which are too infrequent447

(less than 10 occurrences) and localities where only 1 genera has been found. As a result of this448

preprocessing, a binary matrix of size 254 (genera) ˆ1375 (localities) is obtained, where a ‘1’ stands449

for the occurrence of at least one fossil of a given genus in a given locality and a ‘0’ for its absence.450

We have applied PHALS to this dataset to see if the resulting BMF allows to find communities of451

mammals that appear in similar localities. The algorithm has been applied with R in the range452

2 ´ 7. The algorithm seems to suffer from convergence issues for R ą 4, generating factor matrices453

with spurious empty columns. To validate the results for R ď 4, we have followed [40] and plotted454

22

Bill

R
ep

re
se
n
ta
ti
ve

(a)
US congress

data

Bill

R
ep

re
se
n
ta
ti
ve

(b)
Reconstructed

data

Bill

R
ep

re
se
n
ta
ti
ve

(c)
X1, mostly

democrats

Bill

R
ep

re
se
n
ta
ti
ve

(d)
X2, mostly

republicans

Feature

A
n
im

al

(e) Zoo data

Feature

A
n
im

al

(f)
Reconstructed

data

Feature

A
n
im

al

(g)
X1, mostly

mammals

Feature

A
n
im

al

(h)
X2, mostly

airborne

Feature

A
n
im

al

(i)
X3, mostly

aquatic

Figure 3: Real datasets and the results obtained with PHALS. In (a) and (e) the US congress voting dataset and

the Zoo dataset are displayed. The gray color corresponds to a ‘1’ in the underlying dataset matrix, while white

color corresponds to ‘0’. In (b) and (f), the reconstructed data using the BMF model are displayed. The black color

indicates intersections between BMF components’ supports. The number of BMF components are R “ 2 and R “ 3

respectively. The rank-1 components Xr retrieved with PHALS are displayed on the right of the reconstructed data

in (c), (d), (g), (h) and (i).

23

1 2 3 4
0

5

10

15

Component

MIN
AGE
[myr]

Genus
Component median

Figure 4: Minimum age in millions of years [myr] related to the genera of the different groups obtained by applying

PHALS with R “ 4 to the paleontology dataset [35].

the values of a variable related to the minimum age in millions of years of the localities where the455

different genera have been found. We have observed that as R increases PHALS finds groups of456

fossils with increasing minimum age. The ages of the genera in the different groups for R “ 4 are457

displayed in Fig. 4. The genera in each of the components of this figure are the following:458

• Component 1: Amphiperatherium, Amphitragulus, Andegameryx, Brachyodus, Cainotherium,459

Cynelos, Diaceratherium, Palaeogale, Protaceratherium.460

• Component 2: Amphicyon, Anchitherium, Anisodon, Aureliachoerus, Brachypotherium, Buno-461

listriodon, Dicrocerus, Dorcatherium, Gomphotherium, Hemicyon, Hyotherium, Lagomeryx,462

Lartetotherium, Listriodon, Martes, Micromeryx, Palaeomeryx, Plesiaceratherium, Procervu-463

lus, Prodeinotherium, Prosantorhinus, Pseudaelurus, Styriofelis, Taucanamo.464

• Component 3: Adcrocuta, Choerolophodon, Cremohipparion, Deinotherium, Dihoplus, Gazella,465

Helladotherium, Hipparion, Hippopotamodon, Hippotherium, Hyaenictitherium, Miotragocerus,466

Palaeotragus, Pliodiceros, Tragoportax.467

• Component 4: Bison, Canis, Cervus, Equus, Lynx, Mammuthus, Panthera, Stephanorhinus,468

Sus, Ursus, Vulpes.469

By inspecting the median minimum ages of these groups, it seems that PHALS is able to retrieve470

animal communities that have lived in different ages.471

UN voting dataset. As a last example of application, we analyze the grouping of countries produced472

by PHALS when used to factorize a binary matrix generated from the UN voting dataset [36]7. We473

7https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LEJUQZ

24

follow a similar setting as considered in [15] and we encode in a binary matrix the votes during the474

cold-war period (1946 ´ 1990) of different countries for different UN roll-calls. We have removed475

from the dataset all roll-calls whose number of unknown votes is larger than 98 (half of the listed476

countries) and also all the roll-calls with unanimous results. The unknown votes in the remaining477

roll-calls have been replaced by the majority vote. For this dataset, encoding with ‘1’ votes in favor478

of a roll-call leads to a very dense data matrix, whose BMF is difficult to retrieve and interpret.479

Therefore, to have a more sparse data matrix, we have encoded with ‘1’ votes against a roll-call and480

with ‘0’, votes in favor of it. PHALS has been applied to this dataset with R in the range 2´7. The481

data reconstruction error is respectively 0.0312, 0.0241, 0.0215, 0.0194, 0.0173 and 0.0158. Although482

a large part of the approximation improvement is observed when increasing R from 2 to 3, when we483

analyze the groups of countries produced for each R, interesting results seem to appear up to R “ 6.484

When R “ 2, we can find a component containing the following countries: Australia, Belgium,485

Canada, Denmark, France, West Germany, Iceland, Israel, Italy, Japan, Luxembourg, Netherlands,486

New Zealand, Norway, Portugal, UK, US. The second component contains 173 countries from dif-487

ferent continents. If R is increased to 3, the first 2 components are similar to those obtained with488

R “ 2 and a third component groups countries from the socialist block: Belarus, Bulgaria, Cuba,489

Czechoslovakia, East Germany, Hungary, Mongolia, Poland, Russia, Ukraine. When increasing R490

to 4, similar results are obtained and a component with US and Israel appears. While for R “ 5,491

2 components with countries from the occidental block of countries are produced. For R “ 6, the492

component containing a large number of countries seems to contain much less countries than for493

smaller R and a sixth component containing 36 countries from different continents appear. This494

last component gathers countries from the previously obtained component with a large number of495

countries but also countries from the occidental block (e.g. France) and from the socialist block (e.g.496

Cuba). Finally, for R “ 7, the algorithm start finding components containing single countries (e.g.497

a component with only US).498

4.8. Results for XOR ´ 2 and MAJ ´ 3499

The last experimental results concern the application of the GD and PHALS to a factorization500

setting different from BMF. We consider two other Boolean combining functions, the logical ‘XOR’501

with two inputs x1 ‘ x2 (XOR´ 2) and 3-term majority 1p
ř

i xiqě2px1, x2, x3q (MAJ´ 3). Since the502

uniqueness properties of these factorizations are still very little understood, we only focus on testing503

the methods for data denoising. We consider a simulation setting similar to the one presented in504

Subsection 4.2, the main differences are that the underlying (clean) data are generated with the505

25

0

0.1

0.2

0.3
NMSEX

XOR-2

Initial

PHALS

GD

0 0.1 0.2 0.3
0

0.1

0.2

0.3

pn

NMSEX

MAJ-3

Figure 5: NMSE for the prediction of X of size 20ˆ 20 for generalized Boolean factorizations using the XOR´ 2 and

MAJ ´ 3 component combining functions. The decomposition algorithms are executed on a noisy version Y of X.

The probability pn of the binary noise that flips the elements of X is varied from 0 to 0.3 with increments of 0.02.

XOR and MAJ-3 functions, the maximum allowed number of iterations of the algorithms is set to506

ninit “ 5000 and that an additional stopping criterion based ∆k is used for ending the iterations.507

The results for the NMSE of data reconstruction are displayed in Fig. 5. One can observe that508

the algorithms denoise the data, since their NMSE is smaller than the NMSE for the noisy data509

(curve named Initial in the plot). In both cases, GD seems to achieve a slightly superior denoising510

performance than PHALS. It is also possible to observe that the factorizations do not seem to have511

the same robustness behavior against noise. The denoising performance for F2MF (XOR-2) for small512

noise intensity seems much superior than for the MAJ-3 factorization. This is intuitively expected,513

since the MAJ-3 factorization requires the estimation of more parameters for the same amount of514

data. For large noise intensities (pn « 0.3), the opposite behavior is observed, with the MAJ-3515

factorization leading to a superior denoising performance.516

5. Conclusions and further work517

In this paper, we have introduced a generalized framework for the Boolean factorization of binary518

matrices, where the “sum” between the rank-1 binary terms can be an arbitrary Boolean function.519

We proposed two iterative algorithms for achieving this factorization, based on gradient descent520

(GD) and on projected hierarchical alternating least squares (PHALS) approaches, respectively.521

Implementation details for the algorithms have been presented for BMF and compared through522

numerical experiments with state-of-the art algorithms from the literature.523

From the results of the numerical experiments, it seems that the best performing algorithm is524

26

PHALS, both in terms of performance of retrieving the factorization and of overall computation525

time. Although GD gives good results in terms of approximate factorization performance, its high526

complexity impedes its practical use on large datasets.527

We have also tested PHALS to retrieve the BMF of real datasets. The components obtained528

seem to agree with those obtained in other works of the literature and with intuition on what would529

be possible groupings of the data. In this paper, we have not focused on the choice of the number530

of components R and in the presentation of the results for the real datasets, we have chosen a value531

of R that seemed to give stable results with components agreeing with intuition on the dataset. In532

practice, if no intuition on the expected components is available, a quantitative criterion for choosing533

R may be used. Such criteria will be studied and tested in future work.534

At the end of the experimental section, we have also presented results of applying PHALS and535

GD in a more general factorization setting where XOR ´ 2 and MAJ ´ 3 component combining536

functions are considered instead of the logical OR of BMF. Such matrices factorizations are not537

identifiable in general and thus may not be useful in data analysis. In future work, we would like to538

extend our general approach to the higher-order tensor setting and to verify whether the extended539

models are identifiable.540

References541

[1] T. Li, A general model for clustering binary data, in: Proceedings of the eleventh ACM SIGKDD542

International Conference on Knowledge Discovery in Data Mining, 2005, pp. 188–197.543

[2] L. Kozma, A. Ilin, T. Raiko, Binary principal component analysis in the Netflix collaborative544

filtering task, in: 2009 IEEE International Workshop on Machine Learning for Signal Processing,545

IEEE, 2009, pp. 1–6.546

[3] E. Nenova, D. I. Ignatov, A. V. Konstantinov, An FCA-based boolean matrix factorisation for547

collaborative filtering, in: FCAIR 2012 Formal Concept Analysis Meets Information Retrieval548

Workshop co-located with the 35th European Conference on Information Retrieval (ECIR 2013)549

March 24, 2013, Moscow, Russia, 2013, p. 57.550

[4] M. Diop, S. Miron, A. Larue, D. Brie, Binary matrix factorization applied to Netflix dataset551

analysis, IFAC-PapersOnLine 52 (24) (2019) 13–17.552

[5] E. Meeds, Z. Ghahramani, R. M. Neal, S. T. Roweis, Modeling dyadic data with binary latent553

factors, Advances in neural information processing systems 19 (2007) 977.554

27

[6] Z.-Y. Zhang, T. Li, C. Ding, X.-W. Ren, X.-S. Zhang, Binary matrix factorization for analyzing555

gene expression data, Data Mining and Knowledge Discovery 20 (1) (2010) 28–52.556

[7] S. Tu, L. Xu, R. Chen, A binary matrix factorization algorithm for protein complex predic-557

tion, in: 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops558

(BIBMW), IEEE, 2010, pp. 113–118.559

[8] H. Lu, J. Vaidya, V. Atluri, Optimal Boolean matrix decomposition: Application to role engi-560

neering, in: 2008 IEEE 24th International Conference on Data Engineering, IEEE, 2008, pp.561

297–306.562

[9] S. Talwar, M. Viberg, A. Paulraj, Blind separation of synchronous co-channel digital signals563

using an antenna array. I. algorithms, IEEE Transactions on Signal Processing 44 (5) (1996)564

1184–1197.565

[10] A.-J. Van der Veen, Analytical method for blind binary signal separation, IEEE Transactions566

on Signal Processing 45 (4) (1997) 1078–1082.567

[11] A. I. Schein, L. K. Saul, L. H. Ungar, A generalized linear model for principal component568

analysis of binary data, in: International Workshop on Artificial Intelligence and Statistics,569

PMLR, 2003, pp. 240–247.570

[12] J. De Leeuw, Principal component analysis of binary data by iterated singular value decompo-571

sition, Computational statistics & data analysis 50 (1) (2006) 21–39.572

[13] S. Lee, J. Z. Huang, J. Hu, Sparse logistic principal components analysis for binary data, The573

annals of applied statistics 4 (3) (2010) 1579.574

[14] Z. Kang, C. J. Spanos, Sequential logistic principal component analysis (SLPCA): Dimensional575

reduction in streaming multivariate binary-state system, in: 2014 13th International Conference576

on Machine Learning and Applications, IEEE, 2014, pp. 171–177.577

[15] A. Lumbreras, L. Filstroff, C. Févotte, Bayesian mean-parameterized nonnegative binary matrix578

factorization, Data Mining and Knowledge Discovery 34 (6) (2020) 1898–1935.579

[16] Z. Zhang, T. Li, C. Ding, X. Zhang, Binary matrix factorization with applications, in: Seventh580

IEEE International Conference on Data Mining (ICDM 2007), IEEE, 2007, pp. 391–400.581

28

[17] N. Gillis, S. A. Vavasis, On the complexity of robust PCA and ℓ1-norm low-rank matrix ap-582

proximation, Mathematics of Operations Research 43 (4) (2018) 1072–1084.583

[18] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, H. Mannila, The discrete basis problem, IEEE584

transactions on knowledge and data engineering 20 (10) (2008) 1348–1362.585

[19] R. Belohlavek, V. Vychodil, Discovery of optimal factors in binary data via a novel method of586

matrix decomposition, Journal of Computer and System Sciences 76 (1) (2010) 3–20.587

[20] M. Trnecka, R. Vyjidacek, Revisiting the Grecon algorithm for Boolean matrix factorization,588

Knowledge-Based Systems (2022) 108895.589

[21] T. Makhalova, M. Trnecka, From-below Boolean matrix factorization algorithm based on MDL,590

Advances in Data Analysis and Classification 15 (1) (2021) 37–56.591

[22] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization,592

Nature 401 (6755) (1999) 788–791.593

[23] S. Miron, M. Diop, A. Larue, E. Robin, D. Brie, Boolean decomposition of binary matrices594

using a post-nonlinear mixture approach, Signal Processing 178 (2021) 107809.595

[24] D. DeSantis, E. Skau, D. P. Truong, B. Alexandrov, Factorization of binary matrices: Rank596

relations, uniqueness and model selection of Boolean decomposition, ACM Transactions on597

Knowledge Discovery from Data (TKDD) (2020).598

[25] H. Nguyen, R. Zheng, Binary independent component analysis with or mixtures, IEEE Trans-599

actions on Signal Processing 59 (7) (2011) 3168–3181.600

[26] S. Ravanbakhsh, B. Póczos, R. Greiner, Boolean matrix factorization and noisy completion via601

message passing, in: International Conference on Machine Learning, PMLR, 2016, pp. 945–954.602

[27] A. Cichocki, A.-H. Phan, Fast local algorithms for large scale nonnegative matrix and tensor fac-603

torizations, IEICE transactions on fundamentals of electronics, communications and computer604

sciences 92 (3) (2009) 708–721.605

[28] D. DeSantis, E. Skau, B. Alexandrov, Factorizations of binary matrices–rank relations and the606

uniqueness of Boolean decompositions, arXiv preprint arXiv:2012.10496 (2020).607

[29] J. E. Cohen, U. G. Rothblum, Nonnegative ranks, decompositions, and factorizations of non-608

negative matrices, Linear Algebra and its Applications 190 (1993) 149–168.609

29

[30] K. H. Kim, Boolean matrix theory and applications, Vol. 70, Dekker, 1982.610

[31] V. L. Watts, Boolean rank of Kronecker products, Linear Algebra and its Applications 336 (1-3)611

(2001) 261–264.612

[32] T. Watson, Nonnegative rank vs. binary rank, arXiv preprint arXiv:1603.07779 (2016).613

[33] Y. Crama, P. L. Hammer, Boolean functions: Theory, algorithms, and applications, Cambridge614

University Press, 2011.615

[34] D. Dua, C. Graff, UCI machine learning repository (2017).616

URL http://archive.ics.uci.edu/ml617

[35] The now community. new and old worlds database of fossil mammals (now)., https://618

nowdatabase.org/now/database/, accessed: 2022-06-15.619

[36] E. Voeten, Data and analyses of voting in the un general assembly, in: B. Reinalda (Ed.), Data620

and Analyses of Voting in the UN General Assembly, Routledge Londres, 2013.621

[37] J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.622

[38] P.-A. Absil, R. Mahony, B. Andrews, Convergence of the iterates of descent methods for analytic623

cost functions, SIAM Journal on Optimization 16 (2) (2005) 531–547.624

[39] Y. Xu, W. Yin, A block coordinate descent method for regularized multiconvex optimization625

with applications to nonnegative tensor factorization and completion, SIAM Journal on imaging626

sciences 6 (3) (2013) 1758–1789.627

[40] E. Bingham, A. Kabán, M. Fortelius, The aspect Bernoulli model: multiple causes of presences628

and absences, Pattern Analysis and Applications 12 (1) (2009) 55–78.629

30

