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The paper presents a novel approach to the processing of flow cytometry data sequences. It consists in
decomposing a sequence of multidimensional probability density functions by using the multilinear block tensor
decomposition approach [1,2]. Also a formal link between flow cytometry data and fluorescence spectra is pro-
vided allowing the joint processing of both data. To illustrate the effectiveness of the approach, a study of the
T47D cell line mitochondrial membrane potential as a function of the CCCP decoupling agent concentration is
performed. The main advantages of the method are: (i) the flow cytometry data compensation is no longer nec-
essary, and (ii) the cell sorting capacity of the method is significantly improved as compared to classical cluster-
ing methods. As a byproduct, it was possible to observe directly on the result of the processing, the dependence of
the cell mitochondrial membrane potential with respect to the cell cycle phase. The proposed method is quite
general provided that it is possible to design an experiment allowing the observation of the response of cell pop-
ulations to an environmental/chemical/biological parameter.

Non-negative matrix factorization
Mitochondrial membrane potential
JC-1 probe
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1. Introduction

Flow cytometry is an investigation technique widely used in biology
and medicine for the characterization and quantification of the morpho-
logical, density and fluorescence properties of cells. A highly insightful
approach, often used in biology and biomedical studies, consists in
studying the evolution (response) of a cell population with respect to
environmental/chemical/biological parameters (e.g. temperature,
chemical drugs, and gene expression ). An overview of recent techniques
of flow cytometry data analysis is given in [3] and several challenges,
that have to be dealt with, are also pointed out. In particular, it appears
that the recent technological progresses of cytometers allow the design
of complex multiparameter experiments yielding a large amount of
data. Classical flow cytometry data analysis methods are no longer
adapted to these data and hence there is a need for new algorithms
that can efficiently retrieve the relevant information from this large
amount of data. Classical flow cytometry data processing consists in a
sequence of procedures mainly relying on the user expertise, and is,
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therefore, somewhat subjective. In general, the different operations
are as follows:

Gating consists in manually selecting a cell population of interest
within the dot plot.

Compensation aims at minimizing the influence of the spectral over-
lapping for different cell sub-populations. It consists in applying a
linear transformation to the data, whose parameters are user-
defined.

Clustering is a technique to perform pattern classification in unsuper-
vised environments that may be used in cell sorting. In most manu-
facturer provided software, this operation consists in manually
defining quadrants on the dot plots. Most of these methods require
a user decision step which may strongly affect the relevance of the
results. This is especially the case when the sub-population distribu-
tions strongly overlap, as often in practical applications.

In the last decades, a number of effective clustering algorithms have
been proposed, including k-means related methods (e.g. [4-7]) or
Gaussian mixture models (e.g. [6,8-10]). In [7], Lo et al. propose the
use of t-distribution mixtures instead of Gaussian mixtures, as they
allow better handling of outliers, due to their heavier tail. In [11], the
performances of the available automated cytometry data analysis
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techniques are assessed on three datasets having different complexities.
It appears that automated methods (eventually coupled) yield effective
results as compared to the manual clustering approach. However, the
population overlapping still remains a challenging problem requiring
further development. Another critical issue mentioned in [3], corre-
sponds to the case of infrequent and/or heterogeneous populations.

In [12,13], an information geometry approach allows the definition
of similarity measures between cytometry datasets facilitating data
interpretation by clinicians and resulting in a low dimension represen-
tation of the data. This approach is somewhat related to the one pro-
posed here since it jointly considers multiple cytometry datasets.

The contributions of this work are twofold: i) we introduce a cell
population sorting method based on a non-negative block tensor
decomposition of the data histograms. The key point is that it is a fully
multidimensional approach in which cell sorting is done according
to the response of the different sub-populations to a parameter (the
CCCP concentration in this paper). The model identifiability is also
studied. The main advantages of our method are: it is almost fully unsu-
pervised (the only input parameter is the number of sub-populations
sought in the data), it is non-parametric (there is no underlying para-
metric probability density function), it is not much affected by the over-
lapping of the sub-population distributions and it does not require any
decision step since the problem is addressed as a source separation
problem which provides both the amount of each sub-population and
its probability density function; ii) we prove that there is a relationship
between flow cytometry and bulk spectroscopy data, and propose a
joint processing approach of the two data modalities. This improves
the separation accuracy and provides a more complete description of
the analyzed cell populations. This joint modality data analysis can be
regarded as a data fusion approach, as proposed in [14] in the context
of polarized Raman spectroscopy. This type of data fusion approach
has gained a lot of interest recently in various domains of application
(see e.g. [15,16]).

The remainder of this paper is organized as follows: in the next sec-
tion, we introduce the notations and some general assumptions that are
used throughout this paper; in Section 3, the data model for the pro-
posed approach is derived and the link between spectroscopy and cy-
tometry data is highlighted; in Section 4 we analyze the identifiability
of the proposed model and propose a three-step algorithm for sorting
the cell sub-populations; Section 5 gives an illustration of the applicabil-
ity of the proposed approach to the study of the T47D cell line mito-
chondrial membrane potential as a function of the CCCP decoupling
agent concentration. It includes the experiment description and the re-
sults of the proposed approach applied to different datasets; some con-
clusions are given in Section 6.

2. Preliminaries

Lowercase letters (X, y,...) denote scalars, boldface lowercase (x,y....)
are used for vectors, boldface capitals (X)Y,...) symbolize matrices and
tensors are written in boldface calligraphic capital letters (X, Y, ...).
A tensor or N-way array (N > 3) can be seen as the generalization of
matrices to the multidimensional case. The number of dimensions N is
called the order of the tensor. Thus, a vector is a first order tensor, a ma-
trix is a second order tensor, etc. Consider a 3-way data array (third order
tensor) X (I x J x K) admitting the following decomposition in a sum of
K terms:

K
X=> aebecg (1)
P

where a(I x 1), bg(J x 1) and ¢,(L x 1) are vectors and “°” denotes the
outer product. The three dimensions of X are referred to as modes. The
quantity ay, ° by > ¢, represents a rank-1 tensor and the decomposition
in Eq. (1) is commonly known as CANDECOMP/PARAFAC (CP) [17,18].

If K is the minimum number of rank-1 tensors that yield exactly X,
then Kis called the rank of the CP decomposition. An alternative notation
for Eq. (1) is

x =[A,B,(], (2)

where A = [a; ... ag], B = [b; ... bg] and C = [c¢; ... ¢«] denote the
component/loading matrices. All these notions, defined here for the 3-
way case, generalize straightforwardly to N-way arrays (N > 3).

For simplicity, throughout this paper, the noise/error term in data
model expressions will be ignored, which nothing detracts from the
generality of the presented method. To introduce the theoretical data
model in Section 3, continuous probability density functions (pdfs)
should be employed. However, in practice, the recorded data are repre-
sented by histograms, implying discretized versions of these pdfs.
For the clarity of the presentation, we will use lowercase letters to de-
note the continuous pdfs and boldface lowercase for their discretized
versions. The length of the vectors representing the discretized pdfs
(i.e. the number of bins) will not be explicitly mentioned, unless it is cru-
cial for the comprehension of the presentation. Also, for simplification,
the distinction continuous/discretized pdf will not always be made in
the text, but can be easily deduced from the context.

3. Data model
3.1. The probability density function of N-dimensional flow cytometry data

Consider N-dimensional flow cytometry data. Each of the analyzed
cells yields a length N vector measuring the amplitudes at N different
wavelength values of the emitted fluorescence light. The set of mea-
surements collected on a population of M different cells can be gathered
in an N x M matrix X = [X; - Xuy], where X, = [X(1), =, Xm(N)]" and
m =1, ..., M. As illustrated in Fig. 1, this data matrix X can be character-
ized by its N-variate pdf denoted by p(x) = P(X,, = X). At this point, it is
necessary to pay some attention to the pdf estimation. We follow the
main lines of [19] (chapter 4, pp 164-168). Density estimation can be
done using a kernel approach among which the most well known is
the Parzen window method. As a special case, the Parzen window can
be chosen as a hypercube characterized by its widths along each dimen-
sion. However, other window functions can be used (e.g. Gaussian
window). The choice of these widths is crucial because it will determine
the accuracy of the estimated pdf. Basically, choosing a too large win-
dow will result in an over-smoothed pdf suffering from too little resolu-
tion while a too small width results in a high variance pdf estimate. Also,
it is possible to let the width slowly go to zero as the number of samples
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Fig. 1. Transforming the (N x M) matrix X into N-D histograms; illustrations for N = 2
and 3.
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increases. The reader is referred to [19] for the precise statement of the
convergence properties of the Parzen window estimator. In this work,
we have only considered bi-dimensional pdf estimation. While the pro-
posed approach can be extended to N-dimensional density estimation,
theoretical arguments suggest that pdf estimation in high dimension
(N> 4 or5) is fruitless. This is referred to as the curse of dimensionality
in [20]. This is a point requiring to be carefully studied in forthcoming
studies. Future directions will be given in the Conclusions.

3.2. The bilinear model of a sequence of N-D pdfs

Let us consider a cell population composed of K different sub-
populations. A sub-population is defined as a set of cells exhibiting
identical/similar behaviors with respect to the variation of a physical pa-
rameter. We represent the N-D data points in the analyzed sample by
the pdfp(x) of the measurement vector X. This pdfis expressed as a mix-
ture of K density functions fi, corresponding to the K sub-populations:

K
P(Xy =X) =p(X) = > o4 fr(%) 3)
k=1

with > K_ ;04 = 1. Assume that we study the response of this cell pop-
ulation to the variation of some physical parameter, denoted as s here-
after. For each value of s, a flow cytometry dataset can be recorded,
resulting in a sequence of flow cytometry data matrices. Hence, each
data matrix obtained for a given physical condition yields a pdf denoted
by p(x,s), that can be modeled as:

K
P(%,8) = o4 (s)fi(X). (4)

k=1

The sequence of N-D histograms, obtained for different values of s,
can thus be gathered into a (N + 1)-D array (tensor) denoted by P.
By unfolding this tensor along the dimensions corresponding to the N
different wavelengths, we obtain a matrix P that admits the following
bilinear factorization:

P =AF. (5)

In Eq. (5), P has a number of rows equal to the number of values of
the parameter s; the columns of A, symbolized by a, (k = 1, ..., K), con-
tain the mixing coefficients of the K sub-populations for the different
values of s; the columns of F are the “unfolded” N-D density functions
f;, of the K sub-populations.

3.3. The block-CANDECOMP/PARAFAC model of a sequence of N-D pdfs

Assuming the independence of each coordinate of X = [x;, -, xn], the
multivariate pdf fi(x) can be factorized as a product of N univariate pdfs:
fil(X) = fi(x1) * fA(x5) - fi¥(xy). Thus the data array can be written as a CP
model of order N + 1:

K
P=> aefyoofiy. (6)
k=1

Eq. (6) clearly expresses an N 4 1 CP model of rank K which can be
alternatively written as:

P =[A F,~ Fy, )

where A = [ay, ..., ax] and F, = [fy ,, ..., fx,], withn =1, ..., N. The
link between models (7) and (5) is obtained by unfolding P into a ma-
trix, according to: P = A(F; © - © Fy)T, where “©” stands for the Khatri-
Rao product. Thus, we have F = F; © - © Fy. Admittedly, assuming the
independence of each coordinate of x does not allow the representation

of the general probability density function. Restricting our attention to
the case of bi-dimensional density functions (N = 2), we propose to
adopt for the data the rank-(Ly, L, 1) Block Component Model, equally
known as the block-CANDECOMP/PARAFAC (BCP) model, introduced
by De Lathauwer in [1,2]. By doing so, it is possible to consider the
more general case of non-separable pdfs. In fact, this is nothing but
performing a low rank approximation of the (discretized) pdfs. Hence,
the (N + 1)-D data array can be written as:

K
P= Z ak OEkV (8)
k=1
where the rank L, matrices E; can be decomposed as:
& I I L I o T
Be=> fiaefio=> fiafio - 9)
=1 =1

A graphical illustration of this model is given in Fig. 2.

The BCP model can be seen as a CP model in which some of the load-
ing vectors (columns) of the matrix A are collinear. The model in Eq. (8)
can be easily generalized to higher dimensional (N > 2) data. The
higher-dimensional case does not yield more complicated data process-
ing situations, since it is known that higher-order CP models require less
restrictive identifiability conditions. For example, some 4-order CP
models, with collinear loading in at most three modes, are provably
identifiable [21].

3.4. Joint analysis of fluorescence cytometry and bulk spectroscopy data

The question investigated in this subsection is the following: is there
a formal link between the fluorescence spectra and the cytometry data
for a given cell population? We are going to show that the answer is
actually yes, allowing us to propose a joint analysis of the two types
(modalities) of data. A bulk fluorescence spectrum corresponds to the
fluorescence measured on a large number of cells. In that respect, it
can be seen as an average of all the individual cell fluorescence spectra.
Thus, considering the variation of the same physical parameter s, the
measured spectra m(s) can be written as:

m(s) — / Xp(%,5)dX. (10)
The vector X contains X as a “sub-vector”, and therefore we can
write':
~ K o~
PX,5) = a(s)fk(X), (11)

k=1

where the mixing coefficients oy (s) are the same as in Eq. (10). By re-
placing Eq. (11) in Eq. (10), we obtain:

K K -
m(s) =3 a(s) / X (®)dx =3 (9)f,. (12)
k=1 < . k=1
f,

If we regroup the set of spectra (after normalization to unit energy)
recorded for the different values of s on the rows of a matrix M, the fol-
lowing mixture model can be written:

=T
M =AF . (13)
! In reality, the data vector X is obtained by integrating the emitted light over a wave-

length interval AN around the different “colors” used by the cytometer. However, for small
values of AN, Eq. (11) is a good approximation of p(X,s).
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Fig. 2. Graphical illustration of the rank-(L,L ;) BCP model of P.

In Eq. (13), the columns of F are the vectors fk and correspond to
spectra characterizing the (averaged) spectral response of the K cell
sub-populations and the mixing matrix A is exactly the same as in
the cytometry data model (5). We are now able to propose the joint
model by gathering the two models (Egs. (5) and (13)) into a single
one. This is possible because of the common mixing matrix A. We follow
an approach quite similar to the one proposed in [14] which consists in
concatenating the data matrices P and M according to:

F17
Pl

The joint use of a sequence of fluorescence flow cytometry and spec-
troscopy data provides a very complete description of cell population. It
yields a decomposition of the whole population into homogeneous sub-
populations characterized by their common:

P M]:A[ (14)

- probability density function
- (averaged) spectral response
- response to a physical parameter.

4. Model identifiability and data processing

The problem at hand can be embedded in the general framework of
non-negative approximation of non-negative tensors using multilinear
decompositions. This is still an open problem but a milestone was
reached with the work of Lim and Comon [22] where it is proved that
non-negativity ensures the well posedness of the non-negative tensor
approximation. As mentioned in [22], this can actually be associated
with the sparse naive Bayes probabilistic model for pdf [23], since the
underlying probabilistic model is a mixture of densities having inde-
pendent variables. Here we go one step further since, by using the BCP
decomposition, we can relax the independence assumption. However,
the question of the validity of the non-negative BCP decomposition as
an approximation tool is an open problem which would deserve to be
studied. We did not pay further attention to this point, but as a first at-
tempt to illustrate the regularization property of the non-negativity, we
show that rank (L, Ly, 1) exact non-negative BCP decomposition can be
unique without any additional assumption. This is not the case for gen-
eral BCP unless some other constraints (such as orthogonality) are
enforced. In Section 3, it was shown that NMF was involved in all the dif-
ferent models considered. In that respect, uniqueness of the NMF plays a
central role and in the sequel we recall some results on the NMF unique-
ness and we give a sufficient condition which allows checking directly
on the data if a NMF is likely to be unique. We then use these results
to study the uniqueness of the non-negative BCP model and we give
some practical consequences of theses results. To conclude this section,
we present the three different steps of the data processing algorithm.

4.1. Identifiability of the non-negative bilinear model

In this section, we address the identifiability of the bilinear model
which arises in different contexts in this work, in particular for models
(5) and (13). Such non-negative bilinear models are also involved in
BCP decomposition, as we will show in Subsection 4.2. Assume that a
non-negative matrix W admits an exact bilinear model representation:
W = HG'. (15)

Depending on the considered case, the matrix W may represent dif-
ferent quantities: matrix P for model (5), Matrix M for Eq. (13), matrix
[P M] for model (14), and matrix Ey, for the BCP model (8).

It is well known, that in general the bilinear decomposition (Eq. (15))
does not admit a unique solution since for any non-singular matrix T it is
possible to write:
~ =T

W=HTT '¢' =HG (16)
which is another admissible solution. Regularization is thus needed to
obtain a unique decomposition. Among the possible additional con-
straints which can be considered, we focus on the non-negativity as-
sumption, leading to the non-negative matrix factorization (NMF)
problem [24]. In order to discuss the identifiability of the NMF model

(15), the notion of simplicial cone needs to be introduced.
Definition 1. Simplicial cone

N

The simplicial cone generated by a family of vectors {g,}, — 1 is

c({g.}) = {W W= Z angnvan>0}'

The order of a simplicial cone is the dimension of the subspace span
({g.}% — 1). Based on the definition above, a necessary and sufficient
condition for NMF identifiability has been provided by Chen in [25]:

Theorem 1. Necessary and sufficient uniqueness condition

Denoting K the convex hull of the data matrix W, the decomposition of
W according to W = HG", H > 0, G > 0 is unique if and only if the simplicial
cone C(G), such as KCC(G), is unique.?

Clearly, Theorem 1 does not provide any numerical conditions to
check if a NMF is unique or not. This motivated the work of [26] from
which it appears that uniqueness relies on the number of zero entries
in both matrices H and G. New results can also be found in the very re-
cent paper [27]. Unfortunately, even if these approaches do give numer-
ical rules to check if a NMF model is identifiable, they do not provide any

2 The notation H > 0 means that each entry of the matrix H is non-negative.
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effective means to check directly from the data if the NMF is unique. This
is the goal of the following proposition and corollary. However, before
going any further, it is necessary to introduce the notion of monomial
matrix and some related properties.

Definition 2. Monomial matrix
A positive matrix T of dimension (p, p) is called a monomial matrix if

every row and every column of this matrix contains exactly one non-
null element [28], that is

Vi=1,...,p,3k; ty>0and t;, = OVji. (17)

Property 1. See [29]

An arbitrary positive square matrix T has a positive inverse matrix if and
only if T is a monomial matrix. Then T~ is also monomial.

Property 2. See [29]

Each monomial matrix T may be decomposed as T = AU, where A is a
positive diagonal matrix and U is a permutation matrix, that is, a monomial
matrix whose non-zero elements are equal to 1. Such a transformation,
when applied to G yields the scaling and ordering indeterminacies.

We are now ready to formulate a sufficient condition for the unique-
ness of NMF, from which we derive another sufficient condition, which
can be applied directly to the data.

Proposition 1. Sufficient uniqueness condition
The decomposition of W into H and G according to
W=HG', with G=0,H>0, (18)

is unique if the following conditions are satisfied:
(B1) There exists a submatrix of H of dimension (K, K) which is monomial.
(B2) There exists a submatrix of G of dimension (K, K) which is monomial.
Proof. See Appendix A. [J

From this result, we may immediately deduce the following corol-
lary which gives a sufficient condition on W to admit a unique non-
negative factorization.

Corollary 1. The decomposition of W into H and G according to
W =HG" with H>0,G6>0, 19)

is unique if the following condition is satisfied:

(C1) After line and column permutations, the matrix of W can be written
as:

Wll : W12
W= | ... ... ..,
Wy = Wy
where Wy is a non-singular diagonal matrix of dimension (K, K).

The proof of this corollary is trivial using the fact that a non-negative
monomial matrix can be factorized only as a product of two other non-
negative monomial matrices of the same size.

4.2. Identifiability of the non-negative BCP model
Before addressing the BCP model identifiability, some uniqueness

results of the CP decomposition must be presented. A key notion to
the uniqueness of the CP decomposition is due to Kruskal [30], and relies

on the concept of “Kruskal-rank” or simply k-rank. The k-rank of anIx K
matrix A, denoted by ka, is the maximum value | € N such that every [
columns of A are linearly independent. By definition, the k-rank of a ma-
trix is less than or equal to its classical rank. Kruskal proved that [30]

K + kg + ke =2K +2 (20)

is a sufficient condition for ensuring the uniqueness of the CP decompo-
sition in Eq. (1). Furthermore, it becomes a necessary and sufficient con-
dition in the case K = 2 or 3.

This condition no longer holds when one matrix (say A) has a k-rank
equal to 1, that is, when the matrix A has collinear columns. Unfortu-
nately, this is what happens for the BCP model. In this case, we have
to resort to the notion of partial uniqueness which means that only
“part of the model” can be unique (see [31,32] for details). Restricting
our attention to the BCP decomposition at hand, and based on the re-
sults of [32], the identifiability of A is ensured if:

Ta + kg +ke=2K +2, (21)

where 1, is the classical rank of matrix A. In particular, in the case con-
sidered, if B and C are full-column rank matrices, the identifiability of A
requires only 4 > 2. Some other identifiability results for A can be found
in [32].

The key point is that, provided that A can be uniquely estimated
from the data, theorem 3.1 of [32] ensures that the identifiability
of the entire CP model can be assessed by checking the identifiabil-
ity of several independent lower-rank CP models. Coming back to the
BCP problem (Eq. (8)) at hand, this means that the uniqueness of
the decomposition can be assessed by investigating the uniqueness of
each bilinear sub-problem (Eq. (9)). In general, uniqueness cannot be
guaranteed and the bilinear problem is unique up to rotational ambi-
guities. This is the essential uniqueness of BCP, as introduced by De
Lathauwer in [2]. However, in the particular case of non-negative pdfs,
the results of Section 3 can be used. This means that the BCP decompo-
sition (Eq. (8)) is unique if the uniqueness of A is ensured and the non-
negative bilinear factorizations (Eq. (9)) are unique. This result clearly
shows the interest of non-negativity for the uniqueness of CP-like
decompositions.

4.3. From theory to practice

The theoretical identifiability results presented in the previous sub-
sections, all involve the identifiability of the NMF model. However, they
may be a bit difficult to interpret for users who are not familiar with
matrix factorization. In this subsection, we first give some graphical il-
lustrations corresponding to practical situations for which the NMF
identifiability is ensured or not. Fig. 3 gives 4 examples of data matrices
consisting in the superposition of 3 rank-1 non-negative matrices. The
left data matrix of the top row satisfies the condition of Corollary 1,
meaning that its non-negative rank-3 decomposition is unique. That
on the right of the top row gives an example where Donoho's con-
dition [26] is fulfilled; thus, its non-negative rank-3 decomposition is
also unique. On the contrary, the two bottom row matrices do not
admit a unique solution since the necessary condition of [27] is not ful-
filled (see also [33]).

This discussion on the identifiability of the BCP model naturally
brings up the following question: is the uniqueness of the BCP decom-
position really important in practical applications? This is actually a
question which deserves to be discussed in detail since, for our problem
of approximating the 2-D pdfs represented by the matrices E;, the rota-
tional ambiguities do not matter. Indeed, regardless of the rotational
ambiguities, the reconstructed E, remains the same. Nevertheless, if
the objective is the biological interpretation of the results, then unique-
ness does matter because it turns out that pdfs having complex shapes
result from mixtures of sub-populations behaving in a similar way. To
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Fig. 3. Four data matrices admitting a NMF decomposition. The two matrices at the top of
the figure admit a unique decomposition. Those of the bottom line do not.

illustrate the idea, let us consider a simple analogy: consider a pop-
ulation composed of children and adults having to run away from dan-
ger and observed at different locations with devices measuring the
height and the weight (two parameters) of each individual. Roughly, 3
types of behavior are expected to be observed: a fast running sub-
population (the adults), a slow running sub-population (children) and
a last sub-population composed of adults holding children's hands and
therefore running faster than children but slower than adults. From a
decomposition point of view this is a single sub-population since they
are all moving at the same speed. But if the uniqueness of the corre-
sponding subblock is ensured, then the population of adults and
children running together can be decomposed into adults only and
children only, without any ambiguity. In such situations, the density
E, is multimodal. If its NMF decomposition is provably unique,
thus each unimodal distribution can be uniquely associated with a
sub-population: this is the property which is used to give a valid inter-
pretation of the dependence of the mitochondrial membrane potential
with respect to the cell cycle (see Subsection 5.3). In this context, the
graphical illustration of the uniqueness of the NMF problem is mainly
intended at verifying a posteriori if the decomposition of each density
E, (Eq. (9)) of the non-negative BCP decomposition can be considered
as unique or not. Concerning the coupling of flow cytometry with fluo-
rescence data, the uniqueness of the non-negative BCP implies the
uniqueness of model (14). Otherwise, no general rule can be provided.
However, it appears that gathering data is expected to improve the
NMF model identifiability (see [14] for details).

4.4. Algorithms for data processing

The data processing method proposed in this paper consists of three
steps. The first two steps deal with the processing of the flow cytometry
data while the third addresses the coupling (fusion) of the flow cytom-
etry data with the cell fluorescence spectra.

4.4.1. Estimation of the probability density functions

The flow cytometry data pdfis performed by computing the N-D his-
tograms of the data which correspond to the hypercube Parzen window
function. The developed algorithm requires to define the number of bins
(one for each dimension) on which the histograms are calculated. Here,
only 2-D histograms are considered. For all experiments, the number of
bins was fixed to 50 along each dimension which results in pdf estima-
tions showing a good tradeoff between resolution and accuracy. In fact,
in practice the setting of this parameter value remains supervised and
depends on the data at hand.

4.4.2. Non-negative BCP decomposition of the data

For the needs of this step, the non-negative BCP algorithm devel-
oped in the tensorlab toolbox [34] can be used. We also developed a
procedure to estimate the ranks L, and K of the decomposition. It first
consists in performing a non-negative high-rank CP decomposition of
the data. Thanks to the partial uniqueness properties of the CP model

[32], the matrix containing the collinear loadings is ensured to be
unique. In practice, because of the noise/error terms, the estimated
loading may not be strictly collinear. The “most” collinear loadings, i.e.
those presenting a correlation greater than a specified threshold (typi-
cally 0.9), are collapsed into a single loading by an averaging procedure.
The K resulting averaged loadings are gathered into a full column rank
matrix A. The corresponding loadings of the other two modes are gath-
ered to form matrices E;, k = 1, ..., K. This results in a non-negative BCP
decomposition which is used as an initial solution for the non-negative
BCP algorithm of [34]. Once the non-negative BCP decomposition is
achieved, the corresponding N-D pdfs are normalized to have unit sum
and the normalization factor is then transferred on the corresponding
loadings, representing the responses of the K sub-populations to the
physical parameter.

4.4.3. Coupling of the flow cytometry data with fluorescence spectra

There are at least two ways to couple the two datasets. A first ap-
proach is to estimate first the mixing matrix A using only the cytometry
fluorescence data. Once matrix A is estimated, the source spectra are ob-
tained from the bulk spectroscopy data by a least-squares procedure
under non-negativity constraints. A second approach is to actually com-
bine the data into a single data matrix following model (14) and then to
decompose the large data matrix using a non-negative factorization
algorithm (e.g. the Bayesian Positive Source Separation algorithm devel-
oped in [35]). In the next section, only the results corresponding to the
first approach of step 3 are presented. In fact, no significant difference
was observed between the two different approaches. The reason is
that, in the considered example, the uniqueness of the corresponding
rank-2 non-negative matrix factorization is provably unique. The inter-
ested reader is referred to [33], where a necessary and sufficient condi-
tion for having the uniqueness of the rank-2 NMF is provided.

The next section illustrates the effectiveness of the proposed ap-
proach on real flow cytometry and spectroscopy data. These data result
from an experiment aiming at studying the response of the mitochon-
drial membrane potential of a particular cell line to a decoupling agent.

5. Analyzing mitochondrial membrane potential with JC-1
5.1. Mitochondrial membrane potential

Mitochondrial membrane potential (AWm) is an important indicator
of the mitochondrial membrane integrity and mitochondrial efficacy
through the coupling between oxidative phosphorylation and ATP syn-
thesis. Indeed, AWm is an indicator of cell viability since a drastic de-
crease of this potential is associated with cytochrome c release during
apoptosis [36,37]. The membrane permeant dye JC-1° is largely used
to monitor this mitochondrial parameter [38-40]. This lipophilic cation-
ic dye enters cells and accumulates in mitochondria as monomers or
oligomers (J-aggregates) that exhibit two different emission spectra
often referred to as green and red respectively.? JC-1 monomers are as-
sociated with depolarized mitochondria whereas J-aggregates are
formed when AWm is high. Thus the mitochondrial membrane potential
can be estimated by following the red/green ratio of the JC-1 dye to dis-
tinguish between mitochondria with high and low AWm. Qualitative
and quantitative analysis of A¥m is usually performed by flow cytome-
try after an excitation of the probe at 488 nm with an argon laser. After
excitation, JC-1 monomer fluorescence is measured in the FL1 channel
515-545 nm and the JC-1 aggregates are measured in the FL2 channel
564-606 nm. Because of the overlap of the two emission spectra, com-
pensation is needed, around 20-30% of the green signal (FL1) has to be
subtracted from the red signal (FL2). This compensation value needs to

3 5/,6,6'-tetrachloro-1,1",3,3'-tetraethylbenzimidazolylcarbocyanine iodide.
4 We will see, in the sequel, that this has to be understood as “mostly green” or “mostly
red” since the emission spectra are not purely green or red.
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be well calibrated in each experiment. Recently, Perelman et al. [41]
have demonstrated that a new generation cytometer, equipped with
another excitation laser, in particular at 405 nm, can be used for JC-1
measurements. These new lasers considerably reduce the overlap of
the monomer fluorescence (green) with the J-aggregate fluorescence
(red). These findings simplify the procedure since the fluorescence
compensation can be avoided. However, it is worth mentioning that, re-
gardless of the laser excitation, there will be situations where the peak
overlapping cannot be completely avoided. It is also clear that changing
the laser excitation is not always possible.

The present experimental study aims at validating the proposed data
processing approach on real multicolor flow cytometry data corre-
sponding to the response of a cell line to a widely used and well under-
stood uncoupling agent (carbonyl cyanide p-chlorophenylhydrazone —
CCCP, Sigma-Aldrich). In particular, we address the following questions:

What is the gain of coupling the flow cytometry together with the fluo-
rescence spectroscopy? This is an original point since, so far, no previ-
ous work proposed to couple the two techniques.

Is it really necessary to perform the data compensation? We believe
that this is a very important practical issue since, from our own
experience, depending on the way the compensation is performed,
the analysis results may be strongly affected. Avoiding this pre-
processing step may certainly represent a major step in the develop-
ment of quantitative analysis in flow cytometry.

Does the proposed approach bring new insights into the analysis and
the understanding of cytometry data? Here, the stake is to evaluate,
from a biological perspective the benefit of an accurate separation
of the contributions of the different cell sub-populations.

5.2. Cell culture and data acquisition

Human ductal breast epithelial tumor cell line, T47D (from ATCC)
was grown in RPMI 1640 medium supplemented with 10% fetal calf
serum, 2 mM L-glutamine and 5 pg/ml Gentamicin at 37 °Cin a humid-
ified atmosphere containing 5% CO,. The mitochondrial membrane
potential-sensitive dye JC-1 was prepared as a stock solution in dimeth-
yl sulfoxide (DMSO, Sigma-Aldrich) and stored at —20 °C. Before use,
JC-1 stock solution was diluted 100 in assay buffer (delivered by man-
ufacturer). Cells were stained following the manufacturer specifica-
tions. Briefly, 1 ml of each cell suspension was centrifuged at 400 g for
5 min at RT. The pellets were resuspended in 0.5 ml of JC-1 freshly dilut-
ed and containing various concentrations of carbonyl cyanide p-
chlorophenylhydrazone (CCCP, Sigma-Aldrich). CCCP is an ionophore

used to uncouple oxidative phosphorylation in mitochondria. It causes
a mitochondrial proton leak, leading to a depolarization of the mito-
chondrial membrane. Thus, it is frequently used as a negative control
in mitochondrial membrane potential measurements by flow cy-
tometry. The concentration of CCCP for which it is well accepted
that the cells are fully depolarized, ranges between 50 and 100 uM.
Thus, we chose 6 CCCP concentrations varying between 0 and 100 uM
([ccer] =0, 5,10, 25, 50, 100) to ensure that the whole CCCP response
range is observed.

The samples were incubated for 15 min at 37 °C in a CO, incubator.
At the end of the incubation period, each tube was washed twice with
assay buffer and cells were resuspended in 0.3 ml of culture medium.
Half of the cells were analyzed by flow cytometry (BD FACSCalibur)
and the rest were analyzed by a fluorescence plate reader (Safas).
Fig. 4 gives an example of experimental data. This is a sequence of six cy-
tometry datasets, each one corresponding to a given CCCP concentration.

The first step of the processing consists in estimating the 2-D histo-
grams. For each dimension, the number of bins is fixed to 50 resulting in
a 50 x 50 data matrix. Then the six matrices are gathered into a 3-way
array of dimension (50 x 50 x 6). For this dataset, the compensation
was fixed to have a maximum separation along the horizontal axis.
Fig. 5 shows the corresponding sequence of fluorescence spectra. All
the spectra are normalized to have a unit energy.

5.3. Results and discussion

Fig. 6 shows the results of the non-negative BCP decomposition
corresponding to the dataset of Fig. 4 (see Subsection 3.3) and Fig. 7
shows the corresponding spectral source estimated by the joint analysis
(see Subsection 3.4).

The number of block-component is expected to be equal to 2: a high-
ly polarized cell sub-population whose response to CCCP is expected to
decrease and a depolarized cell sub-population whose response is
expected to increase with the CCCP concentration. The experimental
parameters L, of BCP were determined after successive trials. The first
block rank is (3, 3, 1) while the second block rank is (2, 1, 1). The re-
sponses of the two sub-populations are in very good agreement with
what was expected.

From a biological point of view, the top left-hand side plot on Fig. 6
represents the distribution of cells with a low mitochondrial membrane
potential (referred to as “green” fluorescence) while the top right-hand
side figure corresponds to the cells with high mitochondrial membrane
potential (referred to as “red” fluorescence). The associated responses

oum 5uM 10 uM 25uM
[CCCP} 800 800 800 800
700 700 700 700
6001 600 600 600
< 500 500 500 500
Data 5 400 400 400 400
300 300 300 300f *
200 200 200 200f °
10 10250 400 o0 so0 ° 1005
800 800 800 800
700 700 700 700
600 600 600 600
. 500 500 500 500
Histograms
400 400 400 400
300 300 300 300
200 200 200 200
0 20 400 600 80 ' 200 400 00 800 10" 200

Fig. 4. A sequence of flow cytometry data showing the response of T47D cells to CCCP. The upper line figures correspond to the data and the lower line figures are the corresponding 2-D

histograms.
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Fig. 5. A sequence of fluorescence spectra showing the response of T47D cells to CCCP. All
the spectra are normalized to have unit area.

show that the low mitochondrial membrane potential sub-population
increases with the concentration of CCCP while the high mitochondrial
membrane potential sub-population decreases. In particular, it can be
observed that the full cell population depolarization is reached after a
concentration of 50 pM which is corresponding to the value generally
accepted by practitioners.

As one can see on Fig. 7(a), the estimated spectra for the two sub-
populations are highly correlated. From a signal processing point of
view, separating these two spectral signatures using only the bulk
spectroscopy data on Fig. 5, is a very difficult and challenging problem.
The coupling of the two data modalities makes this separation possible
without imposing additional constraints on the source parameters.
From the biological point of view, the estimated spectra provide inter-
esting insights into the understanding of the average behavior of the
two sub-populations. Each sub-population, treated or not with CCCP,
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exhibits green and red fluorescence corresponding to JC-1 monomers
and JC-1 aggregates, respectively. Cell sub-population with high (re-
spectively low) mitochondrial membrane potential is more red than
green (respectively more green than red). The estimated spectra also
show that, for the two sub-populations, there are no other discriminant
wavelengths in their emitted fluorescence light. This could represent an
interesting tool for the efficient choice of the adequate wavelengths in
flow cytometry.

The joint analysis of cytometry and spectroscopy data yields a com-
plete characterization of the two types of cell sub-populations: distribu-
tion, fluorescence spectra, and response to CCCP concentration. The
cytometry characterizes the cell sub-population distribution with
respect to the fluorescence intensity while the spectroscopy provides
information on the sub-population distributions with respect to the
wavelength.

To evaluate the reproducibility of the experiments, we repeated it
three times. The rank of the BCP decomposition was fixed to the same
values as in the first experiment. The results of the non-negative BCP
of the other two datasets are given in Fig. 8 and it appears that the repro-
ducibility of the results is quite good: not only the CCCP responses are
quite similar but also the cell sub-population distributions are quite
similar.

The next experiment objective was twofold.

When using standard cytometry data analysis tools (as provided by
the manufacturer), the red and green fluorescence analyses of JC-1 al-
ways require a user defined compensation procedure which may
strongly affect the quantitative interpretation of the data. As mentioned
in [42], compensation is in fact a linear transformation of the data and
therefore, in our experiments, it is not supposed to affect the response
to CCCP. In the following experiments, the data have been acquired
without and with compensation.

Having a closer look at the pdfs of the cell sub-populations revealed
that they were not unimodal, which was rather surprising from a bio-
logical point of view, since a single cell line is considered. Our conjecture
was that the cell asynchronicity was responsible of this multimodal dis-
tribution, each mode corresponding to a particular mitochondrial
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Fig. 6. Non-negative BCP decomposition results of flow cytometry dataset corresponding to the first experiment.
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Fig. 7. Estimation of the pure fluorescence spectra (a) corresponding to the first experiment. The mixing coefficients (b) are those obtained from the non-negative BCP decomposition.

membrane potential associated with a specific cell cycle phase. Indeed,
the dependance of the mitochondrial membrane potential of the cell
cycle phase was already mentioned in [43-45]. They showed that
there is a global increase of the mitochondrial membrane potential of
cells in the G2 phase of the cell cycle as compared to cells in the G1
phase. Thus the next experiment consisted in studying the distributions
of cell sub-populations before and after synchronization in the G1
phase.

This results in 4 different datasets referred to respectively as: (a) no
synchronization and no compensation, (b) synchronization and no
compensation, (c) no synchronization and compensation and (d) syn-
chronization and compensation.

To synchronize cells at the G1 phase of the cell cycle, cells were ex-
posed to 2 mM thymidine (Sigma-Aldrich) for 48 h. Then, synchronized
cells were collected, counted (TC10 Automated Cell Counter, Bio-Rad)
and adjusted to the density of 300,000 cells/ml for analysis of mito-
chondrial membrane potential. The cell cycle synchronization was mon-
itored by measurements of the DNA content per cell. The rate of DNA
was estimated by propidium iodide staining. Cells were fixed and
permeabilized by 70% icecold ethanol and stored at —20 °C for at
least 24 h. They were washed with PBS (Phosphate Buffered Saline)
and resuspended in 1 ml of DNA staining solution (2.5 pg/ml propidium
iodide, and 0.5 mg/ml RNase A in PBS). The labeling of the fluores-
cent probe was measured by flow cytometry (Becton, Dickinson,
FACSCalibur). Cell cycle synchronization was verified by flow cytomet-
ric analysis of DNA content. Representative histograms are shown in
Fig. 9. Treatment with thymidine results in a G1/S-phase arrest in con-
trast to untreated cells.

The results of the data processing are shown in Fig. 10(a-d). On
the one hand, comparing Fig. 10(a) and (c) as well as (b) and (d), it
can be observed that the compensation does not affect much the
shape of the response to CCCP. In other words, by using the proposed
approach, compensation is no longer necessary. On the other hand, it
appears that the synchronization modifies the shape of the cell popula-
tion distributions. Indeed, the not-synchronized low mitochondrial
membrane potential sub-population includes two main modes, one
centered on (350, 300) and a second centered on (450, 400). This sec-
ond mode significantly decreases after synchronization in the G1
phase, resulting in a shift toward the low value of the red and thus in-
creasing the relative importance of the green. This is much more visible
on the distribution of the high mitochondrial membrane potential sub-
population. This can be attributed to the fact that cells in the G1 phase
have a lower mitochondrial membrane potential that those in the S
and G2 phases which is in accordance with the literature. Also, looking
at the response to CCCP, it seems to indicate that the dynamic of the re-
sponses of the low and high mitochondrial membrane potential sub-
populations is stronger after synchronization.

6. Conclusions

In this paper, we proposed a novel flow cytometry data analysis
methodology, based on a non-negative block-CANDECOMP/PARAFAC
model of the data, and highlighted the link between bulk spectroscopy
and flow cytometry data. A sufficient condition allowing the guarantee
of the uniqueness of data decomposition was also derived. The joint
processing of the two data modalities results in an effective tool that re-
veals the full analysis potential of flow cytometry; the approach was val-
idated on real data produced using the human ductal breast epithelial
tumor cell line T47D for which the mitochondrial membrane potential
was estimated.

The main underlying idea is to exploit the different behaviors of cell
sub-populations with respect to a physical parameter (the CCCP con-
centration in this paper). Unlike the classically employed clustering
methods, strongly relying on the user expertise, our method requires
only the knowledge of the number of sub-populations to be extracted
from the data, and is very little sensitive to the overlapping of cell
sub-population distributions. Thus, similarly to Perelman et al. [41],
our method also yields an effective way to avoid compensation, but
without requiring the use of a different laser excitation adapted to the
mitochondrial membrane potential measurement with a JC-1 probe.
The ability of the method to separate overlapping densities has revealed
two sub-populations within a single cell line in both high and low mito-
chondrial membrane potential cell populations. This unexpected but
insightful side result has been attributed to cells being in different
cell cycle phases, having slightly different mitochondrial membrane po-
tentials. The price to pay for these interesting features is an increased
complexity of the experiments generating the data. However, the joint
data processing and experiment design is a promising research direc-
tion in which biologists and data analysts may develop very fruitful
collaborations.

This work raises a number of questions which deserve to be investi-
gated in forthcoming work. In this work, the cell sorting is addressed as
a non-negative source separation problem; thus no decision is required
since only the response to CCCP is sought. The proposed approach per-
forms significantly better that a classification based approach in partic-
ular when the probability density function of the different populations
strongly overlaps: even if it is possible to design optimal decision rules
minimizing the probability of error, highly overlapping densities neces-
sarily result in a high classification error. However it is clear that a deci-
sion is sometimes required. For example, in the case of infrequent cell
population (as it is the case of stem cells in tissue), it is necessary to
perform a “physical” cell sorting (generally referred to as gating) to in-
crease the proportion of interesting cells in the population. A quite rel-
evant problem is concerning the possibility to use the proposed
approach to design optimal classification rules yielding improved gating
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Fig. 8. Non-negative BCP decomposition of the two datasets obtained by repeating the same experiment as for the dataset on Fig. 6.

strategies. The problem complexity clearly increases with the number of
classes (i.e. populations).

The proposed approach allows us to efficiently model the multi-
variate density function® and a very appealing feature of the proposed

5 To give some figures, a N-dimensional pdf represented by a (smoothed) histogram
having M bins in each dimension corresponds to an array having M" entries. A rank K CP
model of the pdf allows the representation of the array with KMN<M".

approach relates to model identifiability which becomes less restrictive
as the dimension increases. However, this is only part of the problem
and a challenging question is: how do we handle the curse of dimen-
sionality? A possible way to tackle it is to perform dimensionality reduc-
tion (e.g. PCA, projection pursuit, Informative component analysis). In
our future work, we will address this problem using a sparse approxi-
mation approach. Not only, this is expected to yield effective high di-
mensional density estimation but this is also expected to be helpful in
designing efficient algorithms to perform high-order (i.e. dimension)
non-negative Block CP decompositions.
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Appendix A. Proof of Proposition 1

Suppose that conditions (B1) and (B2) are satisfied. After a possible
permutation of its columns, the matrix G can be rewritten as:

G=

gn
0

0 0 g« &k

0 0 &y - !
~ 0 : .

Similarly, after a possible permutation of its rows, the matrix H can
be re-written as:

H=

0 hy
h(1<f1)1 h(Kﬂ)K

Let us consider the regular (K x K) matrix T = [t;] whose inverse is
noted as T~ ! = [t}]. We have

T 1811 b1k 8
TG = : :
tk181 . L8
hit1 hyq ik
_1 . .
HT = . I
hgk b1k hyctii

from which it turns out that TG" > 0 and HT~ ! > 0 if and only if T> 0 and

Tfl

> 0. From Property 1, this is equivalent to say that T is a monomial

matrix and according to Property 2, the solution is unique up to scaling

and

ordering indeterminacies.
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