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a b s t r a c t

In this paper, we study the Cocentered Orthogonal Loop and Dipole pairs Uniform
Linear Array (COLD-ULA) which is sensitive to the source polarization in the context of
the localization of time-varying narrow-band far-field sources. We derive and analyze
nonmatrix expressions of the deterministic Cramér–Rao Bound (CRB(COLD)) for the direction
and the polarization parameters under the assumption that all the sources are lying in the
azimuthal plane.Wedenote this bound byACRB(COLD), where the ‘‘A’’ stands for Asymptotic,
meaning that the presented results are derived under the assumption that the number of
sensors is sufficiently large.While, to our knowledge, closed-form (nonmatrix) expressions
of the CRB(COLD) for multiple time-varying polarized sources signal do not exist in the
literature, we show that the ACRB(COLD) takes a closed-form (nonmatrix) expression in
this context and is a good approximation of the CRB(COLD) even if the number of sensor
is moderate (about ten), if the source signals are not spatially too close. Our approach
has two important advantages: (i) the computational complexity of the proposed closed-
form of the bound is very low, compared to the brute force computation of a matrix-based
deterministic CRB in case of time-varying model parameters and (ii) useful informations
canbededuced from the closed-formexpression on the behavior of the bound. In particular,
we prove that the ACRB(COLD) for the direction parameter is not affected by the knowledge
or the lack of it concerning the polarization parameters. Another conclusion is that with a
COLD-ULA, moremodel parameters can be estimated than for the uniformly polarized ULA
without degrading the estimation accuracy of the localization parameter. Finally, we also
study the ACRB(COLD) for a priori known complex amplitudes.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Wireless communication systems, including cellular ra-
dio, need to operate in increasingly more crowded sig-
nal environments. Antenna arrays provide an important
capability for separating multiple superimposed commu-
nication signals. In this context, polarization diversity
along with the spatial diversity has become an important
parameter in a wireless communication system. In the
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localization of narrowband far-field polarized sources con-
text, we can find plethora of estimationmethods. In [1], the
Maximum Likelihood Estimator (MLE) for diversely polar-
ized source localization was proposed. In [2–5], the ESPRIT
algorithm using vector sensors has been investigated. An-
other scheme based on a shift-invariance property is pro-
posed in [6]. MUSIC-based algorithms for this problem
have been applied in [7,8] while another approach, based
on the MODE algorithm, was introduced in [9]. In [10], the
interest of crossed-dipole array is demonstrated for asyn-
chronous DS-CDMA systems and for seismic processing
in [11]. In [12], a MUSIC algorithm based on the Higher-
Order Statistics is presented, and in [13,14] hypercom-
plex algebra is used to deal with vector sensor array data.
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Identifiability and uniqueness issues associated with the
considered model are analyzed in [15–17]. The resolu-
tion limit has been derived and analyzed in Ref. [18].
In [19–21], we can find the matrix-based expression of the
Cramér–Rao Bound (CRB) for the considered model and
in [22], the authors derive and study closed-form (nonma-
trix) expressions of the bound for known polarization state
and for a known single source. Remark that the assump-
tion of known model parameters leads to optimistic lower
bounds [23]. We can find in the literature (e.g. [24,25]) the
deterministic and the stochastic CRB. In the first case, con-
sidered in this paper, the sources are assumed to be un-
known deterministic while in the stochastic case, they are
viewed as unknownGaussian randomvariables. The deter-
ministic CRB is important since we know that for sufficient
Signal-to-Noise-Ratio the MLE meets this bound [26]. As a
consequence, this bound is widely used as a benchmark to
evaluate suboptimal estimator (regarding the MLE). How-
ever, the difficult point with the deterministic CRB is that
the number of source parameters grows with the number
of snapshots. This implies the inversion of a large Fisher
Information Matrix (FIM) and thus a large computational
cost. We can find in [27–29], closed-forms expression of
the deterministic CRB but to the best of our knowledge,this
bound for multiple unknown far-field time-varying2 nar-
rowband polarized sources has not been sufficiently inves-
tigated.

In this paper, we derive and analyze nonmatrix (closed-
form) expressions of the deterministic CRB for multiple
unknown far-field time-varying narrowband polarized
sources, impinging a Cocentered Orthogonal Loop and
Dipole pairs Uniform Linear Array (COLD-ULA) [9]. For
simplification we assume that all the sources are localized
in the azimuthal plane (i.e. their elevation angle equals
π/2). This corresponds, for example, to a scenario where
all the polarized sources are localized at ground level. In
order to obtain a nonmatrix expression of the CRB we
use the theoretical assumption that the number of sensors
tends to infinity, leading to the ‘‘Asymptotic’’ CRB (ACRB).
At first glance, this assumption seems severe but we
show numerically that the ACRB closely approximates the
CRB, even for small/moderate number of sensors and for
sufficiently spaced sources. This has already been noticed
in context of training sequence design [30] for instance.
Nonmatrix expressions of the CRB [31,32,22] are important
for at least two reasons: (i) the computation of these
expressions is very cheap while the brute force inversion
of the FIM can be a cumbersome task in case of time-
varying model parameters and (ii) they provide useful
informations on the behavior of the bound since they
depend explicitly and clearly on the model parameters.

The paper is organized as follow. Section 2 presents the
model of the signal observed on the COLD-ULA. Thematrix-
based deterministic CRB for the COLD-ULA is introduced in
Section 3. Section 4 is dedicated to the definition and the

2 Note that the proposed source signal model is different to the one
in Ref. [28]. In particular, the number of parameters of interest in our
contribution grows with the number of snapshots. This is not the case
in [28,29]. This technical difference is important regarding the complexity
cost of the FIM inversion.
Fig. 1. Acquisition scheme with the COLD-ULA array.

Fig. 2. Polarization ellipse.

derivation of the closed-form (nonmatrix) Asymptotic CRB
for the COLD-ULA regarding the direction and polarization
parameters. Next, Section 5 presents the analysis of
this bound and introduces some comparisons. Numerical
validations and illustrations of the proposed nonmatrix
expressions of the bound are given in Section 6. Section 7
provides some concluding remarks.

2. Model of the signal received on a Cocentered Orthog-
onal Loop andDipole pairs Uniform Linear Array (COLD-
ULA)

Consider a uniform linear array consisting of L COLD
pairs, two successive pairs being separated by a distance
d, as shown in Fig. 1. The array is collinear with the y-axis
of a Oxyz coordinate system with its origin in the center
of the first pair of sensors. For each COLD pair, the dipole
is parallel to the z-axis and the loop is parallel to the x–y
plane.

Assume M narrowband far-field plane waves impinge
on the array from directions described by the elevation an-
gle ϕ and azimuth angle θ . In this paper we suppose that
all the sources are contained in the x–y azimuthal plane,
i.e. ϕ =

π
2 , as illustrated in Fig. 1. Furthermore, suppose

each signal is a completely polarized transverse electro-
magnetic wave, with an elliptical polarization of ellipticity
α (−π

4 ≤ α ≤
π
4 ) and orientation β (0 ≤ β < π) (see

Fig. 2). For a given signal polarization, the vertical and the
horizontal components (Ez and Eθ ) of the incoming signal
electric field E can be specified by polarization constants ρ
and ψ [33,9] as

Eθ = E cos ρ, (1)
Ez = E sin ρ exp(iψ). (2)

The values of ρ (0 ≤ ρ ≤
π
2 ) and ψ (−π ≤ ψ < π) can

be used to compute the polarization ellipse parameters α
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and β [34,35]. For example, ψ = 0 implies α = 0, which
means (see Fig. 2) that the source is linearly polarized. A
zero value of ρ implies α = 0 and β = 0 meaning that the
source polarization is linear horizontal, while if ρ =

π
2 ,

then β =
π
2 and α = 0, i.e. the polarization is linear ver-

tical. These remarks will be used in the following sections
to facilitate the interpretation of the CRB results.

2.1. The model of the polarized source mixture recorded on a
single COLD pair

Under the given assumptions, the output of the ℓ-th pair
of the COLD-ULA represented in Fig. 1 can be expressed
by [9,35]

x̄ℓ(t) =


xℓ(t)
yℓ(t)


=

M
m=1

αm(t)umzℓm (3)

in which xℓ(t) and yℓ(t) are the signals recorded on
the small loop and short dipole, respectively. In (3), zm =

ei
2π
λ

d sin(θm) is the phase factor for the mth source, with λ
the wavelength. The time-varying sources are modeled by
αm(t) = amei(2π f0t+φm(t)), where am is the non-zero real
amplitude, φm(t) is the time-varying modulating phase
and f0 is the carrier frequency of the incident wave. um is
the 2 × 1 polarization state vector given by

um =

 2iπAsl

λ
cos(ρm)

−Lsd sin(ρm)eiψm


(4)

where Lsd and Asl represent the length of the short dipole
and the area of the small loop. In (4) we used the fact that
for short dipoles and small loops the output voltages are
proportional to the electric field components parallel to
dipole and loop, respectively. Note that, from a modeling
point of view, we can assume Lsd =

2πAsl
λ

= 1.
The COLD polarization state vector presents several

interesting properties listed below:

P1. ∂um/∂θm = 0, i.e. the polarization state vector of a
COLD array is not a function of the direction parameter.

P2. ∥um∥
2

= 1, i.e. the norm of the polarization state
vector is one.

P3. ∥∂um/∂ρm∥
2

= 1, i.e. the normof the differentiation of
the polarization state vector with respect to parameter
ρm is one.

P4. um and ∂um/∂ρm are orthogonal, i.e., ⟨um, ∂um/∂ρm⟩ =

0 where ⟨., .⟩ stands for the Hermitian inner product.
P5. ∥∂um/∂ψm∥

2
= sin2(ρm), i.e. the norm of the differ-

entiation of the polarization state vector with respect
to parameter ψm is simply a trigonometric function of
parameter ρm. We have ∥∂um/∂ψm∥

2
≤ 1.

P6. ⟨um, ∂um/∂ψm⟩ = i∥∂um/∂ψm∥
2, meaning that the

Hermitian inner product between the polarization
state vector and its differentiation with respect to
parameter ψm is a pure imaginary quantity, linked to
the norm of the differentiation of the polarization state
vector with respect to parameter ψm.
2.2. The space-time model of the data recorded on a COLD-
ULA

Let us now define the 2L × 1 vector collecting the
observation over the L sensor pairs of the array, according
to

x̌(t) =

 x̄0(t)
...

x̄L−1(t)

 =

M
m=1

Am(t)dm (5)

where Am(t) = IL ⊗ (αm(t)um) is of size (2L)× L. Operator
⊗ stands for the Kronecker product and the steering vector
is defined by

dm =


1 ei

2π
λ

d sin(θm) · · · ei(L−1) 2π
λ

d sin(θm)
T

where the superscript (.)T denotes the transposition oper-
ator. Collecting the above observation for T snapshots, the
final noise corrupted (2LT )× 1 vector model is

y = x̌ + σ e (6)

where

x̌ =


x̌(1)
...

x̌(T )

 =

M
m=1


Am(1)dm

...

Am(T )dm


and e is an additive white circular complex centered (zero-
mean) Gaussian noise of covariance I2LT .

3. Deterministic Cramér–Rao Bound for the COLD-ULA

The noisy observation y in expression (6) is constituted
by the deterministic signal of interest corrupted by a
complex Gaussian noise. So, the observation y follows a
Gaussian distribution such as y ∼ CN (x̌, σ 2I2LT ) and is
a function of the real deterministic unknown parameter
vector ε given by ε = [ε′T σ 2

]
T in which the noise power

σ 2 is an unknown and unwanted (nuisance) parameter
and

ε′
=

θ T ψT φT ρT aT

T
(7)

where a = [a1 · · · aM ]
T , ρ = [ρ1 · · · ρM ]

T , φ = [φ(1)T · · ·

φ(T )T ]T withφ(t) = [φ1(t) · · ·φM(t)]T, ψ = [ψ1 · · ·ψM ]
T ,

θ = [θ1 · · · θM ]
T , are the parameters of interest.

A fundamental result (e.g. [36,37,24]) is the following.
Let E


(ε̂ − ε)(ε̂ − ε)T


be the covariance matrix of an

(locally) unbiased estimate of ε, denoted by ε̂ and define
the deterministic Cramér–Rao Bound (CRB) dedicated
to the COLD-ULA, denoted by CRB(COLD). The covariance
inequality principle states that under quite general/
weak conditions, we have MSE([ε̂]i) = E{([ε̂]i − [ε]i)

2
} ≥

CRB(COLD)([ε]i), for i ∈ [1 : (T+4)M+1]. More specifically,
the deterministic CRB wrt. the signal parameters, ε′, is
given by

CRB(COLD)([ε′
]i) =

σ 2

2


F−1
ε′ε′


ii , for i ∈ [1 : (T + 4)M] (8)
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and

Fε′ε′ =



Jθθ Jθψ Jθφ Jθρ Jθa

J Tθψ Jψψ Jψφ Jψρ Jψa

J Tθφ J Tψφ Jφφ Jφρ Jφa

J Tθρ J Tψφ J Tφρ Jρρ Jρa

J Tθa J Tψa J Tφa J Tρa Jaa


(9)

is the (M(T + 4))× (M(T + 4)) Fisher Information Matrix
(FIM) wrt. the signal parameter ε′. In addition, in (9) we
have defined each block of the FIM by

[Jpq]ij = ℜ



∂ x̌
∂[p]i

H
∂ x̌
∂[q]j

 (10)

with (.)H being the conjugate-transpose operator, ℜ{.}
being the real part of a complex number and x̌ is the noise-
freemodel introduced in expression (5). Note that to obtain
(8), we have exploited the well-known property that the
signal and the nuisance (noise variance) parameters are
decoupled. So, the CRB for the i-th signal parameter,
denoted by [ε′

]i, is given by the (i, i)-th term of the inverse
of the FIM weighed by σ 2/2. Note that in the case of the
deterministic CRB,weneed to inverse a FIMof size growing
with T . So for large T , this operation may have a high
computational cost.

4. Closed-form expressions of the Asymptotic CRB
(ACRB) for the COLD-ULA

4.1. Definition of the Asymptotic CRB (ACRB)

In this paper, term ‘‘asymptotic’’ refers to the determin-
istic CRB considered for a large number of sensors,3 i.e.,
L ≫ 1. In this case, we define the Asymptotic CRB for a
COLD-ULA according to

ACRB(COLD)(ε′)
def
=

CRB(COLD)(ε′) subject to L ≫ 1


where CRB(COLD)(ε′) is the CRB defined in (8)–(10). As the
ACRB(COLD) is essentially a CRB, this bound also satisfies
the covariance inequality principle subject to L ≫ 1. Note
that this assumption seems severe but we will show in
the simulation part that this constraint can be relaxed in
practice.

4.2. Derivation of the lower bound

In Appendix A, we have reported the partial derivatives
wrt. the model parameters of the vectorized noise-free
model.

4.2.1. Example of the derivation of two blocks of the FIM
We first derive the M × M block of the FIM regarding

the direction parameter defined by

3 In other works, as for instance in [26], term ‘‘asymptotic’’ refers to the
analysis of the CRB in the large Signal to Noise Ratio regime.
Jθθ =

 Jθ1θ1 · · · Jθ1θM
...

...
JθM θ1 · · · JθM θM

 (11)

where the (m, k)-th entry of the above matrix is

Jθmθk =
4π2d2

λ2
cos(θm) cos(θk)

×

T
t=1

ℜ{d ′

m
H
(IL ⊗ (α∗

m(t)u
H
m))(IL ⊗ (αm(t)um))d ′

m}

+

T
t=1

ℜ


2iπd
λ

cos(θm)d ′

m
H
(IL ⊗ (α∗

m(t)u
H
m))

×


IL ⊗


αk(t)

∂uk

∂θk


dk


+

T
t=1

ℜ


2iπd
λ

cos(θk)dH
m


IL ⊗


α∗

m(t)
∂um

∂θm

H
× (IL ⊗ (αk(t)uk))d ′

k


+

T
t=1

ℜ


dH
m


IL ⊗


α∗

m(t)
∂um

∂θm


×


IL ⊗


αk(t)

∂uk

∂θk


dk


=

4Tπ2d2 cos(θm) cos(θk)
λ2

ℜ

⟨d ′

m, d
′

k⟩r̂mk⟨um, uk⟩


+
2Tπd cos(θm)

λ
ℜ


i⟨d ′

m, dk⟩r̂mk


um,

∂uk

∂θk


(12)

+
2Tπd cos(θk)

λ
ℜ


i⟨dm, d ′

k⟩r̂mk


∂um

∂θm
, uk


+ Tℜ


⟨dm, dk⟩r̂mk


∂um

∂θm
,
∂uk

∂θk


(13)

=
4Tπ2d2 cos(θm) cos(θk)

λ2
ℜ

⟨d ′

m, d
′

k⟩r̂mk⟨um, uk⟩


in which (.)∗ stands for the conjugate,

d ′

m =


0 e

2iπd
λ

sin(θm) 2e
4iπd
λ

sin(θm) · · · (L − 1)e
2iπd(L−1)

λ
sin(θm)

T
and r̂mk =

1
T

T
t=1 α

∗
m(t)αk(t) =

amak
T

T
t=1 e

i(φk(t)−φm(t))

is the sample correlation coefficient of the sources. In the
above expression,we used P1., ∂uk

∂θk
= 0. Now, consider that

we dispose of a large number of sensors i.e., L ≫ 1, we
have [24,38]:

1
L3

⟨d ′

k, d
′

m⟩
L≫1
−→

1
3
δk−m,

1
L2

⟨d ′

k, dm⟩
L≫1
−→

1
2
δk−m,

1
L
⟨dk, dm⟩

L≫1
−→ δk−m

where δk−m is the Kronecker symbol defined by δk−m = 1
for k = m and zero otherwise. In this scenario, expression
(13) can be simplified to

Jθmθk
L≫1
−→

4Td2π2 cos2(θm)
λ2

L3

3
ℜ

r̂mk⟨um, uk⟩


δk−m. (14)
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We can see that Jθθ is a diagonal matrix. So, for m = k,
the sample correlation coefficient is r̂mm = a2m and ∥um∥

2

= 1 (see P2.). As a consequence, (14) becomes

Jθθ
L≫1
−→

4π2Td2L3

3λ2
1222 (15)

where 2 = diag{cos(θ1), . . . , cos(θM)} and 1 = diag{a1,
. . . , aM}. Remark that the sources can be correlated and
the number of snapshots does not need to be large. Next
we derive the block expressions of the FIM for the time-
varying phase of the source. First, we have

Jφm(t)φk(t ′)

=


0 for t ≠ t ′,
amakℜ{ei(φk(t)−φm(t))⟨dm, dk⟩⟨um, uk⟩} otherwise.

Note that, the time-diversity of the model implies that
Jφφ is block-diagonal. This property is true for any L. In the
asymptotic regime (L ≫ 1), each of these blocks becomes
diagonal since

Jφm(t)φk(t ′)
L≫1
−→

La2m for t = t ′ and m = k,
0 for t = t ′ and k ≠ m,
0 for t ≠ t ′,

and thus

Jφ(t)φ(t ′) =

 Jφ1(t)φ1(t ′) · · · JφM (t)φM (t ′)
...

...
JφM (t)φ1(t ′) · · · JφM (t)φM (t ′)


M×M

L≫1
−→


L12, for t = t ′,
0, otherwise.

Using the above expressions, we obtain

Jφφ =

Jφ(1)φ(1) · · · Jφ(1)φ(T )
...

...
Jφ(T )φ(1) · · · Jφ(T )φ(T )


(TM)×(TM)

L≫1
−→ L (IT ⊗ 12).
4.2.2. Final expressions of the other blocks of the FIM
Using a similar method as in the previous section and

after some tedious derivations, we obtain

Jθψ
L≫1
−→


−iTπdL2

λ


122DHDψ ,

Jθφ
L≫1
−→


πdL2

λ

 
122 · · · 122


M×(TM) ,

(16)

Jψψ
L≫1
−→ (TL)12DH

ψDψ ,

Jψφ
L≫1
−→ (L i)


12DH

ψD · · · 12DH
ψD


,

(17)

Jaa
L≫1
−→ (TL)IM , Jρρ

L≫1
−→ (TL)12. (18)

To obtain the above expressions, we used P2. and
P3. (∥um∥

2
= ∥∂um/∂ρm∥

2
= 1) and introduced the two

block-diagonal matrices:D = Bdiag{u1, . . . , uM} andDψ

= Bdiag{ ∂u1
∂ψ1
, . . . ,

∂uM
∂ψM

}. In addition, we have Jρa = Jθρ =

0M×M and Jφρ = 0(TM)×M , using P4., i.e., ⟨um, ∂um/∂ρm⟩

= 0 and Jθa, Jψρ, Jψa
L≫1
−→ 0M×M and Jφa

L≫1
−→ 0(TM)×M .

Since all these quantities are asymptotically pure imagi-
nary complex, they vanish by considering the real part in
definition (10).

4.2.3. Block-diagonal FIM
Finally, using the results given in the two previous

paragraphs, the FIM is asymptotically block-diagonal and
has the following particular structure

Fε′ε′

L≫1
−→ L


A 0
0 Ā


(19)

where the north-west block of size (M(T+2))×(M(T+2))
is given by the sparse band matrix given in Box I.

The south-west block of size (2M)× (2M) is the
following diagonal matrix:

Ā = T

12 0
0 IM


.

0)
A = V5V (2

where

555 =



4Tπ2d2L2

3λ2
2222


−iTπdL
λ


222DHDψ


πdL
λ


222 . . .


πdL
λ


222

 iTπdL
λ


222DH

ψD TDH
ψDψ iDH

ψD . . . iDH
ψD


πdL
λ


222 −iDHDψ IM 0

...
...

. . .
πdL
λ


222 −iDHDψ 0 IM


and

V = IT+2 ⊗ 1.

Box I.
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It is worth noting that considering large L implies a
strongly structured FIM.

4.2.4. Analytic inverse of the FIM and closed-form expressions
of the ACRB

Considering the remarkable block-structure of the FIM
in (19), finding an analytic inverse of the FIM is equivalent
to finding the analytic expressions of A−1 and Ā−1. An
analytic inverse of the factorized matrix (20) can be easily
obtained. Indeed, we have A−1

= V−15−1V−1 where
V−1

= IT+2 ⊗ 1−1. Before calculating the inverse of FIM,
it is necessary to analyze the non-singularity of A, by
calculating its determinant. Applying in expression (20)
the fact that the determinant of the product is the product
of the determinants, we must verify that

det{A} = det{5} det{V }
2

= det{5}

M
m=1

a2(T+2)
m ≠ 0. (21)

As we assumed that am ≠ 0, we have to show that
5 is nonsingular. Let define the following partition 555 =
55511 55512

555H
12 55522


where 522 = IMT . The definition of the

other blocks can be easily deduced. Using a well-known
expression of the determinant of a block matrix, we obtain

det{5} = det{522} det{Q } (22)

where Q is the (2M) × (2M) Schur complement [39,40]
defined by

Q = 511 − 5125
−1
22 5H

12 (23)

such that5−1
=


Q−1

×

× ×


. Note thatmatrix522 is a non-

singular matrix (det{522} = 1), so relation (23) is well de-
fined. Consequently, relation (22) becomes

det{5} = det{Q }. (24)

Following definition (23), a simple derivation of the
Schur complement leads to the following diagonal matrix:

Q = T

π2L2d2

3λ2
22 0

0 DH
ψP ⊥

DDψ

 (25)

where P ⊥

D = Bdiag{P ⊥

1 , . . . ,P
⊥

M}, with P ⊥

m = I2 −umuH
m

a rank-1 orthogonal projector onto the linear subspace

⟨um⟩
⊥ andDH

ψP ⊥

DDψ = diag
P ⊥

1
∂u1
∂ψ1

2, . . . , P ⊥

M
∂uM
∂ψM

2.
Now, remark

P ⊥

m
∂um
∂ψm

2 =

 ∂um∂ψm

2− ⟨ ∂um∂ψm
, um⟩

2 provides
a direct link to the largest canonical principal angle [41,42],
Ψm, between the two one-dimensional linear spaces ⟨um⟩

and ⟨
∂um
∂ψm

⟩ defined by

sin2(Ψm) = 1 −

 ∂um∂ψm
, um

2 ∂um∂ψm

2 . (26)

Using P5. and P6., we have
⟨ ∂um∂ψm

, um⟩

 =

 ∂um∂ψm

2 =

sin2(ρm). Thus, an interesting characterization of the
largest canonical angle can be obtained by rewriting
expression (26) according to

sin2(Ψm) = 1 −
sin4(ρm)

sin2(ρm)
= cos2(ρm). (27)

As Ψm, ρm ∈ [0, π/2] and based on the above relation,
we have

Ψm = π/2 − ρm. (28)

Thus, the largest canonical angle is completely charac-
terized by the polarization parameter ρm. Finally, we have

DH
ψP ⊥

DDψ = R292 (29)

where R = diag{sin(ρ1), . . . , sin(ρM)} and 9 = diag{sin
(Ψ1), . . . , sin(ΨM)} = diag{cos(ρ1), . . . , cos(ρM)}. Using
the diagonal structure of the Schur complement, the
determinant of matrix 5 using expression (24) is given by

det{Q } ∝ det{22
} det{R292

}

∝

M
m=1

cos2(θm) sin2(ρm) cos2(ρm) (30)

where symbol ∝ means proportional to. Thus, to verify
det{Q } ≠ 0, the following three conditions must be satis-
fied:

1. θm ≠ π/2. This means (see Fig. 1) that the sources
must not have DOAs perpendicular to the array. Such a
source would produce a zero phase-shift between any
two COLD pairs, its DOA being thus unobservable by the
array.

2. ρm ≠ 0 (i.e., Ψm ≠ π/2). This means (see Section 2
and Fig. 2) that linear horizontal polarizations are not
allowed. Such a polarizationwould excite only the loops
of the COLD array, and would be impossible to observe
by the dipoles.

3. ρm ≠ π/2 (i.e., Ψm ≠ 0). This means (see Section 2 and
Fig. 2) that linear vertical polarizations are not allowed,
either. Such a polarizationwould excite only the dipoles
of the COLD array, and would be impossible to observe
by the loops.

All the cases enumerated abovewould induce a FIMmatrix
that is singular. Adding the assumption that am ≠ 0,we can
conclude that under the above four conditions, the inverse
of matrix A is given by Eq. (31) in Box II, thanks to the well-
known geometric equality sin(2ρm) = 2 sin(ρm) cos(ρm).
Considering the diagonal terms of the above matrix up to
σ 2/(2L), we obtain:

ACRB(COLD)(θm) =
3σ 2

2TL3a2m

λ2

π2d2 cos2(θm)
, (32)

ACRB(COLD)(ψm) =
2σ 2

TLa2m

1
sin2(2ρm)

. (33)

It remains to derive the ACRB(COLD) for the polarization
parameters {ρ1, , . . . , ρM}. Firstly remark that Ā is nonsin-
gular if det{Ā} ∝

M
m=1 a

2
m ≠ 0. As, we have assumed
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1)
A−1
=

1
T



3λ2

π2L2d2
222−2111−2

× × × ×

×
4

sin2(2ρ1)
111−2 0 ×

×
. . . ×

× 0 4
sin2(2ρM )

111−2
×

× × × × ×


(3

Box II.
that the real amplitudes are non-zeros, this condition is al-
ways verified. The inverse the north-west block of Ā is sim-
ply 1

T 1−2. Considering the diagonal terms up to σ 2/(2L)
(see (8) and (19)), we finally find:

ACRB(COLD)(ρm) =
σ 2

2TLa2m
. (34)

5. Analysis of the ACRB for COLD-ULA

5.1. Remarks and properties

1. The ACRB(COLD) regarding the direction parameter is
anisotropic since theACRB(COLD)(θm)depends of θm. This
is also true and well-known for the uniformly polarized
ULA [43].

2. The ACRB(COLD)(θm) is not a function of the polarization
parameters. The intuitive reason for that is the fact
that the magnetic loops are insensitive to the source
azimuth angles. As the sources are all localized in the
azimuthal plane, the polarization vector um in (3) and
the localization parameter θm are fully decoupled.

However, for elevation angles different from π/2,
this result does not hold anymore. A formal proof for
that is not straightforward since the analytic CRB for all
elevation-DOAs is arduous to derive.

3. The ACRB(COLD)(ψm) is a function of the polarization
parameter ρm. The inverse is not true.

4. The ACRB(COLD)(ψm) is sensitive to the geometry of the
polarization state vector and its derivative with re-
spect to parameterψm. The lowest value that the bound
ACRB(COLD)(ψm) can reach is 2σ 2

TLa2m
for ρm = π/4. This

means [33] that the polarization ellipse orientation an-
gle β =

π
4 or the ellipticity α =

π
4 (circular polariza-

tion). Both cases imply that the dipoles and the loops
are equally excited by the impinging source. The worst
performance scenario corresponds to ρm = 0 (linear
horizontal polarization) or ρm =

π
2 (linear vertical

polarization), in which cases only the loops or only
the dipoles, respectively, are excited by the impinging
wave.
However, even in the favorable case, the polarization
parameter ρm is better estimated than the polarization
parameter ψm as ACRB(COLD)(ψm) > ACRB(COLD)(ρm),
regardless of the parameter values (see (33) and (34)).

5. All the bounds are function of the inverse of the local
Signal to Noise Ratio (a2m/σ

2).
6. The ACRB(COLD) for the localization parameter is in
O(1/L3) while the ACRB(COLD) for the polarization pa-
rameters are simply in O(1/L). This means that the
estimation of the DOAs is much more sensitive to the
number of sensors than the estimation of the polariza-
tion parameters.

5.2. The known polarization state vector case

Consider the bound, denoted by ACRB(COLD)(θm|ψ, ρ),
where we assume that the polarization state is known.
Considering a known polarization state implies that the
polarization parameters in vector ε′ are removed according
to ε′′

= Pε′ with P a convenient (M(T + 2))× (M(T + 4))
selection matrix. This produces a reduced-size FIM, Fε′′ε′′ ,
which shares the same block-structure as Fε′ε′ . Focusing
only on block A, there exists a selection matrix P0 of size
(M(T +1))× (M(T +2)), extracted from the larger matrix
P , such as

A0
def
= P0APT

0 = (IT+1 ⊗ 1)50(IT+1 ⊗ 1)

where 50 can be easily deduced. The key point is that
the (2M) × (2M) Schur complement derived for matrix
5 in expression (25) can be linked to the M × M Schur
complement of 50 according to Q−1

=


Q̄−1

×

× ×


. Thus,

compared to expression (25), we have Q̄−1
=

3λ2

π2TL2d2
2−2

and thus

ACRB(COLD)(θm|ψ, ρ) = ACRB(COLD)(θm).

The result is somewhat unexpected and means that the
estimation accuracy of the localization parameter is the
same, regardless the knowledge of the polarization state.

5.3. Localizationwith a COLD-ULA compared to the uniformly
polarized ULA

Denote by ACRB(θm) the ACRB for a uniformly polar-
ized ULA, derived in Appendix B. The number of unknown
model parameters (direction parameter, amplitude and
phase of the source) in the ACRB(θm) is M(T + 2) while
the number of the unknown model parameters in the
ACRB(COLD)(θm) is higher (equal to M(T + 4)). Therefore,
a direct comparison between these two bounds is un-
fair. However, if we consider the case (studied in the pre-
vious subsection) of a COLD-ULA where the polarization
parameters are known, then the two bounds, ACRB(θm)
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and ACRB(COLD)(θm|ψ, ρ), have the same number of un-
known parameters. Comparing expressions (32) and (B.4),
we can readily check that

ACRB(COLD)(θm) = ACRB(θm).

This means that with a COLD-ULA, more model parame-
ters can be estimated thanwith a uniformly polarized ULA,
without degrading the estimation accuracy of the localiza-
tion parameter.

5.4. The case of known complex sources

In this section, we study the ACRB(COLD) when the
complex sources in model (3) are a priori known. This
scenario is relevant for some particular applications. For
instance, in wireless communications the complex sources
are perfectly known at the receiver in case of using a set
of training sequences (see [44,45] for instance). Thus, the
complex sources are no longer desired parameters and we
define the unknown model parameters by

ε′′′ def
= [θ T , ψT , ρT

]
T .

We denote by ACRB(COLD)(ε′′′
|φ, a) the ACRB for a

COLD-ULA array when vectors φ of initial phases and
a of real amplitudes are a priori known. We have
ACRB(COLD)(ε′′′

|φ, a) =
σ 2

2 F−1
ϵ′′′ϵ′′′

where Fϵ′′′ϵ′′′ is the new
FIMwith respect to vector ε′′′. There exists a (3M)×(M(T+

4)) selection matrix W such that ε′′′
= Wε′, where ε′

was defined in (7). Thus, matrix W removes from ε′ the
known parameters (real amplitudes and initial phases). In
this case, we have

Fϵϵϵ′′′ϵϵϵ′′′ = WFϵϵϵ′ϵϵϵ′W T

= LT


4π2d2L2

3λ2
11122222


πdL
λ


1112222R2 0

πdL
λ


1112222R2 1112R2 0

0 0 1112

 (35)

since DHDψ = iR2 and DH
ψDψ = R2.

5.4.1. The direction parameter
The Schur complement of the above matrix is given by

Q =
π2L3d2T

3λ2
1222(I + 392). A simple derivation yields

ACRB(COLD)(θm|φ, a) = Gm ACRB(COLD)(θm)

where Gm =
1

1+3 cos2(ρm)
. As ρm ∈ (0, π/2), we have Gm ≤

1 (see Fig. 3) and therefore

ACRB(COLD)(θm|φ, a) ≤ ACRB(COLD)(θm).

As intuitively expected, integrating prior-knowledge on
the sources can decrease the ACRB(COLD)(θm). We can say
that according to Fig. 3, if parameter ρm is close toπ/2 (the
polarization is close to linear vertical), the ACRB(COLD)(θm)
is close to the ACRB(COLD)(θm|φ, a) and thus the accuracy
estimation for the direction parameter is weakly improved
in the case of known sources. Inversely, for polarizations
Fig. 3. Ratio Gm and expression (38) Vs. parameter ρm .

close to linear horizontal, i.e. ρm close to zero, the accuracy
estimation for the DOA parameter can be considerably
improved by taking into account information on the source
signals.

5.4.2. The polarization parameters
The (2, 2)-th block of the inverse of the FIM provides

the bound for the parameter ψ according to

ACRB(COLD)(ψ |φ, a)

=
σ 2

2TL


1−2R−2

+ 3(I + 1−2(I + 39)−1)


(36)

or equivalently for them-th parameter,

ACRB(COLD)(ψm|φ, a)

=
σ 2

2TLa2m sin2(ρm)


1 +

3 sin2(ρm)

1 + 3 cos2(ρm)


=

2σ 2Gm

TLa2m sin2(ρm)
. (37)

It comes the following interesting relation

ACRB(COLD)(ψm|φ, a)

ACRB(COLD)(ψm)
= 4 cos2(ρm)Gm. (38)

According to Fig. 3, we have

ACRB(COLD)(ψm|φ, a) ≤ ACRB(COLD)(ψm).

Here again, integrating the prior-knowledge of the
sources can decrease the ACRB(COLD). We can say that
according to Fig. 3, if the polarization is close to linear
horizontal (ρm is close to zero), the ACRB(COLD)(ψm) is close
to the ACRB(COLD)(ψm|φ, a). On the contrary, for values of
ρm close to π

2 (polarization close to linear vertical), the
prior-knowledge of the sources allows to better estimate
parameter ψm.

Regarding the polarization parameter ρm, we have

ACRB(COLD)(ρm|φ, a) = ACRB(COLD)(ρm).
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6. Numerical analysis of the bound

Weconsider a COLD-ULAwith L = 13 sensorswithhalf-
wavelength inter-spacing sensors. Two narrowband far-
field sources (M = 2) are located according to θ1 = −70°
and θ2 = 10° with unit real amplitudes (a1 = a2 = 1).
The polarization state is parametrized by ρ1 = 60°, ρ2 =

15°, ψ1 = 5° and ψ2 = 15°.

6.1. Relative Squared Error

The CRB(COLD) is computed for the direction and polar-
ization parameters by a numerical evaluation and inver-
sion of the FIM and compared to the proposed ACRB(COLD).
On Fig. 4(a), we have drawn the Relative Squared Error
(RSE) defined by

RSE(θ1) =
|CRB(COLD)(θ1)− ACRB(COLD)(θ1)|2

|CRB(COLD)(θ1)|2

for the direction parameter θ1, for T = 100 snapshots
and for a fixed noise variance (σ 2

= 1). The RSE(ψ1) and
RSE(ρ1) are accordingly introduced and drawn in Fig. 4(b)
and (c), respectively. The RSE has a nice property given by
0 < RSE(.) < 1.

This can be shown by noting that ACRB(COLD)(.) > 0,
thus CRB(COLD)(.) − ACRB(COLD)(.) < CRB(COLD)(.). Consid-
ering the squared absolute value, one gets
|CRB(COLD)(.)− ACRB(COLD)(.)|2 < |CRB(COLD)(.)|2.

Thismeans that the approximation error by considering
the ACRB(COLD) wrt. the CRB(COLD) is higher bounded by the
CRB(COLD), itself. It is well-known that at high SNR and for
not too closely-spaced sources, the CRB(COLD) takes a small
value. This means that the approximation error is small.

According to Fig. 4(b) and (c), we can see that the
decrease of the RSE with respect to the number of sensors
for the direction and polarization parameters is given by
RSE(θ1), RSE(ψ1), RSE(ρ1) ∼ O(1/L4).

In addition, we can also note that even for a small of
number of sensors, as for instance 13 sensors, the RSE is
small since RSE(θ1) ≈ 10−3, RSE(ψ1) ≈ 10−4 and RSE(ρ1)
≈ 10−4. From a practical point of view, this means that the
asymptotic assumption is not severe and the asymptotic
regime is rapidly reached for sufficiently spaced sources.
Remark that a similar observation has been done in [30].
According to Fig. 5, we can see that even for a moderate
number of sensors, all the ACRB(COLD) are very close
to their corresponding CRB(COLD), for sufficiently spaced
sources. We can verify that the ACRB(COLD) for the direction
parameter is identical to the ACRB(COLD) for the same
parameter with known polarization state (see Section 5.2).
We also verify the result derived in Section 5.4 for the case
where the complex sources are known.

It is also interesting to plot (see Fig. 6(a)) the RSE wrt.
the proximity of the sources. We can see that the RSE is
maximal (close to one) if the sources are very close. In this
scenario, the ACRB(COLD) is not a consistent approximation
of the CRB(COLD). Nevertheless, if the constraint of proximity
of the sources is relaxed, the ACRB(COLD) becomes a valid
approximation of the CRB(COLD) (see Fig. 6(b)).
Fig. 4. RSE Vs. the number of sensors for (a) the direction parameter θ1 ,
(b) the angle ψ1 and (c) the angle ρ1 with T = 100 snapshots (σ 2

= 1).

6.2. Asymptotic numerical diagonality of the block of the FIM
regarding the direction parameter

Consider on Fig. 7, an error metric relatively to the
diagonal term of Jθθ defined by

Emk(L) = (|Jθmθk − Jθmθk |
2)/|Jθmθm |

2

where Jθmθk
L≫1
−→ Jθmθk . For m ≠ k (resp. m = k), we

consider the error on the off-diagonal (resp. diagonal)
terms relatively to the diagonal ones for matrix Jθθ .
Thus, this metric characterizes the ‘‘asymptotic numerical
diagonality’’ of Jθθ . This metric decreases in O(1/L2) and
is small even for a small/moderate number of sensors
(see Fig. 7). For instance, consider 13 sensors, Emk(L) =

|Jθmθk |
2/|Jθmθm |

2
≈ 6 · 10−3 meaning that the off-diagonal

terms are strongly dominated by the diagonal ones. For the
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Fig. 5. Estimation accuracy for the COLD array in log-scale Vs. the noise
variance with T = 50 snapshots.

same number of sensors, we have Emm(L) ≈ 10−2 which is
also relatively small. From a practical point of view, this
means that the asymptotic assumption can be relaxed.

7. Conclusion

In this work, we have studied the performance of the
estimation of the direction and polarization parameters for
a COLD-ULA in the case where the sources are all localized
in the azimuthal plane. Toward this end, we have derived
closed-form (nonmatrix) expressions of the deterministic
CRB under the assumption that the number of sensors is
sufficiently large. We show that this assumption is not
severe in practice and the closed-form expressions are
accurate for a number of sensors slightly higher than ten
when the sources are widely-spaced. As a by product, it
Fig. 6. (a) RSE for several number of sensors wrt. the proximity of the
sources, (b) CRB(COLD)(θ1) and ACRB(COLD)(θ1) for θ1 = 30° and θ1 = 35°
for L = 35.

Fig. 7. Relative error of the diagonal and off-diagonal terms of matrix Jθθ
with T = 100 snapshots.



306 R. Boyer, S. Miron / Physical Communication 5 (2012) 296–307
results a very cheap way to compute the deterministic
CRB while the brute force computation of this lower
bound needs to inverse a large FIM for T ≫ 1. The main
contribution of this work is the analysis of the proposed
bound. More precisely, we prove that the accuracy of the
direction parameter estimation is not affectedwhether the
polarization state vector is known or not. This allows a
fair comparison between the ACRB for a COLD-ULA and
for an uniformly polarized ULA, since these two bounds
have the same number of unknown model parameters.
Finally, we show that with a COLD-ULA, more model
parameters can be estimated than with the uniformly
polarized ULA, without degrading the estimation accuracy
of localization parameter. We also quantify precisely the
interest of considering known complex sources, as it is
sometimes the case in some applications as for instance in
wireless communications.

Appendix A. Partial derivative vectors of themodelwrt.
the model parameters

We use intensively the first partial derivative of the
model wrt. the model parameters. We provide these
expressions in this Appendix:

∂ x̌
∂θm

=
2iπd
λ

cos(θm)


(IL ⊗ (αm(1)um)) d ′

m
...

(IL ⊗ (αm(T )um)) d ′

m

 ,

∂ x̌
∂ψm

=




IL ⊗


αm(1)

∂um

∂ψm


dm

...
IL ⊗


αm(T )

∂um

∂ψm


dm

 ,

∂ x̌
∂φm(t)

= i



0
...

0
(IL ⊗ (αm(t)um)) dm

0
...

0


,

∂ x̌
∂ρm

=




IL ⊗


αm(1)

∂um

∂ρm


dm

...
IL ⊗


αm(T )

∂um

∂ρm


dm

 ,

∂ x̌
∂am

=



IL ⊗ (ei(2π f0+φm(1))um)


dm

...
IL ⊗ (ei(2π f0T+φm(T ))um)


dm

 .
Appendix B. Derivation of the ACRB for an uniformly
polarized ULA with multiple snapshots

The model parameters are collected in the following
((T + 2)M)× 1 vector:

ε′′
=

θ T φT aT

T
.

The FIM for an ULA is given by

F̄ε′′ε′′

L≫1
−→ L


B 0
0 T IM


(B.1)

where

B =



4π2d2TL2

3λ2
22221112 πdL

λ
1112222 . . . πdL

λ
1112222

πdL
λ
1112222 1112 0
...

. . .

πdL
λ
1112222 0 1112


. (B.2)

The inverse of the Schur complement [40,39] associated
with matrix B is given by

Q̃−1
=

3λ2

π2d2TL2
2−21−2 (B.3)

with B−1
=


Q̃−1

×

× ×


. Considering the diagonal terms of

the above expression up to σ 2/(2L), we obtain

ACRB(θm) =
3σ 2

2TL3a2m

λ2

π2d2 cos2(θm)
. (B.4)
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