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ABSTRACT
In this paper, we introduce a sparse direction-of-arrival
(DOA) estimation algorithm for sensor arrays presenting
multiple scales of spatial invariance. We exploit the Khatri-
Rao structure of the over-complete steering vector dictionary,
corresponding to this array geometry, in order to devise a
computationally efficient sparse estimation approach. This
approach is based on an iterative refinement and pruning
strategy of the dictionary. We show, in numerical simula-
tions, that our approach outperforms the state-of-the-art ap-
proach based on a Candecomp/Parafac (CP) decomposition,
proposed by Miron et al. in 2015.

Index Terms— Multidimensional signal processing,
direction-of-arrival estimation, Khatri-Rao dictionary, multi-
invariance array, sparse estimation.

I. INTRODUCTION

Large-aperture sensor arrays is a hot topic in array pro-
cessing, as more and more domains (telecommunications,
radar, astronomy, etc.) are using them lately. For example,
the Murchison Wide-field Array (MWA) is a radio-telescope
composed of more than 3 000 antennas, spread over more
than 3 km2 in the Australian desert. MWA is capable
of enhancing the angular resolution to about 2 arcmin.
The data flow produced by this type of radio telescope
approaches the GB/s, representing a major challenge for the
processing algorithms. A particular type of large-aperture
array, presenting multiple spatial scale invariance, i.e., a
multi-scale array, was introduced by Miron et al. in [1];
an efficient Candecomp/Parafac (CP) based algorithm for
direction-of-arrival (DOA) estimation with such an array was
also proposed in [1]. In this paper we propose an alterna-
tive solution for DOA estimation with a multi-scale array,
based on a sparse estimation approach. In an earlier work,
Malioutov et al. [2] showed that the DOA estimation can be
formulated as a sparse estimation problem, by discretizing
the DOA domain. Our approach is based on the same idea;
the novelty is the exploitation of the Khatri-Rao structure
of the over-complete dictionary of steering vectors, specific

to the multiple spatial scale invariance array, in order to
propose a computationally efficient algorithm. In Section II,
we briefly present the structure of a multi-scale sensor array,
as introduced in [1], as well as the associated data model.
In Section III we introduce the principle of sparse DOA
estimation and the properties of the Khatri-Rao dictionary.
The proposed KR-SOLS algorithm is described in section IV
and his performances are studied on numerical simulations
in section V. Finally, some conclusions are drawn in section
VI.

II. THE MULTIPLE SPATIAL SCALE INVARIANCE
SENSOR ARRAY

Consider a level-1 sensor array composed of L1 isotropic,
identical sensors, indexed by l1 = 1 , ...,L1. By arbitrary,
but known translations, we replicate this array L2 times in
space. The newly obtained sensor array is said of “level-2”,
and comprises L2 level-1 subarrays. This operation can be
repeated as many times as necessary, in order to generate
N scale levels. Fig. 1 illustrates such an array with 3 levels
and a regular geometric structure; this sensor array will be
used in the simulations of section V.
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Fig. 1. Multi-scale sensor array with 3 levels.



In the Cartesian system OXY Z associated with this array,
the DOA of a source impinging on the array is given by
[1] the angles θ ∈ [0,π] (elevation), measured from the
positive Z-axis, and ϕ ∈ [0,2π] (azimuth), measured from
the positive X-axis, or equivalently, by the unit-norm vector
k = [u v w]T , where u, v,w are the direction-cosines.
Denote by d(n)ln

the spatial displacement of the lthn subarray
of level-n with respect to the first one. Under the narrow
band assumption, the array manifold a(k), is a vector of
size (L × 1), with L = L1 ⋅ . . . ⋅LN , given by:

a(k) = a1(k)⊗ . . .⊗ aN(k). (1)

In eq. (1), an(k) = [ej(2π/λ)kTd(n)1 , . . . , ej(2π/λ)kTd(n)Ln ]T is
the array manifold of size (Ln × 1) corresponding to the
nth scale level, and “⊗” symbolizes the Kronecker product.
Consider P sources impinging on the array with distinct
DOAs and K time snapshots of the array. Denote An =[an(k1) . . . an(kP )] the (Ln × P ) matrix having on its
columns the level-n steering vectors for the P sources, and
S, of size (K×P ), the matrix containing on its columns the
time sequences of the P sources. Then, the data recorded
on the array can be expressed as the (L ×K) matrix:

Z = (A1 ⊙ . . .⊙AN)ST +N, (2)

where N is the noise matrix and “⊙” symbolizes the Khatri-
Rao product of two matrices, i.e. the Kronecker product
column-wise. Eq. (2) expresses a CP model of the data; a
multilinear DOA estimation approach based on this model
was proposed in [1].

III. SPARSE DOA ESTIMATION WITH A
KHATRI-RAO DICTIONNARY

III-A. Simultaneous sparse approximation for DOA es-
timation

It was shown [2], [3] that the DOA estimation problem
can be reformulated as a simultaneous sparse approximation
problem:

min
X
∥Z −ΦXT ∥2 s.t. ∥X∥2,0 = P, (3)

where ∥X∥2,0 represents the number of active columns in X
(which correspond to the columns of S), and Φ is the dictio-
nary containing the atoms (steering vectors) obtained by the
discretization of the DOA angles θ and ϕ. Thus, the DOA
estimation problem can be recasted as a problem of finding
active atoms in an over-complete dictionary. In this work
we use the simultaneous greedy-like sparse algorithm called
SOLS (Simultaneous Orthogonal Least Squares) [4], to solve
the problem in (3). Although the principle of the method is
quite simple, the algorithm implementation poses a certain
number of problems. Consider Nθ values of θ and Nϕ values
of ϕ; then the dictionary Φ has M = Nθ ⋅ Nϕ atoms. Φ
is constructed in the same manner as the steering vector
matrix i.e. Φ = [φ1,⋯,φM ], with φm = φ1,m ⊙⋯⊙φN,m

and φn,m = [ej(2π/λ)kT
md(n)1 , . . . , ej(2π/λ)kT

md(n)Ln ]T , where
m = 1,⋯,M and n = 1,⋯,N . To achieve a high DOA
resolution, it is necessary to use a small discretization step
of the angles θ and ϕ, i.e., large values of Nϕ and Nθ. In
this case, the size M of the dictionary grows dramatically
and consequently the computational burden.

Besides the computational aspect, the discretization step
has also an impact on the accuracy of the sparse estimation
algorithm, via the dictionary coherence. For a dictionary Φ,
if its columns φm(m = 1,⋯,M) have unit norm, the dic-
tionary coherence is defined as µ(Φ) = max

i≠j ∣ < φi,φj > ∣,
with 0 ≤ µ(Φ) ≤ 1. It is well-known (see e.g., [5]) that
the accuracy of the sparse estimation algorithms is linked
to the dictionary coherence; the smaller the coherence, the
better the performance. In our case, a small discretization
step implies a high dictionary coherence. We propose in
this paper an algorithmic strategy for efficiently handling
the computational burden and the dictionary coherence, by
exploiting the special properties of the Khatri-Rao dictionary
presented in the next subsection.

III-B. Khatri-Rao dictionary
The particular structure of a multi-scale sensor array leads

to a matrix of steering vectors presenting a Khatri-Rao
structure see (eq. (2)). This particular structure is also found
in the over-complete dictionary Φ, which can be written in
a similar way as:

Φ =Φ1 ⊙ . . .⊙ΦN , (4)

with Φn, (n = 1, . . . ,N), the dictionary corresponding to
the nth scale level. Over-complete dictionaries presenting a
Kronecker structure, i.e. Φ = Φ1 ⊗ . . . ⊗ΦN , have already
been studied in several papers. In [6], Jokar and Mehrmann
proved that the global coherence of such dictionaries is given
by µ(Φ) = max(µ(Φ1),⋯, µ(ΦN)). Hence, for Kronecker
dictionaries, the dictionary with the greatest coherence dom-
inates the global coherence. Going back to our Khatri-Rao
dictionary in eq. (4), the following result can be proven:

µ(Φ1) ≥ µ(Φ1 ⊙Φ2) ≥ ⋯ ≥ µ(Φ1 ⊙⋯⊙ΦN). (5)

Proof: Denote
Φn = [φn,1,⋯,φn,M ]. (6)

By definition:
µ(Φ1 ⊙Φ2) =max

i≠j ∣ < φ1,i ⊗φ2,i,φ1,j ⊗φ2,j > ∣. (7)

Yet, (see e.g in [6]),< φ1,i ⊗φ2,i,φ1,j ⊗φ2,j >=< φ1,i,φ1,j > ⋅ < φ2,i,φ2,j > .
(8)

We can deduce that

µ(Φ1 ⊙Φ2) =max
i≠j ∣ < φ1,i,φ1,j > ⋅ < φ2,i,φ2,j > ∣

≤max
i≠j ∣ < φ1,i,φ1,j > ∣ ⋅max

i≠j ∣ < φ2,i,φ2,j > ∣



= µ(Φ1) ⋅ µ(Φ2) (9)

In general

µ(Φ) ≤ N∏
n=1µ(Φn). (10)

As µ(Φn) ≤ 1 (n = 1,⋯,N) we have:

µ(Φ1) ≥ µ(Φ1) ⋅ µ(Φ2) ≥ ⋯ ≥ N∏
n=1µ(Φn), (11)

and using eq. (9) we obtain:

µ(Φ1) ≥ µ(Φ1⊙Φ2) ≥ ⋯ ≥ µ(Φ1⊙⋯⊙ΦN) = µ(Φ). ◻
(12)

Thus, for a given discretization step of the grid, the minimal
coherence achievable corresponds to the global dictionary Φ,
whereas the maximal coherence is obtained for the dictionary
Φ1.

IV. THE KR-SOLS ALGORITHM
In the light of the results of the previous section, one

can see that it is computationally inefficient to design a
sparse approach for DOA estimation with a multi-scale
sensor array, using the same discretization step for all the
N levels. Therefore, we propose hereafter, an algorithm that
incorporates every scale level iteratively; at iteration step n,
the data corresponding to the nth scale level is added to the
dataset and the discretization step is decreased, i.e., the grid
is further refined. From the acquired data Z, we build N
datasets, that can be expressed (using the Matlab notation)
as:

Z1 = Z(1 ∶ L1, ∶)
Z2 = Z(1 ∶ L1 ⋅L2, ∶)⋮
ZN = Z(1 ∶ L1 ⋅L2 ⋅ ⋯ ⋅LN , ∶) = Z. (13)

Each data matrix Zn (n = 1,⋯,N) contains the snapshots
of the subarrays from levels 1 to n. Accordingly, the sparse
estimation problem can be expressed for each dataset Zn as:

Zn = (Φ(n)1 ⊙ ⋅ ⋅ ⋅ ⊙Φ(n)n )XT , (14)

where Φ(i)j represents the dictionary for the jth scale level
with a discretization step corresponding to iteration i. In
order to efficiently solve the sparse problem in eq. (3),
we propose a dictionary adaptation strategy. This strategy
is composed, at each iteration, of two steps: a dictionary
refinement procedure and a pruning procedure. For the
dictionary refinement procedure we start by fixing the min-
imum grid step δmin, corresponding to the final dictionary
Φ = Φ(N)N = Φ(N)1 ⊙ . . . ⊙ Φ(N)N and the maximum grid
step δmax, corresponding to Φ(1)1 . The value of δmin fixes
the maximum resolution achievable by our method. Given
δmax, δmin and N , a factor q, that gives the ratio between
the grid steps of two adjacent levels can be computed using

δmax = δmin qN−1. The dictionary refinement procedure can
thus be summarized as follows:

● Fix the maximal resolution, i.e., the minimum grid step
δmin for the last dictionary Φ(N)N .

● Build initial dictionary Φ(1)1 as a sub-dictionary of
Φ(N)1 with a decimation factor qN−1 and solve the
problem in (3) with Z = Z1 and Φ =ΦN

1 .
● Proceed similarly with the other datasets (Z2,⋯,ZN )

and the corresponding dictionaries (with the adequate
decimation step).

The main drawback of this approach is that the size of the
dictionary grows exponentially with the upper index (n).
To avoid this phenomenon, we propose the use of a pruning
procedure.

Since our approach solves iteratively a sparse estimation
problem on a multi-grid, once we have a solution on the
coarse grid, we resample the grid to obtain a finer one.
However, the second grid is bigger in size than the first one,
resulting in a higher computational cost. In order to decrease
this computational burden the pruning procedure conserves
only a few points on the grid from one iteration to another.
The pruning procedure (see e.g. [7]), allows to activate at
iteration (n + 1) only the atoms in the neighborhood of
the atoms estimated at iteration (n); for example: in this
paper we consider at iteration (n + 1) the 2q atoms in
the neighborhood of each one of the P atoms estimated at
iteration (n). Fig. 2 illustrates the dictionary refinement and
pruning procedure over one dimension, for three scale levels
and a factor q = 3. To have a better idea of the computational
gain in our case, without the pruning procedure, the over-
complete dictionary at the last iteration, contains Nθ ⋅ Nϕ

atoms, whereas using the pruning procedure, the number
of the atoms drops at (2q + 1)2 × P . For example, in the
case Nθ = Nϕ = 36, q = 3, N = 3, P = 2, the final
dictionary contains 98 atoms using the pruning procedure,
against 531441 atoms for the full-size dictionary.

Selected atoms by sparse recovery

i = 1

i = 2

i = 3

Non activated atoms by the pruning strategy

Activated atoms by the pruning strategy

. . .

. . .

. . .

Fig. 2. Pruning procedure with grid refinement mechanism

We summarize hereafter the main steps of the proposed
algorithm:



Algorithm 1 Algorithm KR-SOLS
INPUT: Z: Data matrix of size (L × K); P : Number of

sources; N : Number of levels; q: Decimation factor;
Φ(N)1 , . . . ,Φ(N)N : Maximal resolution dictionaries

1: Initialization: Set of active atoms Ω = (1 ∶ qN−1 ∶ Nθ) ×(1 ∶ qN−1 ∶ Nϕ)
2: for n = 1: N do
3: Φ(n)j =Φj(Ω) j = 1,⋯, n
4: Φ =Φ(n)1 ⊙⋯⊙Φ(n)n

5: X = SOLS(Φ,Zn, P )
6: Ω = ADAPT(X);
7: end for

OUTPUT: Ω

The ADAPT function in Algorithm 1 implements the
refinement and the pruning procedures described previously.

V. SIMULATIONS
In this section, we compare the proposed KR-SOLS

algorithm to the CP-based method of [1] and to the Cramér-
Rao bound. The simulated sensor array is illustrated in Fig. 1
and consists of 3 hierarchical scale levels: a level-1 array of
21 cross-shaped sensors, half-wavelength spaced, reproduced
over a 2×2 square grid at extended spacing ∆1 = 10λ. This
level-2 array is reproduced again over a 2×2 square grid,
at an extended spacing ∆2 = 10∆1. Consider two sources
impinging on the array from (u1 = 0.01, v1 = 0.707) and
(u2 = 0.5, v2 = 0.5). Two hundred Monte-Carlo runs are used
for each point plotted on the figures. Fig. 3 plots the Root
Mean Square Error (R.M.S.E.) vs. the number of snapshots;
our algorithm performs better than CP, especially for a small
number of snapshots. Fig. 4 shows the evolution of the
R.M.S.E. with respect to the Signal to Noise Ratio (SNR).
KR-SOLS yields better results than CP for low SNR, which
makes it well-suited for the detection of low-power signals.
Fig. 5 plots the estimation error for the two methods vs. the
SNR, for two different final resolutions. One can see that
the accuracy of our method is bounded by the resolution
of the grid, while the error for the CP method decreases
monotonically with the SNR. Future works will focus on
how to efficiently adapt the grid resolution to the SNR, to
avoid this ”saturation” behavior.

VI. CONCLUSIONS
An iterative sparse algorithm for DOA estimation, with

a multiple spatial invariance sensor array was introduced.
We exploited the particular Khatri-Rao structure of the
dictionary of steering vectors to design a computationally
efficient DOA estimation method, based on an iterative grid
refinement and a pruning strategy. A coherence result for
the Khatri-Rao dictionary was also provided. We showed in
numerical simulations, that our method yields better results
than the method of [1], especially for low SNR and few
snapshots.
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