
0

Hysteresis thresholding: a graph-based wavelet

block denoising algorithm

Abstract

This communication aims to combine several previously proposed wavelet denoising algorithms into a

novel heuristic block method. The proposed “hysteresis” thresholding uses two thresholds simultaneously

in order to combine detection and minimal alteration of informative features of the processed signal. This

approach exploits the graph structure of the wavelet decomposition to detect clusters of significant wavelet

coefficients. The new algorithm is compared with classical denoising methods on simulated benchmark

signals.

wavelets, block denoising, graph structure, transitive closure

I. INTRODUCTION

One of the most important applications of wavelets is the signal denoising. The fundamental hypothesis

is that wavelets are correlated with the informative signaland uncorrelated with the noise, which globally

means that large absolute value coefficients correspond to signal and small coefficients to noise. Therefore,

noise cancelling (as well as compression) can be performed by thresholding: small coefficients will be

discarded and the few remaining large magnitude coefficients will be used to reconstruct the informative

signal. Several approaches were proposed since the pioneering works of Donohoet al. [1, 2] (see

Antoniadis et al. for a comprehensive review [3, 4]). In this communication, we propose to combine

previously introduced thresholds in a novel block-denoising approach that takes into account the local

wavelet graph structure.

This paper is organized as follows. In the next section, we recall the most critical issues in wavelet

denoising and some of the proposed solutions, emphasizing the methods at the origin of our work. Section

3 introduces the graph-based approach and the new “hysteresis” thresholding. The fourth section presents

and discusses the simulation results, comparing them with classic denoising algorithms, and it is followed

by a short conclusion.
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II. WAVELET DENOISING

We consider the modelz = x + n, wherez is the noisy discrete-time signal (lengthN ), x is the

noise-free unknown version ofz andn the noise. Synthetically, the discrete orthogonal wavelettransform

(DWT) of z writes:

z =
∑

p,j

wj,p
z ψj,p +

∑

p

wM,p
z φM,p, (1)

wherej = [1..M ] is the scale,p = [1..2−M N ] the position,ψ the wavelet,φ the scaling function and

M is the analysis depth [5]. The wavelet coefficients vectors of z, x andn are related by:

wz = wx +wn (2)

The denoised signal’s coefficients vectorŵx is estimated by modifyingwz = [wM,p
z wj,p

z ] (generally, the

approximation coefficientswM,p
z remain unchanged). Two main families of approaches are proposed in

the literature: term-by-term and block approaches. In the former, the coefficients of̂wx estimate write

as:

ŵx = g(wz)wz,

with g(wz) a shrinkage function applied on the measured signal coefficients.

In the second case (block thresholding), the shrinkage function depends not only on the currently

evaluated coefficient, but also on a group or blockB neighboring coefficientswz,b (the b subscript

indicates the adjacent coefficients from the considered block B). Moreover, the shrinkage can be applied

for the whole considered blockwz,b or for a given subsetwz,b1 ∈ wz,b (in practical implementations

[13], the size of blockb is 3 andwz,b1 is the middle element):

ŵx,b1 = g(wz,b)wz,b1.

Several algorithms from these two families are briefly presented next. They are integrated in the novel

hysteresis algorithm and/or used for comparison.

A. Term-by-term shrinkage

As the noise-free coefficient vector is presumably sparse, the simplest solution is provided by the

well-known hard shrinkage (thresholding):

g(wz) = max (0, sign(|wz| − T )) , (3)
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with T the threshold value. The most widely used value forT is the universal threshold proposedTU

by Donoho and Johnstone in their algorithmV isuShrink (designated asV isu in the sequel) [1]. The

goal of V isu is thecomplete asymptotic elimination of the normal Gaussian noiseand it can be shown

(using extreme values statistics) that this is achieved by setting TU =
√

2 log N . The main drawback of

the method (very appealing because of its simplicity and of its visually attractive results) is its focus on

the noise: eliminatingall the noise often leads to a less precise reconstruction of thesignal of interest.

A different approach is proposed by theSure algorithm [2], who aims toestimate as precisely as

possible the “clean” signalby minimizing an estimate of the mean squared error (MSE) between the

denoised signal and the original one, known as theStein Unbiased Risk Estimator. This risk is minimized

by exhaustively searching the optimal threshold among the coefficientswz. The algorithm was developed

under specific conditions on the functiong (weak differentiability). In particular, the most widely used

is the soft thresholding function:

g(wz) = max

(

0,
|wz| − T

|wz|

)

(4)

The obtained thresholdTS (or thresholds, as the method is usually implemented by scale) are lower than

the TU and the obtained signal has a noisier appearance.

The iterative method we proposed in [6, 7] follows a different approach, inspired by [8–10]: the

thresholdTM is obtained by a fast fixed-point parameter-free algorithm based on a generalized Gaussian

(GG) modelling of the wavelet coefficients. The resulting “minimal denoising” (called hereafterMinD)

ensures robust detection of high value coefficients (outliers) and thus leads to maximum information

extraction from the measured signal.

As the universal threshold proposed byV isu, the threshold computed byMinD does not impose

specific characteristics on the functiong(.). Therefore, both methods can be applied either with hard (3)

or soft (4) shrinkage.

B. Block shrinkage

A quite natural hypothesis (most of the times verified in applications) is that large wavelet coefficients

appear in clusters, or blocks. The approaches introduced byHall, Kerkyacharian and Picard [11] and

Cai et al. [12–14] aim to take into account local features of the signalby adapting the thresholds by

blocks of neighboring coefficients. The most well-known methods areBlockJS (BJS) andNeighBlock
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(NB) (with is simpler versionNeighCoef ) [12, 13]. The two algorithms propose a similar philosophy

as Sure: estimate as precisely as possible a signal corrupted by noise by minimizing the James-Stein

estimate of theMSE risk. This minimization leads to a particular form of the shrinkage functiong(.),

which applies to all coefficientswz,b in a given block of sizeL:

g(wz,b) = max

(

0,
||wz,b||2 − TL

||wz,b||2
)

, (5)

with ||xb||2 the energy of the block andTL a block-size depending threshold. ForBJS, TL = λLσ2, with

λ = 4.505..., L = log N (N being the signal length) andσ the estimated noise power (by scale or global,

for colored and white noise respectively). The difference betweenBJS andNB consists in the use of

the functiong(.): while in BJS all coefficients in the block are shrunk by the same amount (g(wz,b)), in

NB this is done only for theL/2 coefficients located in the center of the considered block. In this case,

the blocks will not be disjoints but overlapped byL/4 (see [13] for more details). The neighborhood

proposed in these approaches is constructed scale-by-scale, without inter-scale dependencies. Extensions

taking into account this last item were proposed recently by[15, 16]1.

III. G RAPH-BASED HYSTERESIS APPROACH

As mentioned previously, most of the wavelet denoising algorithms treat the coefficients either individu-

ally or in blocks grouped by scale. These approaches don’t take into account more general neighborhoods,

spanned over scales as well as in time. This point is easily captured by the graph structure of the DWT.

A. Graph structures

Currently, the most complete investigation of the graph structure of the DWT (implicitly addressing

both inter- and intra-scale relations between coefficients) is done by Crouseet al. [20]. The authors

(who attach a Hidden Markov Model (HMM) to the graph to compute the thresholds) propose three

different architectures and thus types of neighborhoods: the Independent Mixture IM (i.e., the neighboring

coefficients are not considered in the procedure), the Hidden Markov Chain HMC (i.e., considering

dependencies by scale) and the Hidden Markov Tree HMT (binary trees resulting from the wavelet

decomposition). A graphical representation is given figure1.

1Bayesian block denoising methods (for example [17–19]) arenot treated here.
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Fig. 1. Graph types: (a) tree; (b) scale; (c) complete.

The graph representation emphasizes two important properties of real signals,i.e., persistence and

clustering. Following [20], we define by persistence the fact that “large/small values of wavelet coeffi-

cients tend to propagate across scales” and by clustering the fact that “if a particular wavelet coefficients is

large/small, then adjacent coefficients are very likely to also be large/small”. More precisely, the wavelet

binary tree at a given position (time interval) permits to explore persistence (figure 1(a)), while the chains

of wavelet coefficients situated on the same scale (frequency band) illustrate clustering (figure 1(b)). If

both persistence and clustering are considered, than a complete forest-like graph must be taken into

account (figure 1(c)).

A more formal representation of graphs is given by the adjacency matrixA. For a graph havingN

nodes (i.e., N wavelet coefficients),A is a squareN × N boolean matrix with elementsA(i, j) = 1

if there is an edge between nodesi and j and 0 elsewhere. The obtained matrix is symmetric, and the

non-zero elements on line (column)i correspond to the coefficients connected to elementwz(i) of the

wavelet coefficients vectorwz. By convention, we consider every node connected to itself (the diagonal

of A is filled with 1).

B. Pruned graphs

The three term-by-term denoising methods presented in the previous section have different rationales:

the universal thresholdingV isu uses a high threshold aiming toselect onlyinformative coefficients and

eliminate all noise, whileSure and MinD use a low threshold toeliminate onlynoise and therefore

to select all the signal. A heuristic combination can be then proposed: use a V isu computed high

thresholdTh = TU to selectblocksof significant wavelet coefficients, and aSure or MinD low threshold

Tl = TS(TM ) to fix the limits of the selected blocks. In the graph structure, the neighborhood of a “very

large” coefficient|wz| > Th selected byV isu will be formed by the connected “large enough” coefficients

selected bySure or MinD (|wz| > Tl). These coefficients are called further-onmax-selectedandmin-
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selectedrespectively. The resulting blocks, withouta priori predefined shapes, will naturally integrate

both persistence and clustering properties of real signals.

More formally, the issue of choosing the connected min-selected coefficients is equivalent to a three-

step pruning of the wavelet graph, and we give further-on a possible procedure (see also figure 2 for an

illustrative example):

1) For the considered graph adjacency matrixA (corresponding to graph 2(a)), keep only the 1’s

corresponding to min-selected elements (marked nodes) by forcing other lines and columns to 0:

A(i, .) = A(., i) = 0, ∀ |wz(i)| < Tl (6)

Note the newly obtained adjacency matrixA1. The resulting graph (figure 2(b)) is a collection of

disjoint blocks (clusters) of min-selected coefficients. For a given cluster, we noteB the set of the

indicesb of the coefficients belonging to it,|wz(b)| ≥ Tl.

2) Apply a transitive closure procedure on the pruned graph.Basically, a transitive closure leads to a

modified graph that connects by a direct edge all nodes connected through multiple nodes/edges:

if there is a path between two nodes, than a new edge between them is added to the graph.

This approach leads to an iterative computation of a new adjacency matrix, known as Warshall’s

algorithm: at each stepl,

A1,l(α, β) = A1,l−1(α, β)
∨

(

A1,l−1(α, γ)
∧

A1,l−1(γ, β)
)

(7)

At convergence, all the nodes in a clusterB will be connected by an edge (figure 2(c)). Conse-

quently, if the nodesbi and bj belong to the clusterB, the elements of the obtained adjacency

matrixA2 areA2(bi, bj) = A2(bj , bi) = 1, ∀ bi, bj ∈ B. An implementation issue must be noted

here: a complete iterative transitive closure (7) may lead to a very slow and memory consuming

algorithm, especially for long and not very sparse signals (largeN ). This problem depends on the

chosen graph structure: tree-type graphs (figure 1(a)) havea limited number of possible connections

depending on the wavelet decomposition depth, while scale-type (figure 1(b)) or complete graphs

(figure 1(c)) are only limited by the length of the signal. Therefore, the maximum number of

iterations should be limited by the user. We propose here to limit them to the maximum number

of levels of the wavelet decomposition. Consequently, the number of edges between a max- and a

min-selected node (and thus the size of the resulting blocks) is bounded by the depth of the wavelet

tree;
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Fig. 2. Pruning algorithm: (a) Original graph: max-selected and min-selected coefficients are figured in black and gray

respectively; (b) First pruning: discard the small values;(c) Transitive closure; (d) Second pruning and final result.The

approximation scale is not affected.

3) Construct a final adjacency matrixA3 by selecting the blocks containing at least one max-selected

coefficient, i.e., only the lines (columns)i of A2 corresponding to the coefficients|wz(i)| ≥ Th

(figure 2(d)):

A2(i, .) = A2(., i) = 0, ∀ |wz(i)| < Th. (8)

The non-null lines (columns) of thisA3 correspond to the wavelet coefficients kept for the recon-

struction.

The final denoising algorithm will have the following structure:

1) Wavelet transform the measured signal.

2) Choose the graph type (scale, tree or complete).

3) Apply Sure or MinD (global or scale by scale) to mark min-selected coefficientsand the corre-

sponding nodes of the graph.

4) Apply V isu to mark max-selected coefficients and nodes.

5) Prune according to the given procedure the chosen graph.

6) Reconstruct by inverse wavelet transform.

IV. RESULTS AND DISCUSSION

Several versions of the hysteresis approach were implemented:
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• considering eitherSure (notedHyV S) or MinD (notedHyV M ) algorithms for the low threshold

(V isu for the high threshold);

• considering the three types of graph-structures (by scale,subscripts, by binary tree, subscriptt and

the complete graph, subscriptc);

• adapted to white or colored noise (white: the noise power is estimated on the first details level for

V isu andSure, fixed point iterations are performed on all coefficients forMinD; colored: scale

by scale noise estimation forV isu andSure, by-scale fixed-point descent forMinD);

• considering soft (4) or hard (3) thresholding.

The algorithms were compared (mean squared errorMSE) to classical term-by-termV isu, Sure and

MinD, as well as to the block methodsBJS andNB (adapted from the scripts of the free toolbox of

Antoniadiset al. [21]).

Concerning the thresholding strategy, it must be mentionedhere thatSure, BJS and NB were

specifically developed for soft-type shrinkage functionsg(.), while V isu and MinD only compute

threshold values and the user can choose the shrinkage strategy. The results we present here in details

concern only the soft thresholding,i.e., the low threshold value (given bySure or by MinD) was

subtracted from the selected coefficients. Hard thresholding particularities will be briefly exposed at the

end of the section. The approximation scale was kept unchanged and was not considered in the graph

construction (for sparse signals, the results might be improved if the approximation is thresholded also).

The tested signals are the usualBumps, Blocks, HeaviSine andDoppler [1], with lengths from 512

to 16384. Noise was added, with signal to noise ratios (SNR) of 3, 5 and 7. Three types of noise were

used: Gaussian white noise, low-pass filtered Gaussian noise (4th order Butterworth filter, normalized

cut-off frequency at 0.25) and high-pass filtered Gaussian noise (4th order Butterworth filter, normalized

cut-off frequency at 0.25).

Twenty simulations were performed for each combination of signal type, length and SNR. For the white

noise case, the most significant numerical results are presented in table I. These results are averaged by

signal type, signal length and signal to noise ratio, in order to illustrate independently the influence of

these parameters on the algorithms’ performances.

Afig:graphsss it can be seen table I, the signal type has a certain but limited influence on the perfor-

mances: for the first 2 signals (Blocks andBumps), the novel hysteresis approach based on universal and

SURE thresholds and applied on a complete-type graph (HyV Sc) performs slightly better than classic
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V isu Sure MinD BJS NB HyV Ss HyV St HyV Sc HyV Mc
S

ig
n

al

Blocks 0.4786 0.1999 0.4435 0.3051 0.3313 0.2304 0.2030 0.1852 0.4465

Bumps 0.6512 0.1772 0.6400 0.2460 0.2904 0.1790 0.1772 0.1615 0.6399

Heavisine 0.0437 0.0450 0.0421 0.0433 0.0443 0.0408 0.0399 0.0396 0.0410

Doppler 0.1596 0.0797 0.1479 0.0618 0.0752 0.0665 0.0731 0.0663 0.1473

Le
n

g
th

512 0.8813 0.2721 0.9266 0.4062 0.4564 0.2920 0.2730 0.2527 0.9275

1024 0.5192 0.1866 0.4973 0.2304 0.2630 0.1914 0.1797 0.1657 0.4980

2048 0.2988 0.1209 0.2516 0.1414 0.1750 0.1223 0.1173 0.1057 0.2534

4096 0.1580 0.0783 0.1226 0.0975 0.1015 0.0755 0.0750 0.0674 0.1230

8192 0.0894 0.0543 0.0682 0.0641 0.0689 0.0538 0.0550 0.0494 0.0680

16386 0.0530 0.0405 0.0440 0.0447 0.0471 0.0400 0.0399 0.0380 0.0423

S
N

R

3 0.5311 0.2238 0.4829 0.2942 0.3269 0.2335 0.2216 0.2031 0.4835

5 0.2857 0.0974 0.2825 0.1277 0.1461 0.0997 0.0953 0.0874 0.2828

7 0.1831 0.0551 0.1897 0.0702 0.0829 0.0544 0.0531 0.0490 0.1898

TABLE I

MSE FOR WHITE NOISE CASE COMPARISON. RESULTS ARE PRESENTED BY SIGNAL TYPE, BY SIGNAL LENGTH AND BY

SNR. THE ALGORITHMS USED A UNIQUE NOISE ESTIMATION(HIGHEST LEVEL FORV isu, Sure, BJS AND NB,

RESPECTIVELY A GLOBAL APPROACH FORMinD). THE RESULTS ARE DISPLAYED FOR THE BEST VERSIONS OF THE

HYSTERESIS ALGORITHM(HyV S FORSure LOW THRESHOLD, HyV M FORMinD LOW THRESHOLD, SUBSCRIPTSt, s, c

STANDING FOR TREE, SCALE AND COMPLETE GRAPH TYPE RESPECTIVELY).

SureShrink. The other two graph types (scaleHyV Ss and treeHyV St) follow closely, with a rather

important gap between them and the block-approachesBJS and NB. On Heavisine, all hysteresis

type approaches perform better than the other algorithms (HyV Mc included), whileSure shows the

worst performances (MinD being better than the other term-by-term thresholding methods, as well as

than the tested block approaches). On the contrary, on the frequency richDoppler, BJS shows the

best performance, followed by the threeHyV S algorithms. The ratios of improvement vary:HyV Sc

outperformsSure and BJS by mean squares errors smaller by 8 to 40% forBumps, Blocks and

HeaviSine while BJS is better by about 8% for theDoppler signal.

The signal lengthN plays an important role in the algorithms performances. Allof them improve

whenN increases, the amelioration being more marked for asymptotic procedures asV isuShrink and

for probability density estimation methods likeMinD. Globally, HyV S algorithm (for the three graph

types) shows very good performances regardless of the signal length, compared to the others, with the

complete graph approachHyV Sc being constantly the most efficient.SureShrink is the next in line,

followed by the block-thresholding methodsBJS andNB. For the longest tested signals (N = 16386),

minimal denoising based methodsHyV Mc andMinD outperform these last two algorithms (BJS and
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NB). On the other hand, the computational burden and thus the execution time increases differently

with N . If for 2048 samples signals,HyV Sc and HyV Mc are slightly faster thanBJS (but slower

than Sure), for 16386 length signals the difference becomes important: while BJS is only 1.5 times

slower, both hysteresis methods slow their execution about40 times. This augmentation is due to the

fact that completeN × N graph adjacency matrices (although sparse) are stored and manipulated in

our implementation, but more optimal programming solutions can be found by taking into account the

proposed bound for the block size (depth of the wavelet decomposition).

As for the influence of the noise power, all algorithms are affected in the same way and their order

remains generally unchanged:HyV Sc shows constantly the best performances, while the other algorithms

from the same family (tree based and scale based graphs) andSureShrink come next.

For the low-frequency and high-frequency noise cases, we tested versions of the described algorithms

adapted to colored noise (scale by scale estimation ofσ for V isuShrink andSureShrink based methods,

respectively scale by scale probability density estimation and thresholding forMinD based methods).

The relative performances of the algorithms are quite similar most of the time, therefore the complete

numerical results are not given here. Still, some particular points must be outlined:

• the performances of minimal denoising based algorithms (MinD and HyV M ) degrade sharply

when the signal lengthN is low, as the estimation of the generalized Gaussian (GG) parameters

becomes problematic. Therefore, their use is not recommended, unless the signal length is important

and/or the coefficient distribution is close to a GG;

• for low-frequency noise, scale adapted denoising tend to domore harm than good: the noise power

might be over-estimated on the low frequency scales and the resulting thresholds might be too high,

degrading the signal. This is especially true when the SNR islow, when the algorithms using a

unique noise estimation perform better than the scale-adapted ones.

Finally, we should note that the comparative results obtained for hard-thresholding confirm the better

performances of the hysteresis algorithms. As expected, the main challengers among term by term

thresholding areV isuShrink and MinD, SureShrink being designed for soft-thresholding. Among

block denoising approaches, bothBlockJS andNeighBlock perform better than term-by-term methods,

but they are outperformed by hysteresis implementations, either HyV S or HyV M . Between these two

families, Sure basedHyV S gives better results than minimal denoising basedHyV M .
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Fig. 3. Denoising example. White noise was added to a 2048 pointsBlocks signal (SNR=3): (a) original signal; (b) noisy signal;

(c) SureShrink denoising (MSE=0.1514); (d)BlockJS denoising (MSE=0.2354); (e)HyV Sc denoising (MSE=0.1382).

Denoising examples for the best algorithm of each family (term-by-term, classical block-thresholding

and hysteresis thresholding) are given figure 3.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we present a new heuristic method for wavelet denoising. Our approach, which can be

considered a block-denoising type method, is based on the graph structure of the orthogonal wavelet

decomposition. We propose to combine previously developedalgorithms to modify the graph structure

of the wavelet decomposition. This two thresholds approach, called “hysteresis denoising”, aims to take

into account the property of real signals to have wavelet coefficients grouped in clusters, spanned both

over time and over scales. Therefore, a high valued threshold is implemented to select only informative

signal coefficients (i.e., to eliminate asymptotically all the noise), while a low threshold is used to define

neighborhoods of the selected coefficients (clusters, or blocks) on which the signal of interest is accurately

estimated. The newly proposed method is compared successfully with other wavelet denoising algorithms,

which it outperforms most of the time.

By its nature, the hysteresis thresholding is adapted to thedetection and the denoising of isolated

transients in long time series (i.e., very sparse signals). The validation of this hypothesis, along with

some new improvements on the minimal denoising method (itself adapted to transient detection) and

with more extensive comparisons (for example with the recently proposedSureBlock shrinkage [14],

which shows rather similar results) are currently under study and will make the subject of a future work.
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VI. A PPENDIX

The proposed hysteresis approach is based on the following thresholds:

• high threshold (V isu universal threshold):

TH = TU = σ
√

2 log N,

with N the signal length andσ the noise’ (robust) standard deviation;

• low threshold forHyV S (Sure threshold):

TL = TS = arg min
T∈{wz(k)}









Nσ2 + T 2P +
∑

k,

|wz(k)|<T

[

wz(k)2
]

− 2(N − P )σ2









with P the number of wavelet coefficients having absolute values≥ T ;

• low threshold forHyV M (MinD threshold)TL = TM obtained at convergence of the following

fixed-point iteration:

Ti+1 = Fam

√

1

N

∑

k

[wz(k) · max (0, sign(|wz(k)| − Ti))]
2, with

Fam =

√

3Γ( 1
u
)

u
(ue)

1

u

For theFam value, the parameteru is the estimated shape parameter of the generalized gaussian

distribution of the wavelet coefficients:

pσ,u(w) = αe−|βw|u with

β =
1

σ

√

Γ(3/u)

Γ(1/u)
, α =

βu

2Γ(1/u)
, Γ(u) =

∫ ∞

0
e−xxu−1dx,

All thresholds can be computed globally (regardless of the scale) or scale by scale, to deal with colored

noise / signal (see cited references [1, 5, 7] for details).
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