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Hysteresis thresholding: a graph-based wavelet

block denoising algorithm

Abstract

This communication aims to combine several previously psep wavelet denoising algorithms into a
novel heuristic block method. The proposed “hysteresiggsholding uses two thresholds simultaneously
in order to combine detection and minimal alteration of infative features of the processed signal. This
approach exploits the graph structure of the wavelet deositipn to detect clusters of significant wavelet
coefficients. The new algorithm is compared with classi@ialsing methods on simulated benchmark

signals.

wavelets, block denoising, graph structure, transitive closure

. INTRODUCTION

One of the most important applications of wavelets is thaeaigenoising. The fundamental hypothesis
is that wavelets are correlated with the informative sigara uncorrelated with the noise, which globally
means that large absolute value coefficients corresporigrialsand small coefficients to noise. Therefore,
noise cancelling (as well as compression) can be performgetthresholding: small coefficients will be
discarded and the few remaining large magnitude coeffieiaiit be used to reconstruct the informative
signal. Several approaches were proposed since the piogesorks of Donohoet al. [1, 2] (see
Antoniadis et al. for a comprehensive review [3, 4]). In this communicatiore mropose to combine
previously introduced thresholds in a novel block-demgjsapproach that takes into account the local
wavelet graph structure.

This paper is organized as follows. In the next section, vealréhe most critical issues in wavelet
denoising and some of the proposed solutions, emphastzéngéthods at the origin of our work. Section
3 introduces the graph-based approach and the new “hyisteifeesholding. The fourth section presents
and discusses the simulation results, comparing them \&#sic denoising algorithms, and it is followed

by a short conclusion.
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[I. WAVELET DENOISING

We consider the modet = x + n, where z is the noisy discrete-time signal (lengtf), x is the
noise-free unknown version efandn the noise. Synthetically, the discrete orthogonal wauedgtsform

(DWT) of z writes:
z=) wl? i Yl oM, (1)

D:J P
wherej = [1..M] is the scalep = [1..2~™ N] the position,» the wavelet,¢ the scaling function and

M is the analysis depth [5]. The wavelet coefficients vectdrs,oc andn are related by:
W, = W, + wy, (2

The denoised signal’s coefficients vecior, is estimated by modifyingv, = [wﬁ”’pwi’p] (generally, the
approximation coefficients’” remain unchanged). Two main families of approaches aregsexpin
the literature: term-by-term and block approaches. In tirenér, the coefficients ofv, estimate write

as:

Wy = g(wz)wz,

with g(w.) a shrinkage function applied on the measured signal caosffici

In the second case (block thresholding), the shrinkagetifumaepends not only on the currently
evaluated coefficient, but also on a group or bldgkneighboring coefficientav. ; (the b subscript
indicates the adjacent coefficients from the consideredkbl®). Moreover, the shrinkage can be applied
for the whole considered block . ; or for a given subsetv, ;; € w,; (in practical implementations

[13], the size of block is 3 andw. 4; is the middle element):

ﬁ’x,bl = g(wz,b)’wz,bl .

Several algorithms from these two families are briefly pnésé next. They are integrated in the novel

hysteresis algorithm and/or used for comparison.

A. Term-by-term shrinkage

As the noise-free coefficient vector is presumably spatse,simplest solution is provided by the

well-known hard shrinkage (thresholding):

g(w,) = max (0,sign(jw,| — T)), 3)
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with T' the threshold value. The most widely used value fois the universal threshold proposé&g
by Donoho and Johnstone in their algoritimisuShrink (designated a¥isu in the sequel) [1]. The
goal of Visu is the complete asymptotic elimination of the normal Gaussiars@and it can be shown
(using extreme values statistics) that this is achievedetiyng 7;; = v/2log N. The main drawback of
the method (very appealing because of its simplicity andtisually attractive results) is its focus on
the noise: eliminatingll the noise often leads to a less precise reconstruction ofigmal of interest.
A different approach is proposed by tlt2ire algorithm [2], who aims toestimate as precisely as
possible the “clean” signaby minimizing an estimate of the mean squared erfdiSE) between the
denoised signal and the original one, known asShtein Unbiased Risk Estimatdrhis risk is minimized
by exhaustively searching the optimal threshold among tiefficientsw,. The algorithm was developed
under specific conditions on the functign(weak differentiability). In particular, the most widelysed

is the soft thresholding function:

gluws) = max (0,12 =1 ) @)

]
The obtained thresholds (or thresholds, as the method is usually implemented byeyeaé lower than
the Ty and the obtained signal has a noisier appearance.

The iterative method we proposed in [6, 7] follows a diffdrapproach, inspired by [8-10]: the
thresholdT’,, is obtained by a fast fixed-point parameter-free algorittasda on a generalized Gaussian
(GG) modelling of the wavelet coefficients. The resultingirfiimal denoising” (called hereaftev/in D)
ensures robust detection of high value coefficients (asjliand thus leads to maximum information
extraction from the measured signal.

As the universal threshold proposed byisu, the threshold computed by/inD does not impose
specific characteristics on the functigf). Therefore, both methods can be applied either with hard (3)

or soft (4) shrinkage.

B. Block shrinkage

A quite natural hypothesis (most of the times verified in &ations) is that large wavelet coefficients
appear in clusters, or blocks. The approaches introduceHdily Kerkyacharian and Picard [11] and
Cai et al. [12-14] aim to take into account local features of the sigmaladapting the thresholds by

blocks of neighboring coefficients. The most well-known neels areBlock.JS (BJS) and NeighBlock
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(N B) (with is simpler versionNeighCoef) [12, 13]. The two algorithms propose a similar philosophy
as Sure: estimate as precisely as possible a signal corrupted bsertwy minimizing the James-Stein
estimate of theM/ SE risk. This minimization leads to a particular form of the iskage functiong(.),

which applies to all coefficienta, , in a given block of sizel:

[lw|” — TL)
Y

g(w,.4) = max (o, (5)

with ||z||* the energy of the block arif, a block-size depending threshold. F®7 S, T, = ALo?, with

A =4.505..., L =log N (N being the signal length) andthe estimated noise power (by scale or global,
for colored and white noise respectively). The differeneéneenB.JS and N B consists in the use of
the functiong(.): while in BJS all coefficients in the block are shrunk by the same amogb( ;)), in

N B this is done only for thd./2 coefficients located in the center of the considered blatkhis case,
the blocks will not be disjoints but overlapped liy'4 (see [13] for more details). The neighborhood
proposed in these approaches is constructed scale-bg-sa#lout inter-scale dependencies. Extensions

taking into account this last item were proposed recentlylisy 16}

[1l. GRAPH-BASED HYSTERESIS APPROACH

As mentioned previously, most of the wavelet denoising rdtlgms treat the coefficients either individu-
ally or in blocks grouped by scale. These approaches ddetitdo account more general neighborhoods,

spanned over scales as well as in time. This point is easpijucad by the graph structure of the DWT.

A. Graph structures

Currently, the most complete investigation of the graphictre of the DWT (implicitly addressing
both inter- and intra-scale relations between coefficeistsdone by Crousest al. [20]. The authors
(who attach a Hidden Markov Model (HMM) to the graph to congptite thresholds) propose three
different architectures and thus types of neighborhodustridependent Mixture IMi.g., the neighboring
coefficients are not considered in the procedure), the hiddarkov Chain HMC (e, considering
dependencies by scale) and the Hidden Markov Tree HMT (pit@es resulting from the wavelet

decomposition). A graphical representation is given figlre

!Bayesian block denoising methods (for example [17-19])netetreated here.
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Fig. 1. Graph types: (a) tree; (b) scale; (c) complete.

The graph representation emphasizes two important piepest real signalsi.e., persistence and
clustering. Following [20], we define by persistence the fact that “tggnall values of wavelet coeffi-
cients tend to propagate across scales” and by clusterigth that “if a particular wavelet coefficients is
large/small, then adjacent coefficients are very likelylsmde large/small”. More precisely, the wavelet
binary tree at a given position (time interval) permits tplexe persistence (figure 1(a)), while the chains
of wavelet coefficients situated on the same scale (frequband) illustrate clustering (figure 1(b)). If
both persistence and clustering are considered, than aletmiorest-like graph must be taken into
account (figure 1(c)).

A more formal representation of graphs is given by the adjaganatrix A. For a graph havingVv
nodes ie., N wavelet coefficients)A is a squareN x N boolean matrix with elementd(i,j) = 1
if there is an edge between nodeand; and O elsewhere. The obtained matrix is symmetric, and the
non-zero elements on line (columh)orrespond to the coefficients connected to elemertt) of the
wavelet coefficients vectaw,. By convention, we consider every node connected to itsledf diagonal

of A is filled with 1).

B. Pruned graphs

The three term-by-term denoising methods presented inrénéqus section have different rationales:
the universal thresholdingisu uses a high threshold aiming select onlyinformative coefficients and
eliminate all noise, whileSure and MinD use a low threshold teliminate onlynoise and therefore
to select all the signal. A heuristic combination can be then proposed: ai¥ isu computed high
thresholdT}, = T}, to selectlocksof significant wavelet coefficients, andSaure or MinD low threshold
T, = Ts(Tyr) to fix the limits of the selected blocks. In the graph struetdhe neighborhood of a “very
large” coefficientw, | > T}, selected by/isu will be formed by the connected “large enough” coefficients

selected bySure or MinD (|w,| > T;). These coefficients are called further-orax-selecteénd min-
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selectedrespectively. The resulting blocks, withoatpriori predefined shapes, will naturally integrate

both persistence and clustering properties of real signals

More formally, the issue of choosing the connected minetet coefficients is equivalent to a three-

step pruning of the wavelet graph, and we give further-on ssite procedure (see also figure 2 for an

illustrative example):

1)

2)

For the considered graph adjacency matfix(corresponding to graph 2(a)), keep only the 1's

corresponding to min-selected elements (marked nodesyroing other lines and columns to O:
A(i,.) = A(L1) =0, V |w,(i)] <Ty (6)

Note the newly obtained adjacency matey. The resulting graph (figure 2(b)) is a collection of
disjoint blocks (clusters) of min-selected coefficientsr B given cluster, we not8 the set of the
indicesb of the coefficients belonging to itw. (b)| > T;.

Apply a transitive closure procedure on the pruned gr8galsically, a transitive closure leads to a
modified graph that connects by a direct edge all nodes cosuhélerough multiple nodes/edges:
if there is a path between two nodes, than a new edge between it added to the graph.
This approach leads to an iterative computation of a newcadgy matrix, known as Warshall's

algorithm: at each step

Ari(en B) = Avia(es )\ (Avica(em) A A (8) (7)

At convergence, all the nodes in a clustérwill be connected by an edge (figure 2(c)). Conse-
quently, if the nodes; and b; belong to the clustei3, the elements of the obtained adjacency
matrix Ay are A (b;,b;) = Aa(bj, b;) =1, V b;,b; € B. An implementation issue must be noted
here: a complete iterative transitive closure (7) may lead wery slow and memory consuming
algorithm, especially for long and not very sparse signlaigé N). This problem depends on the
chosen graph structure: tree-type graphs (figure 1(a)) addéivgited number of possible connections
depending on the wavelet decomposition depth, while syale-(figure 1(b)) or complete graphs
(figure 1(c)) are only limited by the length of the signal. Téfere, the maximum number of
iterations should be limited by the user. We propose heréntit them to the maximum number
of levels of the wavelet decomposition. Consequently, thelmer of edges between a max- and a
min-selected node (and thus the size of the resulting b)asksounded by the depth of the wavelet

tree;
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Fig. 2. Pruning algorithm: (a) Original graph: max-selecnd min-selected coefficients are figured in black and gray
respectively; (b) First pruning: discard the small valués), Transitive closure; (d) Second pruning and final resthe

approximation scale is not affected.

3) Construct a final adjacency matrik; by selecting the blocks containing at least one max-sealecte
coefficient,i.e.,, only the lines (columnsj of A, corresponding to the coefficients, (i)| > T}
(figure 2(d)):

As(iy.) = Ag(,3) =0, YV |w.(i)| < Th. (8)
The non-null lines (columns) of thids correspond to the wavelet coefficients kept for the recon-
struction.

The final denoising algorithm will have the following struce:

1) Wavelet transform the measured signal.

2) Choose the graph type (scale, tree or complete).

3) Apply Sure or MinD (global or scale by scale) to mark min-selected coefficiants the corre-

sponding nodes of the graph.
4) Apply Visu to mark max-selected coefficients and nodes.
5) Prune according to the given procedure the chosen graph.

6) Reconstruct by inverse wavelet transform.

IV. RESULTS AND DISCUSSION

Several versions of the hysteresis approach were impledent
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« considering eithebure (noted HyV S) or MinD (noted HyV M) algorithms for the low threshold
(Visu for the high threshold);

« considering the three types of graph-structures (by sealascripts, by binary tree, subscrigtand

the complete graph, subscript

« adapted to white or colored noise (white: the noise powesisnated on the first details level for

Visu and Sure, fixed point iterations are performed on all coefficients Mdin D; colored: scale
by scale noise estimation fdrisu and Sure, by-scale fixed-point descent fadinD);

« considering soft (4) or hard (3) thresholding.

The algorithms were compared (mean squared e¥f&iE) to classical term-by-ternvVisu, Sure and
MinD, as well as to the block methods/S and N B (adapted from the scripts of the free toolbox of
Antoniadiset al. [21]).

Concerning the thresholding strategy, it must be mentioneck thatSure, BJS and NB were
specifically developed for soft-type shrinkage functia(s), while Visu and MinD only compute
threshold values and the user can choose the shrinkagegstrthe results we present here in details
concern only the soft thresholdinge., the low threshold value (given b§ure or by MinD) was
subtracted from the selected coefficients. Hard threshgldarticularities will be briefly exposed at the
end of the section. The approximation scale was kept unathagd was not considered in the graph
construction (for sparse signals, the results might be avgxt if the approximation is thresholded also).

The tested signals are the usialmps, Blocks, HeaviSine and Doppler [1], with lengths from 512
to 16384. Noise was added, with signal to noise ratios (SNR3, & and 7. Three types of noise were
used: Gaussian white noise, low-pass filtered Gaussiarerw?s order Butterworth filter, normalized
cut-off frequency at 0.25) and high-pass filtered Gaussaisen(’ order Butterworth filter, normalized
cut-off frequency at 0.25).

Twenty simulations were performed for each combinationgrial type, length and SNR. For the white
noise case, the most significant numerical results are presén table I. These results are averaged by
signal type, signal length and signal to noise ratio, in pttdeillustrate independently the influence of
these parameters on the algorithms’ performances.

Afig:graphsss it can be seen table I, the signal type has airdatit limited influence on the perfor-
mances: for the first 2 signal®(ocks and Bumps), the novel hysteresis approach based on universal and

SURE thresholds and applied on a complete-type graph{S.) performs slightly better than classic
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Visu Sure MinD BJS NB HyV S HyV St HyV S, HyV M.
Blocks 0.4786 0.1999 0.4435 0.3051 0.3313 0.2304 0.2030 0.1852 0.4465
g Bumps 0.6512 0.1772 0.6400 0.2460 0.2904 0.1790 0.1772 0.1615 0.6399
o Heavisine 0.0437 0.0450 0.0421 0.0433 0.0443 0.0408 0.0399 0.0396 0.0410
Doppler 0.1596 0.0797 0.1479 0.0618 0.0752 0.0665 0.0731 0.0663 0.1473
512 0.8813 0.2721 0.9266 0.4062 0.4564 0.2920 0.2730 0.2527 0.9275
1024 0.5192 0.1866 0.4973 0.2304 0.2630 0.1914 0.1797 0.1657 0.4980
% 2048 0.2988 0.1209 0.2516 0.1414 0.1750 0.1223 0.1173 0.1057 0.2534
3]
- 4096 0.1580 0.0783 0.1226 0.0975 0.1015 0.0755 0.0750 0.0674 0.1230
8192 0.0894 0.0543 0.0682 0.0641 0.0689 0.0538 0.0550 0.0494 0.0680
16386 0.0530 0.0405 0.0440 0.0447 0.0471 0.0400 0.0399 0.0380 0.0423
o 3 0.5311 0.2238 0.4829 0.2942 0.3269 0.2335 0.2216 0.2031 0.4835
% 5 0.2857 0.0974 0.2825 0.1277 0.1461 0.0997 0.0953 0.0874 0.2828
7 0.1831 0.0551 0.1897 0.0702 0.0829 0.0544 0.0531 0.0490 0.1898
TABLE |

MSE FOR WHITE NOISE CASE COMPARISONRESULTS ARE PRESENTED BY SIGNAL TYPEBY SIGNAL LENGTH AND BY
SNR. THE ALGORITHMS USED A UNIQUE NOISE ESTIMATION(HIGHEST LEVEL FORV isu, Sure, BJS AND NB,
RESPECTIVELY A GLOBAL APPROACH FORMinD). THE RESULTS ARE DISPLAYED FOR THE BEST VERSIONS OF THE
HYSTERESIS ALGORITHM(HyV S FOR Sure LOW THRESHOLD, HyV M FOR MinD LOW THRESHOLD, SUBSCRIPTS, s, ¢

STANDING FOR TREE SCALE AND COMPLETE GRAPH TYPE RESPECTIVELY.

SureShrink. The other two graph types (scaléyV S, and treeHyV'S;) follow closely, with a rather
important gap between them and the block-approadhés and N B. On Heavisine, all hysteresis
type approaches perform better than the other algorithigl (). included), while Sure shows the
worst performancesMinD being better than the other term-by-term thresholding naghas well as
than the tested block approaches). On the contrary, on gwudéncy richDoppler, BJS shows the
best performance, followed by the thrégyl'S algorithms. The ratios of improvement vargyV' S,

outperformsSure and BJS by mean squares errors smaller by 8 to 40% fwmps, Blocks and

HeaviSine while BJS is better by about 8% for th®oppler signal.

The signal lengthV plays an important role in the algorithms performances. dilthem improve
when N increases, the amelioration being more marked for asymptobcedures a¥ isuShrink and
for probability density estimation methods likdinD. Globally, HyV S algorithm (for the three graph
types) shows very good performances regardless of theldigmgth, compared to the others, with the
complete graph approaddyV S, being constantly the most efficiemfureShrink is the next in line,
followed by the block-thresholding methods/.S and N B. For the longest tested signaly (= 16386),

minimal denoising based methodg,V M, and MinD outperform these last two algorithms8.{S and
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NB). On the other hand, the computational burden and thus teeuéirn time increases differently
with N. If for 2048 samples signald{yV S. and HyV M, are slightly faster tharB.JS (but slower
than Sure), for 16386 length signals the difference becomes imptirtahile BJS is only 1.5 times
slower, both hysteresis methods slow their execution aB0utimes. This augmentation is due to the
fact that completeV x N graph adjacency matrices (although sparse) are stored angutated in
our implementation, but more optimal programming solwi@an be found by taking into account the
proposed bound for the block size (depth of the wavelet dgoaition).

As for the influence of the noise power, all algorithms arect#d in the same way and their order
remains generally unchangedy V' S. shows constantly the best performances, while the otheridigns
from the same family (tree based and scale based graphsyandhrink come next.

For the low-frequency and high-frequency noise cases, stedeversions of the described algorithms
adapted to colored noise (scale by scale estimatienfof VisuShrink andSureShrink based methods,
respectively scale by scale probability density estinmtiod thresholding fol/inD based methods).
The relative performances of the algorithms are quite sirmhost of the time, therefore the complete

numerical results are not given here. Still, some particptants must be outlined:

« the performances of minimal denoising based algorithig=(D and HyV M) degrade sharply
when the signal lengttV is low, as the estimation of the generalized Gaussian (G@&npeters
becomes problematic. Therefore, their use is not recomatenaless the signal length is important
and/or the coefficient distribution is close to a GG;

« for low-frequency noise, scale adapted denoising tend tmde harm than good: the noise power
might be over-estimated on the low frequency scales andethdting thresholds might be too high,
degrading the signal. This is especially true when the SNRwnis when the algorithms using a

unigue noise estimation perform better than the scaletadames.

Finally, we should note that the comparative results okthifor hard-thresholding confirm the better
performances of the hysteresis algorithms. As expectesl,nthin challengers among term by term
thresholding aré/isuShrink and MinD, SureShrink being designed for soft-thresholding. Among
block denoising approaches, ba#tiock.J S and Neigh Block perform better than term-by-term methods,
but they are outperformed by hysteresis implementatioitisere/yV'S or HyV M. Between these two
families, Sure basedHyV S gives better results than minimal denoising bagig M.
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Fig. 3. Denoising example. White noise was added to a 2048gBiocks signal (SNR=3): (a) original signal; (b) noisy signal;
(c) SureShrink denoising (MSE=0.1514); (dBlock.JS denoising (MSE=0.2354); (eflyV S. denoising (MSE=0.1382).

Denoising examples for the best algorithm of each familynftéy-term, classical block-thresholding

and hysteresis thresholding) are given figure 3.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we present a new heuristic method for wavadabiing. Our approach, which can be
considered a block-denoising type method, is based on theghgstructure of the orthogonal wavelet
decomposition. We propose to combine previously devel@gdrithms to modify the graph structure
of the wavelet decomposition. This two thresholds apprpaahed “hysteresis denoising”, aims to take
into account the property of real signals to have waveleffioients grouped in clusters, spanned both
over time and over scales. Therefore, a high valued thrdseamplemented to select only informative
signal coefficientsi(e., to eliminate asymptotically all the noise), while a lowdhhold is used to define
neighborhoods of the selected coefficients (clusters,awkis) on which the signal of interest is accurately
estimated. The newly proposed method is compared suctigsgiin other wavelet denoising algorithms,
which it outperforms most of the time.

By its nature, the hysteresis thresholding is adapted tod#tection and the denoising of isolated
transients in long time series.d., very sparse signals). The validation of this hypothedsnag with
some new improvements on the minimal denoising methodlf(itstapted to transient detection) and
with more extensive comparisons (for example with the réggiroposedSureBlock shrinkage [14],

which shows rather similar results) are currently undedwiand will make the subject of a future work.
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VI. APPENDIX

The proposed hysteresis approach is based on the follownegltolds:

« high threshold {isu universal threshold):

TH:TU:U\/210gN,

with N the signal length and the noise’ (robust) standard deviation;

« low threshold forHyV S (Sure threshold):

T, =Ts = arg Ter{l;ir(l}g)} No? +T?P + Z [wz(kz)z] —2(N — P)o?
o (K| <T

with P the number of wavelet coefficients having absolute vales,
« low threshold forHyV M (MinD threshold)T;, = T), obtained at convergence of the following

fixed-point iteration:

Tiy1 = Fm\/% > w. (k) - max (0, sign(|w. (k)| — T,))]*, with
k

3r(L )
Fy = (“)(ue)Z
u

For the F,,,, value, the parameter is the estimated shape parameter of the generalized gaussia

distribution of the wavelet coefficients:

Pou(w) = ae” 170" with

_ 1 TG/ a:ﬂ u) = ooe_xxu_lx
f= o\l T(1/u)’ 2 (1/u)’ [(w) /0 dz,

All thresholds can be computed globally (regardless of tteded or scale by scale, to deal with colored

noise / signal (see cited references [1, 5, 7] for details).
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