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lterative wavelet—based denoising methods and
robust outlier detection

R. Ranta, V. Louis-Dorr, C. Heinrich, and D. Wolf

Abstract— The goal of this letter is to study convergence  This letter is organized as follows. In the second section,
conditions for a previously presented iterative wavelet deoising we recall the iterative denoising principle, its fixed-poin
method [1] and to shed light on its relationship with outlier interpretation and the subsequent algorithm [1]. In thedthi

rejection. This method involves a user-defined parameter, hich fi | th f this alaorithm t
must fulfill certain conditions in order to ensure denoising section, we analyse the convergence ol this algorithm tona no

Using generalized Gaussian modelling for the wavelet coegients  Null fixed-point {.e. denoising threshold) in the light of the
distribution, we obtain a lower bound for this parameter, adapted probability law of the wavelet coefficients. The fourth sewt

to the shape of the distribution. Thresholding of the wavele proposes modelling of the coefficients by GG probability

coefficients can then be achieved with a parameter-free algthm. density function (pdf) and introduces a convergence candit

The properties of this threshold are examined and the propaosd . . . .

method is compared with other classical rejection methods. forthe flxed-.pomt algorithm depending on the. GG Para}meters
The properties of the method both from outlier rejection and
denoising points of view, as well as some simulation results

. INTRODUCTION are presented in the Section V, followed by the conclusion.
The starting point of the research presented in this lester i
the iterative wavelet—denoising method initially propbdsy Il. 1 TERATIVE WAVELET—BASED DENOISING METHODS

Starck and Bijaoui [2] and Coifman and Wickerhauser [3], [4] , i
applied by Hadjileontiadiet al. [5] to physiological sounds e consider the modet = z + n, where z is the
analysis. This method is particularly adapted to non-tatiy 9Ven dlscrete.—nme signal to be depmseds the noise—free
transient extraction from stationary (but not necessaséys- Unknown version ofz andn the noise. Orthogonal wavelet
sian) noise [2], [5]. The denoised signal is estimated usimg d€composition ok is written as
iterative scheme, yielding successive refinements of ihreat _ 5P afydsP M,p M,p
at each iteration, the largest wavelet coefficients of taltal == Z w7 Z wet e
noise contribute to the current estimate of the denoisathsig ?
From a statistical point of view, large wavelet coefficientd/herej is the scalep the position,1y the wavelet,¢ the
characterizing non-stationary transients can be cormitlas Scaling function and/ the analysis depth [7].
outliers,i.e., points that strongly influence second order statis- Classical denoising methods ¥suShrinkand SureShrink
tics as the standard deviation Iterative thresholding algo- introduced by Donoho and Johnstone [8], perform a one-step
rithms can then be seen #erative outlier deletionschemes thresholding to separate supposedly Gaussian noise coeffi-
(see Rousseeuw and Leroy [6, p. 254]), used to separatéignts from large signal coefficients (see also [9] for diffe
subset of (small) noise-representative wavelet coeffisisom ent thresholding techniques). The iterative denoisingeseh
the (large) outliers, further on used to reconstruct theoisenl  Proposed in [2], [3], [5] writesz = &, + ni,, Wherek is the
signal (one must notice that the method does not separatg nderation step. The current noise estimatiop, initialized for
artifacts from informative transients). k = 0 asny = z, is decomposed to obtain the noise co-
In a previous work [1], we have shown that if no besgfficients vecto2,, ;.. By thresholding2, x, one obtains the
basis procedure is considered (as in [4]), iterative démgis current “peeled off layerQ2a; x+1. The new noise coefficient
(or, equivalently, iterative outlier deletion) may be seena VECtor€2, ;.. is obtained from2a; k41 + L k1 = Qi k.
fixed-point algorithm determining independent threshdts ~ In the case of iterative methods, threshold computing can
each scale. The goal of this letter is to analyse and determhe done either by considering a user-chosen proportion of
convergence conditions for this fixed-point algorithm biyan large coefficients (which can be seen as a nonparametric

ducing generalized Gaussian (GG) modelling of the wavelegtlier detection technique) or by classidal criteria, based
coefficients, without any prior information on the noise. ~ On standard deviation of the coefficients(again a classical

outlier rejection method based on Euclidean or Mahalanobis
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2) compute the threshol@} ., = F,or, whereF, is a Proof: A function f(z) continuous on an intervdh, b|
user—defined constant. A classical choicdjs= 3, as has a fixed point iffa,b] if V = € [a,b], f(x) € [a,b]. As the
in [2] and [5]. One can also recognize the threshold préunction (4) is monotone increasing, we must prove thatether
posed by the RLSReweighted Least Squajedgorithm exists an intervala, b] with f(b) < b and f(a) > a.
described in [6], which uses an empit¢ = 2.5; a) f(b) <b: Sincep(w) has a finite variance an#, is

3) computef2,, xi1, Qag ka1 BY Tip-thresholding®?,, x; finite, M = F,0,, exists and

4) computen; and Ax,; as wavelet reconstructions

of Q, .1 andQa, 11 respectively, and sety,; = Vb2 M, f(b) = Faolujcp < M <D )
T+ ATpyr; b) f(a) > a: Leta > 0. Considering part integration:
5) loop to the top until a certain stop criterion is reached. 51 u 3
The classical stop criterion is: [f(a)]®> = 2F? p(u})% —/ p’(w)%dw] .
0
STChs1 = [l ]” — |kl < e, (1 "

Under the initial hypothesig;(w) has a mode in 0. One can

with € a (small) user chosen parameter. In a denoising framird ¢ such ag(w) is decreasing ofv, a]. Then, the derivative
work, a smallSTC means that little or no energy is lost byp/(a) <0,5s0 [ p’(w)%sdw <0 and

the noise estimate between two steps. In an outlier rejectio 5

i — i I I a
framework, _choosmg_g =0 Iea_ds tq the classical iterative [f(a)]2 > 2Fjp(a)—. (6)
outlier deletion algorithm described in [6, p. 254]. 3
Adapting the scale by scale approach present_eq in [1] fﬂbnce the impIication?Ffp(a)§ > a2 = [f(a)]2 > a2, 50
e = 0 to the complete vector of the wavelet coefficients, this
algorithm boils down to a fixed point descent: 3
) 1 _ o F, > = f(a) > a. (7)
1) computeoy, as (ok)" = > (wl? gr, (wl?))”, 2ap(a)
. 2] . .
wheregr, (wi?) are coefficients weights: Consequentlyf(z) has at least one fixed poiffi; € [a,b]. B
1, if |z| < Ty, IV. GENERALIZED GAUSSIAN MODELLING
) = 4k In the previous section, we have shown that under certain

2) computel},1 = F,o and loop till convergence. realistic conditions on the pdf of the wavelet coefficieras,
multiplicative constantF,, greater than a defined value (7)
ensures the convergence of the algorithm to a non null point.
1 ; i) 2 This section aims to find a precise way to compute this lower
— _ J,P J,P
f@)=Fa \/N Z (wz 9a (w2 )) ’ (3) bound, notedF,,,, using a generalized Gaussian (GG) model

Considering functiory defined as

P for the pdf of the wavelet coefficienis(w):

the final threshold is computed by the fixed-point descent C1Bwlt

algorithmT}1 = f(T%). The values of the functiofi depend Pou(w) = ae with (8)

on the user constat,, which must be lower bounded in order 11 oo

: ) - L (3/u) Bu w1

to ensure the existence of a non null fixed poirg.denoising G = — , = , T(u) = / e Tz dr,

threshold), otherwise the estimated noise vanishes () and o\ I(1/u) 20(1/w) 0

the denoised estimate equalsz [1]. where o is the standard deviation and > 0 is the shape
parameter of the probability lamu€2 for a Gaussian and

1. A PROBABILISTIC APPROACH u=1 for the Laplace pdf). Generalized Gaussians are widely

htésed to model wavelet coefficients distribution (espegial
natural images processing, see for example [10]) and respec

aforementioned lower bound fdr, in a probabilistic frame- the conditions of proposition b 0. 0. symmetric
work. In fact, wavelet coefficientsy can be considered as Proposi P{(w) <0,Vw >0, sy
out the mean and finite even moments).

a sample issued from a zero mean symmetric continuo?% . - .

probability density lawp(w) (the zero-mean condition can " (8), parameteys '.S positive. Inequality (7) can then be

easily be adapted to non-zero previously estimated mear\ﬁsl.tten (for anya > 0):

Under this assumption, the function (3) can be rewritten as: 3 ) 3
F, > ,/%e(ﬁfﬂ“, that is a > 5

aF?

The goal of this section is to study the existence of t

e(Ba)* (9)
T T a
f(T) = Fuojwj<r = Fa 2/ p(w)w?dw. (4)  The goal is to determine the lowest value &f (denoted
0 F.») such that there exists one > 0 verifying (9). Since
e mapping; : a — ¢(a) = ﬁe(ﬁ“)” is strictly convex,
it can have 0, 1 or 2 intersection points with the identityelin
(a) = a. Thus, F,,, is obtained wheny(a) is tangent (at a

Proposition 1 Consider that the wavelet coefficients follo
a probability density functiomp(w) with a zero mean, finite
variance and a mode in 0. A sufficiency condition for thé

eX'Stence_Of afm?-l threShomf € [a, b] Wlth a,b>0 (|'e" ofa 1Condition (7) being sufficient but not necessary, one mightl fiower
non-null fixed-point for the function (3)) B, > 1/3/2ap(a). values ofF, ensuring the convergence of the algorithm.



point of abscissa) to the liney = a. The boundF,,, and Using the substitution: = (fw)“ and the integral formula
the abscissa, must then verifyg(ag) = ag (for F, = F,,;,) 3.381(1) in [11]:f0t xlemH®dy = p~V~(v, ut), the above
andq’(ag) = 1 (also for F, = F,.,), which writes mentioned probability becomes (see fig. 1(c)):
3 v (%a(ﬁTK)u)
2aF2,, — T (l) .
A straightforward computation yields the boufg,,: .
In the above equations(a, z) = [ e~"t*~'dt, with Re(a) >

uﬂ“aﬁfle(ﬁ‘“’)u =1. (10)

p(lw| >Tk)=1-— (14)

3 1 31“(%) 1 0, is the lower incomplete Gamma function. The part of the
Fam = %(“6)" = w (ue)w. (1) variance corresponding to the large coefficients is (fig))1(d
The lower bound®,,, is independent of and depends only on v (2, (8Tk)")
the shape parameter(see fig. 1(a)). For denoising, a different var(jw| > Tx) =1 - T;) (15)
F,n(j) can be computed for each decomposition sgale v
Results similar to (14) and (15) were obtained by Pizudgta
V. DISCUSSION al. [10] in a Bayesian denoising framework. As seen in fig.

1(c), for heavy-tailed distributions (small) the probability
of having a coefficienfw| > Tk increases: if the number

[5]) is a classical second order one (the square root of tk Cutliers increases, the algorithm detects more and an
variance), different from the one proposed by Rousseeuw aﬂaer.getl_c gain appears (f|.g. 1(d))- Qonversely,. for cortipac
Leroy [6] (outlier rejection) and Donoho and Johnstone [ Istributions (largeu), outlier detection probability tends to

(wavelet denoising), which is based on the median and equ %&' Figure 1(b)—(d) also presents outlier rejection results f
1.4826 med r;, wherer; — w; —a; are the regression residualsanother two methods: classicatr rejection and Rousseeuw’s

P . L . . LMS rejection. For the latter method the final threshold is ob
for the coefficientsu; (in the univariate case; is the estimate

! : o tained after a one-step iteratiol = 2.50¢), with the initial
of the location and it equals O for wavelet denoising). P A o0)

) ; Lo scale estimate computed @g = 1.482 d |w;| (the median
1) Gaussian caselFor Gaussian distributionau£2), the b 2 826 med w;| (

. N med |w;| for GG pdf's is computed using the same integral
computed value of, used to estimate the rejection thres formula 3.381 in [11]). Our method rejects more outliersitha
old is ~ 2.49, which is particularly close to the empirical valu y '

She LMS for a shape parameterg, 1.75 (u Z, 0.8 for iterative
of 2.5 proposed by Rousseeuw and Leroy [6, p. 17]. Usi o o NP
this threshold. the final “robust scale estimate”of the LMS g rejection). For distributions having g, 6.6, neither of both

. ) . ) _ classic methods rejects any point. On the contrary, for @gak
algorithm {east Median Squarg$, p. 202)), Is obtained as: distributions, our method is more conservative than the LMS

First of all, it is important to note that the initial standar
deviation estimate, that we use in our algorithm (as in [2],

N N2 Concerning the iterativ@o rejection, its convergence to a non
ot = M, (12) null point it is not guaranteed fox 0.8, as the computed
> i1 9r(ri) —d F., becomes greater than 3 (fig. 1(a)).
where N is the sample size] is the dimension of the data @ ®
spacegr(r;) are the thresholding weights (2), computed for ! . f SO
the empiric threshold” = 2.50¢. Thus, after the first iteration, w2 Ty
our oy is almost similar to LMS estimate*. Still, as seen in % = o oo' = o
the denominator of (12), a difference between the denoising 0.08
framework and the outlier rejection one is that, in the fattee ~oosf © @
estimatecs™ is computed using only the non-zero coefficients F004§ _ :;m“
instead of considering the total number of poin{s as in ‘”"02 : s ]|

[1], [2] and [5]. The reason is that, from a denoising point 0 10
O.f view, the estimate .Off IS relateq to the energy ofltheFig. 1. For different values of the shape parametemd a constant = 1:
signal. Moreover, our iterative algorithm computes aniahit (2) evolution ofFu,; (b) evolution of the final threshold; (c) probability
thresholdT} = F,,,00, Which is used further on to compute?(lwl > Tix): (d) variance of coefficientso, |w| > Ty . Plots in (b)—(d)

. . also present threshold, probability and variance evatuti two other outlier
new estimates oby. For oo = 1, the final threshold (after detection methods: iteratives denoising [2], [5] and LMS [6].

Convergence.) 'SFIF ~ 2.29. It is interesting t.o notice t.hat 3) Simulations:We conclude with two simulations: the first
another out||e_r rejection thres_hold Ipro_posed in 6, p. 260] one presents the outlier rejection results of the algorthhile
\/Xa,0.075» Which equals 2.24 in univariate framewatk= 1. the second one gives some denoising results.

2) The generalized Gaussian cashiteresting points are  Qutlier rejection: We have randomly generated 9 samples
the evolution (for different shapeg) of the final threshold of 10 000 points according to 3 pdf's (Laplacian, uniform
Tk (solution of (4) for Fy = Fupm, fig. 1(b)), as well as and Gaussian), each one with 3 valuesr00.5, 1 and 2. A
the probability of “large” coefficientsw (i.e. |w| > Tk). thousand outliers were generated according to two Gaussian
Considering zero—mean GG pdf’s, this probability writes: |qws (500 for each, means +/5=1, see fig. 2). Three outlier

Tk

1 _ —(Bw)™ 2Numerically, Fur — /3 whenu — oo, while the generalized Gaussian
plwl >Tx) =1-2 ./0 ae dw. (13) pdf tends towards an uniform lajw-+/3, v/3].



rejection algorithms £,,,,, 30 and LMS thresholding) were To conclude, it is important to note that iterative de-
used to estimate the standard deviatioron the remaining noising/outlier rejection techniques, should be used fam-n
points. The mean absolute value of the estimation eféor-( stationary transients extraction from stationary noisg ita
o|) obtained with our algorithm is about 6.5%, compareff]). The convergence condition we introduced, thoughiitds

to 10.3% for 3o thresholding and to 11.5% for LMS (seea necessary condition because of the minoration (6), favaur
example fig. 2). Still, the LMS estimator performs better foquasi-maximal information extraction. On the contrargloes
the Gaussian sample with=2, when outliers and data arenot guarantee a completely noise-free signal, as manye‘fals
highly superposedi rs=2.11, 6, =2.15, 63=2.21. alarms” may exceed the minimal threshold. Further treatmen

am

Denoising:We have used the four noise-free classic signai@king into accouna priori knowledge on the noise, may be
(x =Blocks, Bumps, HeaviSinand Doppler) proposed by used to separate informative outliers freng.impulsive noise.
Donoho and Johnstone [8]. They were normalized to a com-
mon arbitraryo,, = 3.5. A first test was conducted on 2048 VI. CONCLUSION
points signals [8] and a second one on the same signals withn this communication, the iterative fixed-point wavelet
1024 zeros added on both sides, thus enforcing their tnainsidenoising method studied in [1] is related to more general
nature. Nine types of random noige(Laplacian, uniform and outlier rejection techniques. Under certain conditiordigble
Gaussian, each one with three valuegpf0.5, 1 and 2) were generalized Gaussian modelling of the wavelet coefficjents
added to the noise-free signals. As in [8], we performedra8 we propose a parameter free method for threshold computa-
wavelet decomposition of depth 5 and we computed denoidémh. This method adapts to the shape of the distribution law
estimatesz using 4 hard-thresholding algorithms: iterativeand it ensures convergence to a non null point: it yields a
F,.., and3c, VisuShrinkand SureShrinkResults (mean squarenon void robust estimation subset of representative paints
errors averaged for the 9 types of noise) are summarizéda wavelet denoising framework, a non zero noise estimate.
in Table I: for the first test,Fy,, thresholding performs Under Gaussian assumptions, our method relates to classica
worse thanVisuShrinkbut better thanSureShrink while it  outlier rejection methods as LMS- gi?-based thresholds [6].
outperforms both for the second one. Further increase of thdn a wavelet denoising framework, the present method out-
signals length by zero-padding leads to MSE of intermedigterforms classical thresholding methods\asuShrink(7T" =
values betweeivisuShrinkand SureShrinkmore outliers are ogv/21In N) or SureShrin8] under certain conditions (tran-
detected (mainly small scale coefficients, better reptesen sient non-stationary signals), and it can be envisaged as an
the sample due to the nature of the wavelet decompositioalternative forSureShrinkin general situations. Moreover, it
and the signal has a noisier appearance. The same observatim be seen as a part of a more complete processing method,
holds when applying iterative),,,, thresholding independently dedicated to a quasi-maximum information extraction.

for each scale, which again is quite natural. In a more general framework, our method ensures a quasi
optimal identification for “common”, close to the (previdus
woof (=5 |\” ¥ @ estimated) mean, points: this property is useful, for eXamp
sool| = Tao | i 0 ] in robust parameter estimation in clustering algorithms.
S Ts | i

0

e e N A . REFERENCES
1000 : : (b}
500 : : | [1] R. Ranta, C. Heinrich, V. Louis-Dorr, and D. Wolf, “Inetation and

: ‘ : improvement of an iterative wavelet-based denoising nigth&EEE

o

Signal Processing Lettersol. 10, no. 8, pp. 239-241, 2003.

1000 - 7 o [2] J.-L. Starck and A. Bijaoui, “Filtering and deconvoloii by the wavelet
transform,” Signal Processingvol. 35, pp. 195-211, 1994.
500 : . : 1 [3] R. Coifman and M. Wickerhauser, “Adapted waveform désimy for
0 medical signals and image$EEE Engineering in Medicine and Biology
8 6 -4 -2 0 2 4 6 8 Magazine vol. 14, no. 5, pp. 578-586, 1995.
Fig. 2. Histograms and outlier rejection thresholds foruated data¢ =  [4 —— "Experiments with adapted wavelet de-noising fordicel signals
1): (a) Laplacian dataZ(ram, = 2.78, Tse = 2.58, Tryms = 2.07); (b) and images,” inTime-Frequency and Wavelets in Biomedical Engineer-
uniform data Tram = 2.93, Tso = 3.02, Trys = 3.54); (c) Gaussian ing, M. Akay, Ed. |EEE Press, 1998, pp. 323-346.
data Cram = 3.01, Tso = 2.98, T s = 2.76). [5] L.Hadjileontiadis, L. Liatsos, C. Mavrogiannis, T. Rals, and S. Panas,

“Enhancement of bowel sounds by wavelet-based filterieE Trans-
TABLE | actions on Biomedical Engineeringol. 47, no. 7, pp. 876-886, 2000.
DENOISING RESULTS FOR THE4 TESTED ALGORITHMS(MSEBETWEEN [6] P. Rousseeuw and A. LeroRobust regression & outlier detectionJohn

AND &, AVERAGED OVER 10 SIMULATIONS FOR THE9Q TYPES OF NOISH. Wiley & Sons, 1987. ) ) )
[7] S. Mallat, A wavelet tour of signal processingAcademic Press, 1999.

[ Blocks | Bumps | HeaviSine | Doppler [8] D. _Donoho _and I._ Johnstone, “Ideal spatial adaptatioa wiavelet
Test 1 — Original Signals [8] shrinkage,"Biometrika vol. 81, pp. 425-455, 1994.
Fom 2.0117 | 45774 1.4094 2.0085 [9] A. Antoniadis, J. Bigot, and T. Sapatinas, “Wavelet mstiors in
30 3.3536 | 3.6833| 1.8107 2.2572 nonparametric regression: a comparative simulation stubburnal of
VisuShrink | 3.4991 | 4.1804 1.0049 1.8386 Statistical Softwarevol. 6, no. 6, pp. 1-83, 2001.
SureShrink| 4.2392 | 4.8318 2.2043 2.9815 [10] A. Pizurica, V. Zlokolica, and W. Philips, “Noise redian in video
Test 2 - Zero-padded signals sequences using wavelet-domain and temporal filteringSRE Con-
Fom 50052 | 2.0447 0.9465 17317 ference “Wavelet Applications in Industrial ProcessingProvidence,
30 21572 | 2.2584 1.4166 1.6380 Rhode Island, USA, October 2003.
VisuShrink | 2.1919 | 2.5256 0.8654 1.3134 [12] I Grads_hteyn and |. RyzhikTable of integrals, series and products
SureShrink| 2.9444 | 3.3099 | 1.7489 | 2.2924 Academic Press, 1980.




