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Iterative wavelet–based denoising methods and
robust outlier detection

R. Ranta, V. Louis-Dorr, C. Heinrich, and D. Wolf

Abstract— The goal of this letter is to study convergence
conditions for a previously presented iterative wavelet denoising
method [1] and to shed light on its relationship with outlier
rejection. This method involves a user-defined parameter, which
must fulfill certain conditions in order to ensure denoising.
Using generalized Gaussian modelling for the wavelet coefficients
distribution, we obtain a lower bound for this parameter, adapted
to the shape of the distribution. Thresholding of the wavelet
coefficients can then be achieved with a parameter-free algorithm.
The properties of this threshold are examined and the proposed
method is compared with other classical rejection methods.

I. I NTRODUCTION

The starting point of the research presented in this letter is
the iterative wavelet–denoising method initially proposed by
Starck and Bijaoui [2] and Coifman and Wickerhauser [3], [4],
applied by Hadjileontiadiset al. [5] to physiological sounds
analysis. This method is particularly adapted to non-stationary
transient extraction from stationary (but not necessarilyGaus-
sian) noise [2], [5]. The denoised signal is estimated usingan
iterative scheme, yielding successive refinements of this signal:
at each iteration, the largest wavelet coefficients of the residual
noise contribute to the current estimate of the denoised signal.

From a statistical point of view, large wavelet coefficients
characterizing non-stationary transients can be considered as
outliers,i.e., points that strongly influence second order statis-
tics as the standard deviationσ. Iterative thresholding algo-
rithms can then be seen asiterative outlier deletionschemes
(see Rousseeuw and Leroy [6, p. 254]), used to separate a
subset of (small) noise-representative wavelet coefficients from
the (large) outliers, further on used to reconstruct the denoised
signal (one must notice that the method does not separate noisy
artifacts from informative transients).

In a previous work [1], we have shown that if no best
basis procedure is considered (as in [4]), iterative denoising
(or, equivalently, iterative outlier deletion) may be seenas a
fixed-point algorithm determining independent thresholdsfor
each scale. The goal of this letter is to analyse and determine
convergence conditions for this fixed-point algorithm by intro-
ducing generalized Gaussian (GG) modelling of the wavelet
coefficients, without any prior information on the noise.
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This letter is organized as follows. In the second section,
we recall the iterative denoising principle, its fixed-point
interpretation and the subsequent algorithm [1]. In the third
section, we analyse the convergence of this algorithm to a non
null fixed-point (i.e. denoising threshold) in the light of the
probability law of the wavelet coefficients. The fourth section
proposes modelling of the coefficients by GG probability
density function (pdf) and introduces a convergence condition
for the fixed-point algorithm depending on the GG parameters.
The properties of the method both from outlier rejection and
denoising points of view, as well as some simulation results,
are presented in the Section V, followed by the conclusion.

II. I TERATIVE WAVELET–BASED DENOISING METHODS

We consider the modelz = x + n, where z is the
given discrete–time signal to be denoised,x is the noise–free
unknown version ofz andn the noise. Orthogonal wavelet
decomposition ofz is written as

z =
∑

p,j

wj,p
z ψj,p +

∑

p

wM,p
z φM,p,

where j is the scale,p the position,ψ the wavelet,φ the
scaling function andM the analysis depth [7].

Classical denoising methods asVisuShrinkandSureShrink,
introduced by Donoho and Johnstone [8], perform a one-step
thresholding to separate supposedly Gaussian noise coeffi-
cients from large signal coefficients (see also [9] for differ-
ent thresholding techniques). The iterative denoising scheme
proposed in [2], [3], [5] writesz = x̂k + n̂k, wherek is the
iteration step. The current noise estimationn̂k, initialized for
k = 0 as n̂0 = z, is decomposed to obtain the noise co-
efficients vectorΩn,k. By thresholdingΩn,k, one obtains the
current “peeled off layer”Ω∆x,k+1. The new noise coefficient
vectorΩn,k+1 is obtained fromΩ∆x,k+1 + Ωn,k+1 = Ωn,k.

In the case of iterative methods, threshold computing can
be done either by considering a user-chosen proportion of
large coefficients (which can be seen as a nonparametric
outlier detection technique) or by classical`2 criteria, based
on standard deviation of the coefficientsσ (again a classical
outlier rejection method based on Euclidean or Mahalanobis
distance). Thresholding can be done independently for each
scale of the decomposition or globally for the complete vector.
We consider here the complete noise coefficients vectorΩn,k

at iterationk and σk its standard deviation (scale by scale
generalization is immediate). The nonstationary transients de-
tection algorithm [2], [5], which uses aǹ2 iterative outlier
deletion method and a unique orthogonal wavelet basis, writes:

1) computeσk as (σk)
2

= 1
N

‖Ωn,k‖2;
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2) compute the thresholdTk+1 = Faσk, where Fa is a
user–defined constant. A classical choice isFa = 3, as
in [2] and [5]. One can also recognize the threshold pro-
posed by the RLS (Reweighted Least Squares) algorithm
described in [6], which uses an empiricFa = 2.5;

3) computeΩn,k+1, Ω∆x,k+1 by Tk+1-thresholdingΩn,k;
4) computen̂k+1 and ∆xk+1 as wavelet reconstructions

of Ωn,k+1 and Ω∆x,k+1 respectively, and set̂xk+1 =
x̂k + ∆xk+1;

5) loop to the top until a certain stop criterion is reached.

The classical stop criterion is:

STCk+1 = ‖n̂k‖2 − ‖n̂k+1‖2 ≤ ε, (1)

with ε a (small) user chosen parameter. In a denoising frame-
work, a smallSTC means that little or no energy is lost by
the noise estimate between two steps. In an outlier rejection
framework, choosingε = 0 leads to the classical iterative
outlier deletion algorithm described in [6, p. 254].

Adapting the scale by scale approach presented in [1] for
ε = 0 to the complete vector of the wavelet coefficients, this
algorithm boils down to a fixed point descent:

1) computeσk as (σk)
2

=
1

N

∑

p,j

(

wj,p
z gTk

(wj,p
z )

)2
,

wheregTk
(wj,p

z ) are coefficients weights:

gTk
(x) =

{

1, if |x| < Tk,
0, if |x| ≥ Tk;

(2)

2) computeTk+1 = Faσk and loop till convergence.

Considering functionf defined as

f(x) = Fa

√

1

N

∑

p,j

(

wj,p
z gx(wj,p

z )
)2

, (3)

the final threshold is computed by the fixed-point descent
algorithmTk+1 = f(Tk). The values of the functionf depend
on the user constantFa, which must be lower bounded in order
to ensure the existence of a non null fixed point (i.e. denoising
threshold), otherwise the estimated noise vanishes (n̂ = 0) and
the denoised estimatêx equalsz [1].

III. A PROBABILISTIC APPROACH

The goal of this section is to study the existence of the
aforementioned lower bound forFa in a probabilistic frame-
work. In fact, wavelet coefficientsw can be considered as
a sample issued from a zero mean symmetric continuous
probability density lawp(w) (the zero-mean condition can
easily be adapted to non-zero previously estimated means).
Under this assumption, the function (3) can be rewritten as:

f(T ) = Faσ|w|<T = Fa

√

2

∫ T

0

p(w)w2dw. (4)

Proposition 1 Consider that the wavelet coefficients follow
a probability density functionp(w) with a zero mean, finite
variance and a mode in 0. A sufficiency condition for the
existence of a final thresholdTf ∈ [a, b] with a, b > 0 (i.e., of a
non-null fixed-point for the function (3)) isFa ≥

√

3/2ap(a).

Proof: A function f(x) continuous on an interval[a, b]
has a fixed point in[a, b] if ∀ x ∈ [a, b], f(x) ∈ [a, b]. As the
function (4) is monotone increasing, we must prove that there
exists an interval[a, b] with f(b) ≤ b andf(a) ≥ a.

a) f(b) ≤ b: Sincep(w) has a finite variance andFa is
finite, M = Faσw exists and

∀ b ≥ M, f(b) = Faσ|w|<b ≤ M ≤ b. (5)

b) f(a) ≥ a: Let a > 0. Considering part integration:

[f(a)]
2

= 2F 2
a

[

p(w)
w3

3

∣

∣

∣

∣

∣

a

0

−
∫ a

0

p′(w)
w3

3
dw

]

.

Under the initial hypothesis,p(w) has a mode in 0. One can
find a such asp(w) is decreasing on]0, a]. Then, the derivative
p′(a) < 0, so

∫ a

0
p′(w)w3

3 dw < 0 and

[f(a)]
2

> 2F 2
a p(a)

a3

3
. (6)

Hence the implication:2F 2
a p(a)a3

3 ≥ a2 ⇒ [f(a)]
2 ≥ a2, so

Fa ≥
√

3

2ap(a)
⇒ f(a) ≥ a. (7)

Consequently,f(x) has at least one fixed pointTf ∈ [a, b].

IV. GENERALIZED GAUSSIAN MODELLING

In the previous section, we have shown that under certain
realistic conditions on the pdf of the wavelet coefficients,a
multiplicative constantFa greater than a defined value (7)
ensures the convergence of the algorithm to a non null point.
This section aims to find a precise way to compute this lower
bound1, notedFam, using a generalized Gaussian (GG) model
for the pdf of the wavelet coefficientsp(w):

pσ,u(w) = αe−|βw|u with (8)

β =
1

σ

√

Γ(3/u)

Γ(1/u)
, α =

βu

2Γ(1/u)
, Γ(u) =

∫ ∞

0

e−xxu−1dx,

where σ is the standard deviation andu > 0 is the shape
parameter of the probability law (u=2 for a Gaussian and
u=1 for the Laplace pdf). Generalized Gaussians are widely
used to model wavelet coefficients distribution (especially in
natural images processing, see for example [10]) and respect
the conditions of proposition 1 (p′(w) < 0, ∀w > 0, symmetric
about the mean and finite even moments).

In (8), parameterβ is positive. Inequality (7) can then be
written (for anya > 0):

Fa ≥
√

3

2aα
e(βa)u , that is a ≥ 3

2αF 2
a

e(βa)u

. (9)

The goal is to determine the lowest value ofFa (denoted
Fam) such that there exists onea > 0 verifying (9). Since
the mappingq : a 7→ q(a) = 3

2αF 2
a

e(βa)u

is strictly convex,
it can have 0, 1 or 2 intersection points with the identity line
y(a) = a. Thus,Fam is obtained whenq(a) is tangent (at a

1Condition (7) being sufficient but not necessary, one might find lower
values ofFa ensuring the convergence of the algorithm.
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point of abscissaa0) to the liney = a. The boundFam and
the abscissaa0 must then verifyq(a0) = a0 (for Fa = Fam)
andq′(a0) = 1 (also forFa = Fam), which writes

3

2αF 2
am

uβuau−1
0 e(βa0)

u

= 1. (10)

A straightforward computation yields the boundFam:

Fam =

√

3β

2α
(ue)

1

u =

√

3Γ( 1
u
)

u
(ue)

1

u . (11)

The lower boundFam is independent ofσ and depends only on
the shape parameteru (see fig. 1(a)). For denoising, a different
Fam(j) can be computed for each decomposition scalej.

V. D ISCUSSION

First of all, it is important to note that the initial standard
deviation estimateσ0 that we use in our algorithm (as in [2],
[5]) is a classical second order one (the square root of the
variance), different from the one proposed by Rousseeuw and
Leroy [6] (outlier rejection) and Donoho and Johnstone [8]
(wavelet denoising), which is based on the median and equals
1.4826 med

i
ri, whereri = wi−ŵi are the regression residuals

for the coefficientswi (in the univariate casêwi is the estimate
of the location and it equals 0 for wavelet denoising).

1) Gaussian case:For Gaussian distributions (u=2), the
computed value ofFam used to estimate the rejection thresh-
old is≈ 2.49, which is particularly close to the empirical value
of 2.5 proposed by Rousseeuw and Leroy [6, p. 17]. Using
this threshold, the final “robust scale estimate”σ∗ of the LMS
algorithm (Least Median Squares[6, p. 202]), is obtained as:

σ∗ =

√

√

√

√

∑N
i=1 gT (ri)r2

i
∑N

i=1 gT (ri) − d
, (12)

whereN is the sample size,d is the dimension of the data
space,gT (ri) are the thresholding weights (2), computed for
the empiric thresholdT = 2.5σ0. Thus, after the first iteration,
our σ1 is almost similar to LMS estimateσ∗. Still, as seen in
the denominator of (12), a difference between the denoising
framework and the outlier rejection one is that, in the latter, the
estimateσ∗ is computed using only the non-zero coefficients
instead of considering the total number of pointsN , as in
[1], [2] and [5]. The reason is that, from a denoising point
of view, the estimate ofσ is related to the energy of the
signal. Moreover, our iterative algorithm computes an initial
thresholdT1 = Famσ0, which is used further on to compute
new estimates ofσk. For σ0 = 1, the final threshold (after
convergence) isTK ≈ 2.29. It is interesting to notice that
another outlier rejection threshold proposed in [6, p. 260]is
√

χ2
d,0.975, which equals 2.24 in univariate frameworkd = 1.

2) The generalized Gaussian case:Interesting points are
the evolution (for different shapesu) of the final threshold
TK (solution of (4) for Fa = Fam, fig. 1(b)), as well as
the probability of “large” coefficientsw (i.e. |w| > TK).
Considering zero–mean GG pdf’s, this probability writes:

p(|w| > TK) = 1 − 2

∫ TK

0

αe−(βw)u

dw. (13)

Using the substitutionx = (βw)u and the integral formula
3.381(1) in [11]:

∫ t

0
xν−1e−µxdx = µ−νγ(ν, µt), the above

mentioned probability becomes (see fig. 1(c)):

p(|w| > TK) = 1 − γ
(

1
u
, (βTK)u

)

Γ
(

1
u

) . (14)

In the above equations,γ(a, z) =
∫ z

0
e−tta−1dt, with Re(a)>

0, is the lower incomplete Gamma function. The part of the
variance corresponding to the large coefficients is (fig. 1(d)):

var(|w| > TK) = 1 − γ
(

3
u
, (βTK)u

)

Γ
(

3
u

) . (15)

Results similar to (14) and (15) were obtained by Pizuricaet
al. [10] in a Bayesian denoising framework. As seen in fig.
1(c), for heavy-tailed distributions (smallu) the probability
of having a coefficient|w| > TK increases: if the number
of outliers increases, the algorithm detects more and an
energetic gain appears (fig. 1(d)). Conversely, for “compact”
distributions (largeu), outlier detection probability tends to
zero2. Figure 1(b)–(d) also presents outlier rejection results for
another two methods: classical3σ rejection and Rousseeuw’s
LMS rejection. For the latter method the final threshold is ob-
tained after a one-step iteration (TF = 2.5σ0), with the initial
scale estimate computed asσ0 = 1.4826 med |wi| (the median
med |wi| for GG pdf’s is computed using the same integral
formula 3.381 in [11]). Our method rejects more outliers than
the LMS for a shape parameteru ' 1.75 (u ' 0.8 for iterative
3σ rejection). For distributions havingu ' 6.6, neither of both
classic methods rejects any point. On the contrary, for peaked
distributions, our method is more conservative than the LMS.
Concerning the iterative3σ rejection, its convergence to a non
null point it is not guaranteed foru / 0.8, as the computed
Fam becomes greater than 3 (fig. 1(a)).
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Fig. 1. For different values of the shape parameteru and a constantσ = 1:
(a) evolution ofFam; (b) evolution of the final thresholdTK ; (c) probability
p(|w| > TK); (d) variance of coefficientsw, |w| > TK . Plots in (b)–(d)
also present threshold, probability and variance evolution for two other outlier
detection methods: iterative3σ denoising [2], [5] and LMS [6].

3) Simulations:We conclude with two simulations: the first
one presents the outlier rejection results of the algorithm, while
the second one gives some denoising results.

Outlier rejection: We have randomly generated 9 samples
of 10 000 points according to 3 pdf’s (Laplacian, uniform
and Gaussian), each one with 3 values ofσ: 0.5, 1 and 2. A
thousand outliers were generated according to two Gaussian
laws (500 for each, means +/-5,σ=1, see fig. 2). Three outlier

2Numerically,Fam →
√

3 whenu → ∞, while the generalized Gaussian
pdf tends towards an uniform law[−

√
3,
√

3].
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rejection algorithms (Fam, 3σ and LMS thresholding) were
used to estimate the standard deviationσ on the remaining
points. The mean absolute value of the estimation error (|σ̂ −
σ|) obtained with our algorithm is about 6.5%, compared
to 10.3% for 3σ thresholding and to 11.5% for LMS (see
example fig. 2). Still, the LMS estimator performs better for
the Gaussian sample withσ=2, when outliers and data are
highly superposed:̂σLMS=2.11, σ̂Fam

=2.15, σ̂3=2.21.

Denoising:We have used the four noise-free classic signals
(x =Blocks, Bumps, HeaviSineand Doppler) proposed by
Donoho and Johnstone [8]. They were normalized to a com-
mon arbitraryσx = 3.5. A first test was conducted on 2048
points signals [8] and a second one on the same signals with
1024 zeros added on both sides, thus enforcing their transient
nature. Nine types of random noisen (Laplacian, uniform and
Gaussian, each one with three values ofσn: 0.5, 1 and 2) were
added to the noise-free signals. As in [8], we performed asym8
wavelet decomposition of depth 5 and we computed denoised
estimatesx̂ using 4 hard-thresholding algorithms: iterative
Fam and3σ, VisuShrinkandSureShrink. Results (mean square
errors averaged for the 9 types of noise) are summarized
in Table I: for the first test,Fam thresholding performs
worse thanVisuShrinkbut better thanSureShrink, while it
outperforms both for the second one. Further increase of the
signals length by zero-padding leads to MSE of intermediate
values betweenVisuShrinkand SureShrink: more outliers are
detected (mainly small scale coefficients, better represented in
the sample due to the nature of the wavelet decomposition),
and the signal has a noisier appearance. The same observation
holds when applying iterativeFam thresholding independently
for each scale, which again is quite natural.

−8 −6 −4 −2 0 2 4 6 8
0

500

1000 (a)T
Fam

T
3σ

T
LMS

−8 −6 −4 −2 0 2 4 6 8
0

500

1000 (b)

−8 −6 −4 −2 0 2 4 6 8
0

500

1000 (c)

Fig. 2. Histograms and outlier rejection thresholds for simulated data (σ =
1): (a) Laplacian data (TF am = 2.78, T3σ = 2.58, TLMS = 2.07); (b)
uniform data (TF am = 2.93, T3σ = 3.02, TLMS = 3.54); (c) Gaussian
data (TF am = 3.01, T3σ = 2.98, TLMS = 2.76).

TABLE I

DENOISING RESULTS FOR THE4 TESTED ALGORITHMS(MSE BETWEENx

AND x̂, AVERAGED OVER 10 SIMULATIONS FOR THE9 TYPES OF NOISE).

Blocks Bumps HeaviSine Doppler
Test 1 – Original Signals [8]

Fam 4.0117 4.5774 1.4094 2.0085
3σ 3.3536 3.6833 1.8107 2.2572
VisuShrink 3.4991 4.1804 1.0049 1.8386
SureShrink 4.2392 4.8318 2.2043 2.9815

Test 2 - Zero-padded signals
Fam 2.0052 2.0447 0.9465 1.2317
3σ 2.1572 2.2584 1.4166 1.6380
VisuShrink 2.1919 2.5256 0.8654 1.3134
SureShrink 2.9444 3.3099 1.7489 2.2924

To conclude, it is important to note that iterative de-
noising/outlier rejection techniques, should be used for non-
stationary transients extraction from stationary noise (as in
[5]). The convergence condition we introduced, though it isnot
a necessary condition because of the minoration (6), favours a
quasi-maximal information extraction. On the contrary, itdoes
not guarantee a completely noise-free signal, as many “false
alarms” may exceed the minimal threshold. Further treatments,
taking into accounta priori knowledge on the noise, may be
used to separate informative outliers frome.g.impulsive noise.

VI. CONCLUSION

In this communication, the iterative fixed-point wavelet
denoising method studied in [1] is related to more general
outlier rejection techniques. Under certain conditions (reliable
generalized Gaussian modelling of the wavelet coefficients),
we propose a parameter free method for threshold computa-
tion. This method adapts to the shape of the distribution law
and it ensures convergence to a non null point: it yields a
non void robust estimation subset of representative pointsor,
in a wavelet denoising framework, a non zero noise estimate.
Under Gaussian assumptions, our method relates to classical
outlier rejection methods as LMS- orχ2-based thresholds [6].

In a wavelet denoising framework, the present method out-
performs classical thresholding methods asVisuShrink(T =
σ0

√
2 lnN ) or SureShrink[8] under certain conditions (tran-

sient non-stationary signals), and it can be envisaged as an
alternative forSureShrinkin general situations. Moreover, it
can be seen as a part of a more complete processing method,
dedicated to a quasi-maximum information extraction.

In a more general framework, our method ensures a quasi
optimal identification for “common”, close to the (previously
estimated) mean, points: this property is useful, for example,
in robust parameter estimation in clustering algorithms.
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