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equivalent approaches
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Abstract

This paper demonstrates the theoretical equivalence between the different solutions proposed in the

literature for the reference-estimation problem in electroencephalographic (EEG) recordings. By refer-

ence, we understand an unknown, non-null, time-varying potential, measured at the reference electrode

situated sufficiently distant from the measuring electrodes. Despite the theoretical equivalence of the

various approaches, they do not yield identical results in practice. This discrepancy is primarily due to

the practical implementation of the underlying approach. We show in this context that the most reliable

solution avoids blind source separation and montage transformation in addition to making full use of

available a priori knowledge.
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I. INTRODUCTION

An important issue for bio-potentials recording devices (EEG in particular) is to find a reference region

on the human body with as low to neutral electrical activity as possible. Indeed, the electrical activity at

the reference affects measurements at all other active electrode sites [3–6]. As pointed out by all cited

authors, it is impossible to find such a zero-potential reference, and all recording devices use the so-called

common reference (CR) montage:measuring electrodes are referenced to a particular chosenreference

electrode.
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In depth EEG recordings [5, 6], the signals are acquired fromintracranial contacts, placed along a

nail electrode inserted in the brain (see Fig. 1). In this setup, the reference electrode is placed on the

surface of the head, and the signal it records is assumed to beuncontaminated by (in signal processing

terminology: independent of, or atleast uncorrelated with) the electrical activity recorded by the measuring

contacts1. However, although the reference potential is supposed independent of the depth sources, it is

not necessarily null: the surface reference electrode records also muscle and eye artefacts and might also

be contaminated by random noise. These extra-cerebral artefacts and noise appear on all measured signals,

as they are obtained as a potential difference electrical activity recorded by the measuring contacts and

the reference electrode.

To eliminate the influence of the reference electrode, and consequently to ease the interpretation and the

use of different signal processing techniques like synchrony measures (coherence and similar methods),

several montages have been derived from the CR recordings bysimple manipulations. In depth-EEG

signal analysis, the most commonly employed montage is the Bipolar Montage (BM), obtained by taking

the difference between two neighboring measuring contactsof a nail electrode. All depth signals are

interpreted by clinicians using this montage as images of the local neural activity, implicitly reference

free.

Still, both in scalp- and in depth-EEGs, direct measures obtained by the CR montage can be useful

for the interpretation, as they offer a global view complementary to the local view furnished by the BM

montage. Unfortunately, they are contaminated by the electrical activity recorded by the reference contact.

Hu, Stead and Worrel [5] proposed a first attempt to reduce this influence using an ICA-based blind

source separation (BSS) approach. A modification of this approach, replacing the ICA operator by a

principal component analysis (PCA) was later proposed by the same authors as a faster, more robust

solution [6].

The approach of [5] served as the motivation for [7], whereina simpler, more elegant and robust

solution was proposed by directly exploiting the particular structure of the mixing matrix. Moreover (see

[8]), this last semi-blind source separation solution (sBSS) was shown to be equivalent to the minimum

power distortionless response filter (MPDR), well known in array signal processing, and which also

maximises the signal-to-noise ratio (SNR).

1Although in practice this independence assumption is difficult to verify, current assumptions in EEG measurements state that

surface potentials are mainly generated by pyramidal neurons situated in the neo-cortex [1], and that the electrical activity of

the profound neural structures do not reach the surface of the head [2].
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Our communication here furthers the analysis presented in [8]. Specifically we demonstrate that the

BSS-based approaches of [5, 6] areidentical to the sBSS/MPDR solution and that the ICA (respectively,

PCA) operations suggested in [5, 6] are not onlyunnecessary but might potentiallydegrade the solu-

tion. This explains the discrepancy between the results obtained by the sBSS/MPDR approach and the

approaches of [5, 6], despite their theoretical equivalence.

Fig. 1: Depth EEG implantation scheme: the nail electrodes,having 10 to 15 measuring points, are

inserted in the brain, while the reference electrode is placed on the surface of the head

This paper is organized as follows: we first briefly present the signal model for the reference estimation,

followed by the approach of [5, 6]. Section IV then presents the sBSS/MPDR solution from [7, 8]. The

proof of the theoretical equivalence of all the approaches,which forms the main contribution of the paper,

is presented in Section V. This is followed by a discussion onthe implementation issues which explains

the significant performance differences between the algorithms.

II. SIGNAL MODEL

Regardless of the employed montage, the measured EEG signals at each of theM sensors can be

considered as a mixture of several unknown cortical sources, extra-cortical artefacts and noise. This is

compactly represented by the following signal model:

x(n) = As(n) (1)

wherex(n) ∈ R
(M×1) is the vector of observations at time instantn (measured EEG signals after sampling

and quantization) ands(n) ∈ R
(Q×1) is the corresponding vector of source realisations (underlying

brain activity) at the same instant. The different sourcessq are supposed to be at least uncorrelated

(E
{
sqsq′

}
= 0, ∀q 6= q′) if not statistically independent.A ∈ R

(M×Q) =
(
a1, . . . ,aQ

)
represents the

linear combination of the sources to yield the observation vectorx, whereaq ∈ R
(M×1). This model,
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also known as the instantaneous mixing model, is widely accepted in the EEG processing field [9]. For

ease of exposition, we will subsequently drop the time indexn.

Blind source separation (BSS) separates these mixed measured signals into “independent” sources,

which can be used either for artefact elimination or for (normal or pathological) brain activity evaluation

(see, for example, Sanei and Chambers [9] for a review).

The application of BSS that interests us in this paper is thatof reference identification and removal in

depth-EEG recordings. Prior work in this area was performedby Hu et al. [5, 6]. They make the basic

assumption that the non-zero reference signalr can be seen as a source, independent from the other brain

sources in the observed mixture, and present several BSS-based approaches to extract this source.

The signal model they consider is that of a common-referenceEEG recording, which is obtained by

modifying (1) as:

xc =




−1

A
...

−1





s
r


 , (2)

wherer is the non-zero reference signal andxc now denotes the vector of measured common-reference

EEG signals. This formulation is a straightforward result of referencing the potentials at the measuring

electrodes to the common reference electrode.

III. R EFERENCE ESTIMATION VIA BIPOLAR MONTAGE TRANSFORMATION

In [5, 6], the reference signal is estimated in two stages. Inthe first stage the CR montage of (2) is

transformed into the bipolar montage (BM) by computing pair-wise differences of the signals inxc. In

matrix form, this transform can be written as a left multiplication by ablocking matrix B of dimensions

(M − 1)×M :

B =




1 −1 0 · · · 0

0 1 −1 · · · 0
...

. .. . . . · · ·
...

... · · · 1 −1 0

0 · · · 0 1 −1




. (3)

The correspondingM − 1 dimensional BM signal vector is then:

xb = Bxc . (4)
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In the second stage, these BM signals are decomposed intoP ≤ M − 1 independent ([5]) or principal

([6]) components:

sica = Gicaxb = GicaBxc (5)

spca = Gpcaxb = GpcaBxc (6)

These reference-free signals are then utilized to obtain anestimate ofr as:

r̂ = −
1

M

M∑

m=1

(
xc,m −

P∑

l=1

E
{
xc,msl

}

E
{
s2
l

} sl

)
, (7)

where thexc,m are the elements ofxc, andsl is the l th source recovered from either (5) or (6) such

that:

E
{
slsl′

}
= 0, ∀l 6= l′ , (8)

where the condition in (8) is guaranteed due to the properties of the ICA and PCA transforms.

IV. SBSS/MPDRREFERENCE ESTIMATION

The independent reference estimation problem was approached differently by [7] and [8]. Starting from

the same model of equation (2), and assuming that the reference can be found as a linear combination

of the measured signals, the authors observed that applyingBSS to estimate a full separation matrix is

not necessary, as in fact only one source (namelyr) needs to be estimated, and it has a known mixing

column. For this, one row of the full separation matrix suffices.

This observation was exploited in [7], wherein a so-called semi-blind source separation method was

proposed. This approach was shown, in [8], to be equivalent to a constrained power minimisation

approach, well known in array literature as the minimum power distortionless response (MPDR) approach.

It was further shown in [8] that this solution also maximisesthe signal-to-noise ratio and thus is the

optimal solution in terms of least squared error.

This solution yields the reference estimate as:

r̂ = w
T
xc , with w = −

Φ
−1
xcxc

1TΦ
−1
xcxc

1
1 (9)

whereΦxcxc
= E

{
xcx

T
c

}
is the correlation matrix of the measured signalsxc and1 is a vector of ones.
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V. PROOF OF EQUIVALENCE AND IMPLEMENTATION ISSUES

Numerical simulations presented in [7] show that the sBSS/MPDR approach outperforms the bipo-

lar/FastICA method proposed by [5], especially for noisy signals. Similar simulations (not presented here)

show that by changing the BSS algorithm from FastICA to SOBI-RO also leads to different performances.

Finally, Hu et al. [6] also confirmed that the use of PCA instead of FastICA leadsto better results. These

observations tend to suggest that the methods are essentially different. As it will be shown next, this is

not the case.

Indeed, equation (7) may be expressed in a more compact manner as follows:

r̂ = −
1

M
1
T

(
xc − E

{
xcs

T
}
Φ

−1
ss

s

)
, (10)

whereΦ
ss

is a diagonal matrix such that[Φ
ss
]l,l = E

{
s2l

}
(which is an identity matrix if BSS is used

as in [5]). We may further simplify (10) by substituting fors from (5) (resp. (6)) as:

r̂ = −
1

M
1
T
(
xc − E

{
xcx

T
c

}
B

T
G

T
Φ

−1
ss

GBxc

)
(11)

Recognizing thatΦ
ss

= GBΦxcxc
B

T
G

T , we finally obtain: Also, recognizing thatΦ
ss

= GBΦxcxc
B

T
G

T ,

whereΦxcxc
= E

{
xcx

T
c

}
is the correlation matrix ofxc, we finally obtain:

r̂ = −
1

M
1
T
(
xc−Φxcxc

B
T
G

T
(
GBΦxcxc

B
T
G

T
)
−1

GBxc

)
(12)

On the other hand, the solution of (9) can be factorized as:

r̂ = −
1
T
Φ

−1
xcxc

1TΦ
−1
xcxc

1
xc

= −
1

M
1
T
(
xc−Φxcxc

B
T
(
BΦxcxc

B
T
)
−1

Bxc

)
,

(13)

whereB is the bipolar transform from (4). This factorisation is demonstrated in [10].

Note, firstly, the similarities between (12) and (13). In thecase that the ICA and PCA transforms

preserve the rank (i.e., no dimension reduction is applied and theGica andGpca are fully ranked, square

matrices of dimensions(M − 1)), the matrix(GBΦxcxc
B

T
G

T )−1 may be factorized as:

(GBΦxcxc
B

T
G

T )−1 = G
−T (BΦxcxc

B
T )−1

G
−1 (14)

Substituting this value in (12) it is easy to see that the solution of [5, 6] is identical to the MPDR solution

of [7, 8]. The PCA (resp. ICA) transforms areredundant.
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VI. I MPLEMENTATION ISSUES

Still, despite this formal proof of equivalence, the numerical results are worse when using Hu’s method

with FastICA [5] than when using sBSS/MPDR approaches [7, 8]or PCA based method from [6]. Clearly,

some assumptions made while proving the theoretical equivalnce of the approaches are not respected when

using FastICA. Indeed, FastICA (and also other BSS algorithms, especially the iterative ones), sometimes

fails to converge toa full rankedGica and to retrieveM − 1 independent sources. This indicates that the

ICA approach has discarded some sources, which then end up corrupting the reference estimate in (12).

In general, where the ICA and PCA approaches incorrectly perform dimension reduction (rank(G) <

(M − 1)) the approaches of [5, 6] would yield worse estimates ofr as compared to the sBSS/MPDR

approach. As shown in [7], this is especially true when the signals are noisy: in this case, a noise subspace

will be incorrectly separated from the signal subspace, resulting in a dimension reduction.

Another issue appears when using SOBI-RO and similar BSS algorithms. In this case, to be robust

to noise, a so-called robust whitening is introduced instead of the simple whitening. This leads to an

approximate orthogonalization ofs. Thereby (8) is violated, and the result of (12) is degraded.

Neither of these problems appear when using PCA without dimension reduction (equivalent to simple

whitening) or when using sBSS/MPDR approaches.

With respect to computational complexity: as the sBSS/MPDRapproach does not require any PCA,

ICA or BM transform, it has the least computational complexity. This point is anyway moot because,

as already demonstrated, the PCA/ICA transforms are unnecessary for the existing reference estimation

framework.

As a last point: the sBSS/MPDR approach is general and can be easily applied for estimating any

source if knowledge of its mixing coefficients are available.

VII. C ONCLUSION

The goal of this short paper was to show that different solutions proposed in the literature for reference

estimation in depth EEG signals are theoreticallystrictly equivalent, with the two-stage ICA-/PCA-based

approaches incorporating unnecessary transforms, which increase the computational complexity. Despite

this proof, the implementations are not numerically equivalent, because of the lack of robustness in

the two-stage ICA(resp. PCA)-based approaches. The sBSS/MPDR solution, on the other hand, makes

full use of the availablea priori knowledge and, in additional to lower computational burdenis also

numerically more robust.
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