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Abstract

This paper demonstrates the theoretical equivalence baties different solutions proposed in the
literature for the reference-estimation problem in eleeticephalographic (EEG) recordings. By refer-
ence, we understand an unknown, non-null, time-varying@l, measured at the reference electrode
situated sufficiently distant from the measuring electeod@espite the theoretical equivalence of the
various approaches, they do not yield identical resultsraciice. This discrepancy is primarily due to
the practical implementation of the underlying approack. $Now in this context that the most reliable
solution avoids blind source separation and montage wamsiftion in addition to making full use of

available a priori knowledge.
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. INTRODUCTION

An important issue for bio-potentials recording deviceB@&n particular) is to find a reference region
on the human body with as low to neutral electrical activisypmssible. Indeed, the electrical activity at
the reference affects measurements at all other activéradiecsites [3—6]. As pointed out by all cited
authors, it is impossible to find such a zero-potential exfee, and all recording devices use the so-called
common reference (CR) montagemeasuring electrodes are referenced to a particular choseference

electrode.
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In depth EEG recordings [5, 6], the signals are acquired fiotracranial contacts, placed along a
nail electrode inserted in the brain (see Fig. 1). In thisigethe reference electrode is placed on the
surface of the head, and the signal it records is assumed tmdmtaminated by (in signal processing
terminology: independent of, or atleast uncorrelated Milie electrical activity recorded by the measuring
contact$. However, although the reference potential is supposegpiewident of the depth sources, it is
not necessarily null: the surface reference electroderdscalso muscle and eye artefacts and might also
be contaminated by random noise. These extra-cerebrfd@gand noise appear on all measured signals,
as they are obtained as a potential difference electridalitgcrecorded by the measuring contacts and
the reference electrode.

To eliminate the influence of the reference electrode, andeguently to ease the interpretation and the
use of different signal processing techniques like symoyhrmeasures (coherence and similar methods),
several montages have been derived from the CR recordingsniyyle manipulations. In depth-EEG
signal analysis, the most commonly employed montage is thel® Montage (BM), obtained by taking
the difference between two neighboring measuring contatis nail electrode. All depth signals are
interpreted by clinicians using this montage as images efldkcal neural activity, implicitly reference
free.

Still, both in scalp- and in depth-EEGs, direct measuresiobt by the CR montage can be useful
for the interpretation, as they offer a global view complataey to the local view furnished by the BM
montage. Unfortunately, they are contaminated by the @tatactivity recorded by the reference contact.

Hu, Stead and Worrel [5] proposed a first attempt to reduceittiiuence using an ICA-based blind
source separation (BSS) approach. A modification of thisreaagh, replacing the ICA operator by a
principal component analysis (PCA) was later proposed leyséime authors as a faster, more robust
solution [6].

The approach of [5] served as the motivation for [7], wheraisimpler, more elegant and robust
solution was proposed by directly exploiting the particidaucture of the mixing matrix. Moreover (see
[8]), this last semi-blind source separation solution (SB®as shown to be equivalent to the minimum
power distortionless response filter (MPDR), well known imag signal processing, and which also

maximises the signal-to-noise ratio (SNR).

Although in practice this independence assumption is diffi verify, current assumptions in EEG measurements s$het
surface potentials are mainly generated by pyramidal msusituated in the neo-cortex [1], and that the electricliac of
the profound neural structures do not reach the surfaceeohdad [2].
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Our communication here furthers the analysis presente@]inSpecifically we demonstrate that the
BSS-based approaches of [5, 6] alentical to the SBSS/MPDR solution and that the ICA (respectively,
PCA) operations suggested in [5, 6] are not onhnecessary but might potentiallydegrade the solu-
tion. This explains the discrepancy between the resultailndd by the sBSS/MPDR approach and the

approaches of [5, 6], despite their theoretical equivadenc

Fig. 1. Depth EEG implantation scheme: the nail electrodesjing 10 to 15 measuring points, are

inserted in the brain, while the reference electrode isqaamn the surface of the head

This paper is organized as follows: we first briefly preseatdignal model for the reference estimation,
followed by the approach of [5, 6]. Section IV then presehts $BSS/MPDR solution from [7, 8]. The
proof of the theoretical equivalence of all the approacihwéch forms the main contribution of the paper,
is presented in Section V. This is followed by a discussionttamimplementation issues which explains

the significant performance differences between the dlyuos.

Il. SIGNAL MODEL

Regardless of the employed montage, the measured EEG sighalch of thel\/ sensors can be
considered as a mixture of several unknown cortical soumesa-cortical artefacts and noise. This is

compactly represented by the following signal model:
x(n) = As(n) 1)

wherex(n) € R(M*1 is the vector of observations at time instar{measured EEG signals after sampling
and quantization) and(n) € R(@*1 is the corresponding vector of source realisations (ugiheyl
brain activity) at the same instant. The different sourggsare supposed to be at least uncorrelated
(E{sqsq} = 0, Vg # ¢') if not statistically independentA € R(M*@) = (ay,...,ag) represents the

linear combination of the sources to yield the observatieatar x, wherea, € RWM 1) This model,

September 14, 2011 DRAFT



also known as the instantaneous mixing model, is widely @tecein the EEG processing field [9]. For
ease of exposition, we will subsequently drop the time index

Blind source separation (BSS) separates these mixed neehsignals into “independent” sources,
which can be used either for artefact elimination or for (nak or pathological) brain activity evaluation
(see, for example, Sanei and Chambers [9] for a review).

The application of BSS that interests us in this paper is dfia¢ference identification and removal in
depth-EEG recordings. Prior work in this area was perforimgdHu et al. [5, 6]. They make the basic
assumption that the non-zero reference signzdn be seen as a source, independent from the other brain
sources in the observed mixture, and present several BS&iapproaches to extract this source.

The signal model they consider is that of a common-refer&t€@ recording, which is obtained by

modifying (1) as:

Xe= [A ) (2)

wherer is the non-zero reference signal andnow denotes the vector of measured common-reference
EEG signals. This formulation is a straightforward resilreferencing the potentials at the measuring

electrodes to the common reference electrode.

[1l. REFERENCE ESTIMATION VIA BIPOLAR MONTAGE TRANSFORMATION

In [5, 6], the reference signal is estimated in two stageghénfirst stage the CR montage of (2) is
transformed into the bipolar montage (BM) by computing peése differences of the signals i.. In
matrix form, this transform can be written as a left muliglion by ablocking matrix B of dimensions
(M —1) x M:

1 -1 0 0]

0 1 -1 0
B=|: "-. . ... . 3)

1 -1 0

0 - 0 1 -1

The corresponding/ — 1 dimensional BM signal vector is then:

x, = Bx,. 4)
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In the second stage, these BM signals are decomposed®irntal/ — 1 independent ([5]) or principal

([6]) components:
Sica = GicaXp = GicaBx, (5)
Spca = Gpcaxb = Gpcanc (6)

These reference-free signals are then utilized to obtaiestimate ofr as:
M P

- (wm 3 %go , ()

m=1 =1
where thez,,, are the elements at., ands; is thelth source recovered from either (5) or (6) such

that:
E{Eﬁl/} =0, Vi# U, 8)

where the condition in (8) is guaranteed due to the propedfaghe ICA and PCA transforms.

IV. SBSS/MPDRREFERENCE ESTIMATION

The independent reference estimation problem was appedatifferently by [7] and [8]. Starting from
the same model of equation (2), and assuming that the referesn be found as a linear combination
of the measured signals, the authors observed that appB&®)to estimate a full separation matrix is
not necessary, as in fact only one source (hamglgeeds to be estimated, and it has a known mixing
column. For this, one row of the full separation matrix sufic

This observation was exploited in [7], wherein a so-callethisblind source separation method was
proposed. This approach was shown, in [8], to be equivalend tconstrained power minimisation
approach, well known in array literature as the minimum prodigtortionless response (MPDR) approach.
It was further shown in [8] that this solution also maximighe signal-to-noise ratio and thus is the
optimal solution in terms of least squared error.

This solution yields the reference estimate as:

-1
~ T . XoXe
r=w'x., with w=—-——>-2°_1 9
¢ 17®; 5 1 ®)

where®, . = E{xch} is the correlation matrix of the measured signalsand1 is a vector of ones.
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V. PROOF OF EQUIVALENCE AND IMPLEMENTATION ISSUES

Numerical simulations presented in [7] show that the sBFIIR approach outperforms the bipo-
lar/FastICA method proposed by [5], especially for noigynsils. Similar simulations (not presented here)
show that by changing the BSS algorithm from FastICA to S@BJ-also leads to different performances.
Finally, Hu et al. [6] also confirmed that the use of PCA instead of FastICA ldadsetter results. These
observations tend to suggest that the methods are esbediffdrent. As it will be shown next, this is
not the case.

Indeed, equation (7) may be expressed in a more compact masriellows:

1
F= _MlT <xc -~ E{xch}<1>;;§> : (10)
where ® is adiagonal matrix such tha{®gs);; = E{s7} (which is an identity matrix if BSS is used

as in [5]). We may further simplify (10) by substituting ferfrom (5) (resp. (6)) as:
7= _%ﬂ (xc — E{x.x! }B"G"®_ GBx.) (11)

Recognizing tha®.. = GB®,_ . BT G”, we finally obtain: Also, recognizing thdi.. = GB®, . BTG”,

where®y . = E{xcch} is the correlation matrix ok., we finally obtain:
~ 1 _
e (xc—i’xcchTGT(GB@XCXCBTGT) 1GBXC> (12)

On the other hand, the solution of (9) can be factorized as:
17@ !
Tl 1%
17® 5.1 (13)
I 7 T -1
-1 (xc—‘I’xcch (B®y..B) Bxc) ,
whereB is the bipolar transform from (4). This factorisation is damtrated in [10].
Note, firstly, the similarities between (12) and (13). In itese that the ICA and PCA transforms
preserve the rank (i.e., no dimension reduction is applietithe Gi., and G, are fully ranked, square

matrices of dimension&M — 1)), the matrix(GB®, .. BTGT)~! may be factorized as:
(GB®x . B'G") ' = G T(B®, . B")"'G™* (14)

Substituting this value in (12) it is easy to see that thetswilof [5, 6] isidentical to the MPDR solution
of [7, 8]. The PCA (resp. ICA) transforms aredundant.
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VI. IMPLEMENTATION ISSUES

Still, despite this formal proof of equivalence, the nuroariresults are worse when using Hu’s method
with FastICA [5] than when using sSBSS/MPDR approaches [or8CA based method from [6]. Clearly,
some assumptions made while proving the theoretical ebpagaf the approaches are not respected when
using FastICA. Indeed, FastICA (and also other BSS algostrespecially the iterative ones), sometimes
fails to converge toa full ranke6;., and to retrieveld — 1 independent sources. This indicates that the
ICA approach has discarded some sources, which then endriypting the reference estimate in (12).

In general, where the ICA and PCA approaches incorrectlfopardimension reduction (rank(G) <
(M — 1)) the approaches of [5, 6] would yield worse estimates: @fs compared to the sBSS/MPDR
approach. As shown in [7], this is especially true when tigaals are noisy: in this case, a noise subspace
will be incorrectly separated from the signal subspacayltieg in a dimension reduction.

Another issue appears when using SOBI-RO and similar BS&itligs. In this case, to be robust
to noise, a so-called robust whitening is introduced ircstelithe simple whitening. This leads to an
approximate orthogonalization &f Thereby (8) is violated, and the result of (12) is degraded.

Neither of these problems appear when using PCA without iiioa reduction (equivalent to simple
whitening) or when using SBSS/MPDR approaches.

With respect to computational complexity: as the sBSS/MPdpRroach does not require any PCA,
ICA or BM transform, it has the least computational complexihis point is anyway moot because,
as already demonstrated, the PCA/ICA transforms are useapefor the existing reference estimation
framework.

As a last point: the sSBSS/MPDR approach is general and carabiéy e@pplied for estimating any

source if knowledge of its mixing coefficients are available

VIlI. CONCLUSION

The goal of this short paper was to show that different sohgtiproposed in the literature for reference
estimation in depth EEG signals are theoreticaltyctly equivalent, with the two-stage ICA-/PCA-based
approaches incorporating unnecessary transforms, wharkase the computational complexity. Despite
this proof, the implementations are not numerically egeig because of the lack of robustness in
the two-stage ICA(resp. PCA)-based approaches. The sBE3RVsolution, on the other hand, makes
full use of the availablea priori knowledge and, in additional to lower computational burdermlso

numerically more robust.
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