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Abstract: The general framework of this communi-
cation is phonoenterography. Our objective is the de-
velopment of a non-invasive medical exploratory tool
contributing to the functional study of the gastro-
intestinal physiology. Abdominal sounds are studied
for more than a century, but the results are rather
poor and sometimes contradictory [1–7]. Our main
hypothesis is that abdominal sounds, recorded upon
long periods of time and using several stethoscopes,
are useful for medical interpretation of the underlying
physiological activity, either normal or pathologic. In
order to check this hypothesis, we have developed a
complete signal processing and analysis toolbox, de-
scribed in the following section. Parts of this work
have been presented in [8–11]. This communication
presents the complete processing chain and introduces
new features added to the pre-processing step. Data
analysis is performed on a larger data base of abdom-
inal sounds, recorded on healthy volunteers.

Introduction

One of the oldest means of physiological inves-
tigation, still currently used in clinical routine, is the
auscultation. The instrumentation is simple (stethoscope)
and its utility is largely recognized especially for cardiac
and pulmonary sounds, but also for abdominal and fetal
sounds. Relatively little studied for the abdominal physi-
ological sounds (although the first papers appeared a cen-
tury ago [1]), it presents significant potentialities because
these sounds are rich in information [1–6, 12]. Still, med-
ical conclusions remain very few. In fact, abdominal aus-
cultation interpretation is particulary difficult, mainlybe-
cause of the sounds highly irregular character, their ran-
dom appearance, their inter-patient variability and finally,
because of the necessity of a long duration auscultation.

It is then interesting to develop an automatic tool for
clinical diagnosis and medical research, based on the sys-
tematic long-term recording and processing of the ab-
dominal sounds. One can assume that abdominal sounds

are an indication for the motor activity of the various seg-
ments of the gastro-intestinal tract: during digestion, the
bolus is transformed and transported along the digestive
tract, causing noises. Different application can be imag-
ined, from the study of the normal physiology to clinical
routine (functional diseases diagnostic aid, post-surgical
monitoring) or pharmacological research (medication ef-
fect on the gastro-intestinal activity).

The goal of our research is the construction of a “tool-
box” dedicated to the phonoenterogram processing, ca-
pable to provide medical interpretable data (i.e to dis-
tinguish various operating modes of the digestive tract).
This leads to a classical bio-medical signal processing ap-
proach, involving several aspects presented in the next
section of this communication:

• The instrumentation must allow a faithful record-
ing of the signals of interest, while minimizing the
incidence of the interfering signals. It must be robust
to possible changes in clinical conditions and it must
facilitate the medical validation, which is the “golden
standard” of all bio-medical research;

• The preprocessing of the acquired signals must
transform the rough signal into an interpretable one
by denoising, segmentation and localization. As parts
of this work have been presented in [8, 9], we will in-
sist here on a new method of denoising and segmen-
tation, which takes into account local dynamics of the
non-stationary explosive bowel sounds;

• One of the novelties of our approach is themulti-
channelparallel recording and processing of abdom-
inal sounds, permitting approximate localization of
the sounds source, as well as artifact elimination [11];

• Thefeature extraction and data analysissteps con-
sists of the choice and/or the definition of the features
allowing a description of the informative signals. Fur-
ther on, physiologically significant analysis must be
made in order to provide medical interpretable results
(see also [10]).

The third section will present our healthy volunteers data-



base, significantly enlarged since [10], and the results ob-
tained by applying our abdominal sounds analysis tool-
box to their recordings, taken in standardized conditions.
We show that abdominal sound analysis detects trends
in gastro-intestinal normal post-prandial activity and dis-
tinguishes among volunteers having different alimentary
habits. In the fourth and last section, conclusion and fu-
ture research directions are given.

Materials and methods

Our research is mainly methodological, so this
section constitutes the core of this communication.
As previously stated, it is organized in several sub-
sections: signal acquisition/instrumentation, segmenta-
tion/denoising method, multi-channel processing and
data analysis.

Data acquisition

Signal. Phonoenterograms are characterized by a
succession of isolated and short events, clearly separated,
whose frequency contents is relatively poor. They can ap-
pear in periodic bursts of activity (3 to 12 per minute, ac-
cording to the place and time of their generation) [1, 2].
The literature indicates maximum frequencies of the ab-
dominal sounds lower than 1000-1500 Hz. [4, 6, 12, 13],
even if other values are mentioned (5000 Hz for example
in [3]). The principal frequency of the abdominal sounds
is generally higher than the frequencies of the cardiac and
pulmonary sounds and sometimes a high-pass filtering at
80 Hz is used to eliminate their influence [4].

The literature description of the abdominal sounds is
confirmed by our observations. The signal consists of a
sparse succession of abdominal non-stationary impulsive
sounds (figure 1). Its characteristics vary according to
time, localization and patient. Its frequency contents is
band-limited: only approximately 0.5% of the signal en-
ergy is located beyond 1000 Hz, and this percentage goes
up to approximately 2% for frequencies between 500 -
2500 Hz, the phonoenterogram being energetic mainly
between 100 and 500 Hz (figure 2). The parts of the signal
which separate the sounds, called in the bibliography “pe-
riods of silence”, are not actually completely quiet. Noise
due to acoustic effects of the stethoscope and to other low
frequency physiological sounds (breathing, blood flow) is
superimposed to the informative signal and must be taken
into account in any further processing. Its frequency con-
tents is almost identical to that of the signal and it cannot
be eliminated by simple filtering.

Instrumentation. Most of the literature reports using
classic microphones for acquiring abdominal sounds (as
for example in [1, 2, 4, 12]). Recently, commercial elec-
tronic stethoscopes were used by Craineet al. [5, 6]. We
have followed the approach of Garner et Ehrenreich [3],
who adapt electret microphones to classic stethoscope
heads, as it seems that it was the most appropriate so-
lution to get auditive medical validation.
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Figure 1: Example of 6.5 seconds of phonoenterogram
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Figure 2: Typical phonoenterogram spectral contents

In fact, medical auscultation is performed by slightly
pressing the stethoscope head towards the patient’s ab-
dominal wall. It seems than important to estimate the in-
fluence of the stethoscope pressure on the recorded sound
characteristics. Therefore, we estimated the frequency re-
sponse of our sensor (microphone + stethoscope head)
using a abdomen phantom towards which the stethoscope
was pressed using different force values. As our goal was
not to properly simulate bowel sounds but to asses pres-
sure influence, the phantom we used was a lens-shaped
balloon with adjustable surface tension. The sensor was
pressed using calibrated weights, between 100 and 400 g,
with a 50 g step. Measures were done in an anechoidal
chamber, using a calibrated white noise source between
100 et 1000 Hz. As shown in figure 3, the frequency re-
sponses are very slightly influenced by the pressure and
show a similar gain over the frequency band of interest.
We concluded that the pressure does not significantly in-
fluence the abdominal sounds characteristics, so we could
proceed with our recording campaign, knowing that com-
parison and analyze of different volunteers recordings
were possible.
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Figure 3: Superimposed frequency responses for different
sensor pressures.

Acquisition protocol. Six-channels recordings were
performed during 168 minutes, at a sampling frequency
of 5 kHz, immediately following a standardized break-
fast. The six stethoscopes were placed as in figure 4.



Figure 4: Stethoscope placement and abdominal regions.

Denoising and segmentation

Before interpretation, phonoenterograms must be
denoised and segmented in individual sounds and, fur-
ther on, parallel multi-channel acquisition must be taken
into account for cross-validation and localization (as de-
scribed in the next sub-section).

We have presented our denoising and segmentation
technique in several communications before [8, 11],
therefore we will only briefly remind it here and we will
introduce a novel improvement, which better takes into
account the impulsive nature of the abdominal sounds.

Iterative wavelet denoising. We consider the model
z = x + n, wherez is the given discrete–time signal to be
denoised,x is the noise–free unknown version ofz andn
the noise. Orthogonal wavelet decomposition ofz writes:

z = ∑
p, j

w j,p
z ψ j,p + ∑

p
wM,p

z φ M,p, (1)

where j is the scale,p the position,ψ the wavelet,φ the
scaling function andM the analysis depth [14].

Our denoising method develops the iterative wavelet–
denoising method initially proposed by Starck and Bi-
jaoui [15] and Coifman and Wickerhauser [16], applied
by Hadjileontiadiset al. [17] to physiological sounds
analysis. This method is particularly adapted to non-
stationary transient extraction from stationary (but not
necessarily Gaussian) noise [15, 17]. The denoised sig-
nal is estimated using an iterative scheme, yielding suc-
cessive refinements of this signal: at each iteration, the
largest wavelet coefficients of the residual noise con-
tribute to the current estimate of the denoised signal.

In a previous work [8], we have shown that if no best
basis procedure is considered (as in [16]), iterative de-
noising may be seen as a fixed-point algorithm determin-
ing independent thresholds for each scale. This interpre-
tation leads to an important reduction of the computing
burden as well as to a more rigorous way of parame-
terizing the algorithm. Moreover, in [11], we have an-
alyzed and determined convergence conditions for this
fixed-point method by introducing generalized Gaussian
(GG) modelling of the wavelet coefficients. This ap-
proach leads to a “minimal” denoising algorithm, com-
pletely parameter-free and ensuring a maximum informa-
tion extraction from the measured signal. The following
paragraph briefly recalls these results.

Using the notations in eq. (1), the iterative denoising
scheme originally proposed in [15–17] writesz = x̂k + n̂k,
wherek is the iteration step. The current noise estimation

n̂k, initialized for k = 0 asn̂0 = z, is decomposed to ob-
tain the noise coefficients vectorΩn,k. By thresholding
Ωn,k, one obtains the current “peeled off layer”Ω∆x,k+1.
The new noise coefficient vectorΩn,k+1 is obtained from
Ω∆x,k+1 +Ωn,k+1 = Ωn,k.

The iterative thresholdTk computing method used for
non–stationary transients detection in [15, 17] uses a clas-
sical`2 (outlier detection) criteria, based on the standard
deviationσk of the noise coefficients vectorΩn,k at itera-
tion k. The fixed point descent algorithm writes [8]:

(1) compute σk as (σk)
2 =

1
N ∑

p, j

(

w j,p
z gTk(w

j,p
z )

)2
,

wheregTk(w
j,p
z ) are coefficients weights:

gTk(x) =

{

1, if |x| < Tk,
0, if |x| ≥ Tk;

(2)

(2) computeTk+1 = Faσk and loop till convergence.

This boils down to the following iterative relation:

Tk+1 = Fa

√

1
N ∑p, j

(

w j,p
z gTk(w

j,p
z )

)2
.

Considering functionf defined as

f (x) = Fa

√

1
N ∑

p, j

(

w j,p
z gx(w

j,p
z )

)2
, (3)

the final threshold is computed by the fixed-point descent
algorithmTk+1 = f (Tk). The values of the functionf de-
pend on the user constantFa. For the bowel-sound denois-
ing algorithm (WTST-NST) proposed by [17], the con-
stantFa equals 3, as in classical`2 outlier detection. Still,
as we have shown in [8],Fa must be lower bounded in
order to ensure the existence of a non null fixed point (i.e.
denoising threshold), and 3 is not enough for heavy tailed
distributions (i.e. very sparse signals,u / 0.8). In [11], we
have proposed a method for computing a lower bound for
the multiplicative constantFa. The wavelet coefficients
are modelled by a generalized gaussian probability law:

pσ ,u(w) = αe−|βw|u with (4)

β =
1
σ

√

Γ(3/u)

Γ(1/u)
, α =

βu
2Γ(1/u)

, Γ(u) =
∫ ∞

0
e−xxu−1dx,

whereσ is the standard deviation andu > 0 is the shape
parameter of the probability law (u=2 for a Gaussian and
u=1 for the Laplace pdf).

Using this approach, we have shown that a sufficient
condition for the fixed point algorithm convergence was
Fa ≥ Fam, with

Fam =

√

3β
2α

(ue)
1
u =

√

3Γ(1
u )

u
(ue)

1
u . (5)

The lower boundFam is independent ofσ and depends
only on the shapeu. As stated previously, a different
Fam( j) can be computed for each decomposition scalej.



As the Fam based threshold is generally lower than
other classical or iterative thresholds [15, 17, 18], it en-
sures a maximum information extraction from the mea-
sured signal. Nevertheless, as a counterpart, the denoised
estimate is generally noisier than the one obtained by
other methods. In fact, theuniversal threshold Tu =
σ
√

2logN (with σ the robust estimate of the noise stan-
dard deviation andN the length of the signal) proposed
by Donoho and Johnstone [18] is the most widely used
for denoising, as it leads to an almost completely noise-
freeappearance of the estimated informative signal. Still,
the result of the universal thresholding is generally over-
smoothed, and the mean-square error is often higher than
the one obtained by other denoising algorithms (see An-
toniadiset al. for a comparative review of a large number
of wavelet denoising methods [19]).

Hysteresis thresholding. In this paragraph, we pro-
pose therefore anad hoc method that combines univer-
sal thresholding and iterative denoising. The principle of
the method is straightforward: as the signal of interest is
a sparse succession of explosive transients, they will be
more accurately detected andsegmented by a high thresh-
old, but aFam iterative threshold will be used fordenois-
ing the segmented events. In other words, a high thresh-
old will be used to eliminate all the noise between the
informative events, and a maximum information will be
extracted form these events by a low value threshold.

As the method for computing the low value threshold
has already been described in the previous paragraph, we
will propose here a way to obtain the high value thresh-
old used for segmentation. In order to easily embed it in
the iterative denoising algorithm, the multiplicative con-
stantFa in eq. (3) will be computed in order to initialize
the threshold, if the estimated coefficients distribution is
gaussian to the value of the universal threshold:

Fao = max(Fam,Fac), with (6)

Fac = KcFam, and Kc =

√

2u logN

3Γ(1
u )
√

2e
. (7)

One can easily check thatFao = Fac =
√

2logN for
gaussian distributions (u = 2). The expression forFao

(6) is justified by the fact that the value ofKc becomes
smaller than 1 for very heavy-tailed distributions (shapes
u / 0.4), leading to anFac ≤ Fam and thus not ensuring
the convergence of the fixed–point algorithm (figure 5).
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Figure 5: Values ofFam, Fac and of the resulting thresh-
olds for different shapesu. For the considered signals, the
universal thresholdTu ≈ 4.99.

Simulation results. In order to evaluate the perfor-
mances of our method, we have considered a close-to-
application simulated informative signal sampled at 5000
Hz and having 218 samples (≈ 52 s). The signal was a
series of short explosive events, randomly distributed in
time, consisting on windowed sinusoids (hamming or de-
creasing exponential) having random frequencies (100 to
1000 Hz), random amplitudes (between 3 and 10) and
random durations (20 ms to 1 s). We have considered 3
types of signal, with 5, 10 and 50 events.

Noise was added, generated according to 3 distribu-
tions: uniform (u → ∞), Gaussian (u = 2) and Lapla-
cian (u = 1), all three of them with 3 standard deviations
(σ = 0.5,1,2). In a first test, the noise was left white.
During a second test, it was filtered with a 8th order finite
response filter (FIR), chosen to provide a noise having a
spectral contents close to the real abdominal signal.

We have compared 5 algorithms, using the classi-
cal mean square error criterion (MSE): our maximal
thresholding (based onFac), our minimal thresholding
(Fam), the resulting hysteresis thresholding, Hadjileon-
tiadis’ WTST-NST [17] and Donoho’s universal hard-
thresholding (VisuShrink) (table 1). Other classical de-
noising techniques (asSureShrink or minimax) are less
adapted to sparse signals as they generally provide lower
thresholds thanVisuShrink.

Table 1: MSE for the 5 algorithms (mean values for all
noise types and for different number of events signals).

Algorithm Signal+white noise Signal+colored noise
5 ev. 10 ev. 50 ev. 5 ev. 10 ev. 50 ev.

maximal 0.03 0.10 0.53 0.08 0.14 0.41
minimal 0.28 0.28 0.38 0.26 0.26 0.33
hysteresis 0.02 0.08 0.41 0.06 0.10 0.31
WTST-NST 0.10 0.13 0.28 0.10 0.12 0.25
VisuShrink 0.03 0.10 0.43 0.08 0.12 0.39

As seen in figure 5, our maximal threshold (used
for event detection) is generally lower than the universal
threshold (except for shapes 0.75/ u / 2.01) and higher
than the WTST-NST threshold (asFac > 3,∀u > 0.3).
This observation explains the results presented in table
1: the hysteresis threshold performs better than the others
for sparse signals (when the maximal and the universal
thresholds are too high and the minimal and WTST-NST
are too low), but it falls behind WTST-NST (and even
minimal, for white noise) when the events occur almost
all along the simulated signal (50 events in 52 seconds).
An example of denoising is presented figure 6 for a 10
events signal, with Laplacian white noiseσ = 1.

Artifact elimination and multi-channel processing

Artifact elimination. Before proceeding to the
multi-channel processing, we have decided to heuris-
tically eliminate remaining artifacts, as no denoising
method can ensure complete elimination of undesirable
perturbations. In fact, noise cancelling methods deal with
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Figure 6: Denoising results: (a) original signal; (b) noisy
signal; denoised signals using (c) minimal algorithm, (d)
hysteresis algorithm, (e) WTST-NST, (f)VisuShrink. The
denoised signal obtained by the maximal thresholding is
not presented here, as it is visually similar to (d).

stationary noise, but non-informative (from a phonoen-
terographic point of view) signals ar not treated. Indeed,
heart beats, patient movements, cough, are not eliminated
by the wavelet denoising algorithm. We have introduced
thereforea priori knowledge at this stage of our abdomi-
nal sound processing method. For each segmented event,
we have computed the most popular physical features: the
duration, the energy and the frequency spectrum, as in
[4–6, 12]. Simple tests were done automatically on each
event, and those who did not fit the literature description
of an abdominal sound were eliminated: sounds having
a duration smaller than 20 ms (like hair and skin friction
on the stethoscope membrane) or larger than 1 second
(movements), or having more than half of their energy
below 80 Hz (like heart beats and respiration).

Multi-channel processing. There are two steps of
multi-channel processing in our method (see figure 4 for
stethoscope placement). The first one concerns artifact
elimination by cross-validation. In fact, we assumed that
real abdominal sounds propagate inside the abdomen.
Therefore, we have eliminated all sounds that are not si-
multaneously acquired by at least two stethoscopes (that
is, they are strictly not superimposed in time).

The second step is the localization technique. We have
discussed different methods and we have proposed our
approach in [9], so we will only briefly remind it here.
In fact, very few publications present a multi-channel ap-
proach, and most of those who do it (like [4] for exam-
ple) treat the recordings in a completely independent and
parallel manner: they quantify abdominal sounds inde-
pendently for each abdominal region and no propagation
is taken into account. The only systematic approach was
proposed by Craineet al. [6], who uses 3 stethoscopes to
perform source localization by triangulation. As we have
shown in [9], this approach is inaccurate, because of the

high anisotropy of the propagation environment. Never-
theless, parallel recordings show differences in the ab-
dominal sound activity, and sounds propagate inside the
human body. The simplest hypothesis, and the most accu-
rate for the moment, as long as no model of the abdomen
is proposed, is that the recorded sounds are louder when
the stethoscope is placed closer to their origin. Therefore,
we have proposed a 6-region partition of the abdomen,
as indicated figure 4. For each sound, we check its am-
plitude (acoustic intensity) on each of the stethoscopes
that acquired it, and we place its origin inside the region
indicated by the highest amplitude.

Feature extraction and data analysis

All the previously described steps of our phonoen-
terogram processing method can be considered as pre-
processing steps. After localization, we have six noise
and artifact-free signals, one for each abdominal region.
For each signal, we have also the physical characteristics
of the sounds that compose it: duration, energy, acoustic
intensity, frequency. In the literature, several activityin-
dices based on these physical features are proposed. We
have identified nine of them, which we evaluated for each
channel and for each minute of recording: the number
of sounds (Nm), the total energy (Em), the total duration
of sounds in percents (Dm), the mean energy of sounds
(Eµ ), their mean duration (Dµ ), their mean power (Pµ ),
their mean main frequency (fµ ), their mean acoustic in-
tensity (Iµ ) and the mean duration of silence periods be-
tween sounds (Ds,µ ). Each minute of recording can then
be represented as a point in the nine-dimensional space
obtained from the nine activity indices. Still, interpreting
this information reveals to be difficult because of the high
dimension of the representation space and, furthermore,
because of the probable redundancy of the nine features.
We have used principal component analysis (PCA) in or-
der to analyze the dependencies between the above men-
tioned activity indices, eliminate redundancy and reduce
the dimension of the representation space.

The PCA replaces the data (phonoenterograms min-
utes) in a new feature space. By ordering the variances
of the new features, one can reduce the dimension of this
new representation space. Correlations between the phys-
ical features (activity indexes) and PCA features can be
used to assign physical interpretation to the latter. We
have used a 4-dimensional features space, which keeps
about 80% of the data variance (36%, 22%, 13% and 11%
for c1, c2, c3 and c4 respectively). A rapid physical inter-
pretation of the 4 retained principal components can be
made as follows [10]: the signification of a new feature
(principal component) is given by the most correlated
physical feature (activity index). Using this technique,
the first principal component c1 can be seen as a size
variable, mainly correlated with energetic indices asEm

(0.73),Pµ (0.77), orIµ (0.76), so we propose to interpret
it as an activity level, or sound level measure. The second
principal component c2 is correlated with time measures
asDm (0.71) orNm (0.77), which suggest an interpreta-



tion as a measure of sound absence or sparsity. The third
principal component c3 is related to the mean frequency
fµ (0.77))and can be interpreted as a pitch measure of the
minute, while c4 is again a time measure, related to the
mean duration of individual soundsDµ (0.82).

The most common way of analyzing data in the PCA
framework is to search for possible differences between
predefined subgroups. We therefore group the phonoen-
terogram minutes either by abdominal region or by indi-
vidual volunteer. In order to visualize these differences,
the barycenter of each subgroup is projected onto the
principal planes generated by the first 4 principal com-
ponents c1-c4.

Experimental results

Our healthy volunteer data-base consists of 16 six-
channel recordings having approximately 2 hours 48 min-
utes each (24 sequences of 221 points per channel, at 5000
Hz sampling rate). We have therefore 16× 6× 168 =
16128 minutes of phonoenterogram in our analysis data-
base, which can be grouped, as described previously, by
channel (abdominal region) or by patient. All the pho-
noenterograms were recorded in similar conditions, i.e.
after a standardized breakfast taken at about 8:30 a.m. (a
cup of tee/coffee, 2 bread rolls, 200 ml. of orange juice,
1 yoghurt). The volunteers were not allowed to change
their position, which was halfway between lying and sit-
ting, so they could watch television during the recording.

The results, obtained as described previously (projec-
tion of the barycenter on the principal planes) are promis-
ing (figures 7 and 8). Indeed, one can see that the third
abdominal region (corresponding to the junction between
the gut and the colon) is significantly more active than the
others, both in terms of sound level (c1) and sparsity (c2)
(p ≈ 0 using a Wilcoxon test).

Another interesting result concerns the second patient
(p2), which is different from the others. The most prob-
able explanation is given by the alimentary habits of this
volunteer: unlike the others, at the time of the recording
he used to take dinner at about 1 o’clock in the morning,
and he used to sleep at 8:30 (the recording hour). Usually,
he didn’t take any breakfast at all, the first meal being a
normal lunch at about 1 p.m.

Conclusion and future research

In this communication, we have introduced a com-
plete toolbox for phonoenterogram analysis. Several
methodological steps were described and / or improved.
Our phonoenterogram data-base is quite large and in-
creasing (more than 16 000 minutes of recording by
now), and the data analysis is at its first results, which
seem promising. Further tests are in progress, in order to
study the differences in time (evolution of the extracted
features over the 3 hours of recording). For the moment,
no pathologic case was recorded using the standardized
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Figure 7: Means of the abdominal regions r1-r6 (see fig-
ure 4), projected on the principal plane c1-c2.
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jected on the principal plane c1-c3.

protocol, but a shorter phonoenterogram of a patient with
gastritis was easily distinguished from the others.
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