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Abstract— The general framework of this communica-
tion is phonoenterography. The ultimate goal is the de-
velopment of a clinical diagnostic tool based on abdominal
sound monitoring. Bowel sounds are recorded using sev-
eral microphones. Unsupervised data processing should
lead to diagnosis assessment.

We address here the early stages of data processing, i.e.,
denoising, segmentation and characterization of detected
events. The denoising algorithm is based on former work
by Coifman and Wickerhauser [1] and Hadjileontiadis et
al. [2], [3]. Their wavelet-based algorithm is revisited, al-
lowing to significantly reduce the computational burden.
Sound segmentation and event characterization are based
on the wavelet representation of the phonoenterogram.
Real data processing examples are given.

Keywords— Bowel sounds, auscultation, phonoentero-
gram, wavelet transform, noise cancelling, sound segmen-
tation, feature extraction.

I. INTRODUCTION

Bowel sounds have been attracting attention for a long
time, since they carry diagnostic information about the
abdominal tract. Initial studies were dedicated to the
physiological interpretation of bowel sounds (BS) [4], [5],
[6], [7]. The field of phonoenterography is now regaining
attention, thanks to modern signal processing techniques
and computerized data processing enabled by advances
in computer capacities [8], [9], [10], [3]. The goal is the
development of an unsupervised research and clinical di-
agnostic tool.

Main uses of this tool for research purposes are the
study of the effect of various drugs on the digestive sys-
tem and the elaboration of a map of abdominal activ-
ity. Elaboration of such a map is expected to improve
knowledge of the abdominal tract functioning. The use
of this tool as a clinical diagnostic mean may be oriented
towards post-operative diagnosis, intestinal obstruction
detection, acute appendicitis, irritable bowel syndrome
and more generally motility disorders diagnosis [11].

Such a system is supposed to complement classical
auscultation, which takes precious time, is repetitive and
subjective. It would also allow monitoring over longer
periods of time and quicker alarm activation. Further-
more, it is a non invasive technique. It doesn’t interfere
with the physiological phenomenon under investigation.

Nevertheless, two problems will have to be settled:
¢ recorded data will have to be interpreted accurately.
This point is far from being settled since, as many papers
point it, abdominal auscultation seems to be lacking of
support in scientific fact [9], [10], [3];

« the ambient noise contamination of BS will have to be
addressed, at least for a clinical use of the system.

To the authors’ best knowledge, those problems are still
open. Moreover, the difficulty of interpreting data is
worsened by the variability of sounds from one patient
to another and by the fluctuation of sounds with time.

According to previous studies [9], [10], the following
characteristics of individual sounds and complete sig-
nals will have to be scrutinized: frequential sound con-
tent, sound intensity, sound duration, silence duration,
sound localization. All those features are embedded in
the wavelet representation, sound localization excepted.
Localization is allowed by the use of several microphones.

In particular, Hadjileontiadis et al.’s clinical results
are used and their wavelet-based algorithm is revisited,
allowing significant reduction of the computational bur-
den. We extend the data processing step so as to include
segmentation and feature extraction. Features are ex-
tracted for all detected events (an event may also be
named a sound in this communication) which should
lead to event classification in further work: bowel sounds
usually described subjectively (as “staccato pops”, “gur-
gling sounds” or “clicks” for example) should be given an
objective and quantitative correspondance in the space
of characteristics.

The communication is organized as follows. First,
we focus on Hadjileontiadis et al.’s denoising algorithm.
Then we deal with segmentation and parameter extrac-
tion. Finally, real data processing results are given.

II. WAVELET DENOISING

In this section, we briefly remind Hadjileontiadis et
al’s denoising algorithm [2], [3]. This algorithm will be
reinterpreted as a fixed-point algorithm.

The mentioned algorithm is derived from the classical
denoising method of Coifman and Wickerhauser [1]. The
basic principle of the method is an “information view-
point” definition of noise: a signal which is not well cor-
related with a waveform basis. The algorithm consists in
thresholding the coefficient vector obtained by a wavelet
transform and reconstructing a “denoised” signal from
the resulting vector. The threshold may be different for
each scale (for a non-white noise) and the thresholding
can be “soft” or “hard” [1]. Furthermore, it can be done
iteratively, possibly decomposing on different basis, until
a certain stop criterion is validated.
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Fig. 1. Wavelet coefficients histograms at scale j. (a) original

signal w?'P; (b) denoised signal wiPs (c) residual noise wi’?. For
this example the wavelet coefficients of the supposed original signal
have been drawn according to an exponential law. The y axis is
not entirely represented on (b) and (c).

Basically, Hadjileontiadis’s algorithm works as follows.
The measured signal is decomposed on a wavelet basis,
yielding a wavelet coefficient vector w = {w’?}, where
J is the scale and p is the index. Estimated denoised
signal and noise wavelet coefficients will be computed
from {w/?}, yielding {wi?} and {wi?}. For “large”
w?P | we have: wi? = 0, whP = w/P whereas for “small”
w“’ we have: wi? = wi? wi? = 0. The “large” or
“small” decision results from comparison to a threshold
T7 (see Fig. 1).

In Hadjileontiadis’s approach, this threshold is calcu-
lated by an iterative (k) decomposition-reconstruction
algorithm: 4 4

T) =F, o}, (1)
where F, = 3 is a multiplicative empirical constant (jus-
tified by medical expertise) and ai is the standard de-
viation of the estimated noise coefficients {wi’é} at iter-
ation k (see Fig. 1(c)). The wavelet coefficients {wj’p
_1} with a thresh-

old Tlgq- The threshold T,g may be seen as a function of

are obtained by a thresholding of {w

T,g_lz T,g_l being givep, we obtain W‘Lk = {wi’é} and its
standard deviation o7, which permits the computation
of T} (eq. 1). This allows to interpret Hadjileontiadis’s
approach as an iteration:

T) = f(T] ) =30, - (2)

r k

We have to deal with the initialization and the conver-
gence of these iterations. The wy, = {w]}} vector

is initialized as W‘] 0= wd, the vector containing the
wavelet coefﬁaents of the orlglnal signal at scale j. In
Hadjileontiadis’s method, the iterations end when the
following stop criterion, depending on a user chosen ¢, is
verified:

STCy = |E{r} - E{rg_1}| <e, (3)

that is, when no significant energy is lost by the “noise”
between two iterations.
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Fig. 2. Fixed point algorithm

A. Fized point interpretation

In the sequel, we redefine the iteration (2) as a fixed-
point algorithm and we give a stop-criterion, based on
this interpretation.

One can prove that, under mild and realistic condi-
tions on the probability distribution of the wavelet coetf-
ficients at scale j, f(17) = 307 is non-decreasing, that
when 79 — oc, f(17) < T9 and when 77 is close to
0, f(T7) > T7 (see Fig. 2). This means that we have
at least one intersection point between f(77) and the
function y = T7. From this set of points, we select the
largest one, noted ij. This point will be a conver-
gence point for a fixed point descent algorithm start-
ing from 77 = oo. In a fixed-point descent algorithm
f(T}) = TJ < T? and the convergence is achieved when
the stop criterion is verified:

F(T5,) =Ti,. (4)

We still have to prove that Hadjileontiadis’s algorithm
and the fixed-point descent converge to the same point.
Indeed, the stop criteria (3) and (4) are equivalent, be-
cause of the orthogonality of the wavelet transform. In
fact, (3) can be rewritten as:

STCy = [E{w; i} — E{wix_a}l <e. ()

This means, first of all, that we don’t need to perform a
reconstruction of the residual noise at every iteration in
order to calculate its variance, as required by eq. (3),
so an important reduction of the computational bur-
den is obtained. Furthermore, as the wavelet transform
is also linear, wy x and w1 will differ only by the
few thresholded coefficients. For € — 0, the stop cri-
terion (5) is equivalent to the fact that no coefficient

s “lost” between wyyx_1 and wyyx. This means that
T;m = 305%.” > maz(|Wy finl)-

This work reveals the fixed-point nature of Hadjileon-
tiadis’s algorithm and exploit this observation in order
to determine the threshold T7 by a fast descent directly
on the histogram of the wavelet coefficients.

B. Mazimum scale decomposition limit

Concerning the wavelet decomposition, let us say that
we have used the same wavelet basis (Daubechies 4) as



in [2], [3]. This choice was justified by Hadjileontiadis et
al. by medical expertise.

Still, as we have said previously, we have to process
long signals in order to extract useful data. A complete
wavelet decomposition will be in this case very time con-
suming. Besides, we know from our experimental setup
that the microphone we have used is band-limited at 50
Hz in the low frequencies, so all large scales wavelets co-
efficients will be zero: a complete decomposition is there-
fore useless. In a frequential and algorithmical interpre-
tation, the output of the low-pass filter corresponding
to the scale function in Mallat’s algorithm [12] will have
a zero output. Therefore, another modification of the
denoising method is a limited wavelet decomposition.
Anyway, as one can easily see, in the experimental setup
of Hadjileontiadis et al., the combination between the
length of the signal and the choice of the threshold leads
to the elimination of the large scale coefficients after the
first iteration, because at least 9 coefficients are needed
in order to have one of them greater than or equal to 3o.

III. SEGMENTATION AND PARAMETER EXTRACTION

As we have said earlier, our goal is to characterize the
bowel sounds. Naturally, after denoising, the next step
is the identification of these sounds i.e., the segmenta-
tion of the signal. As we have considered that a wavelet
decomposition offers also the possibility to characterize
a sound by its wavelet coefficients, we have chosen a seg-
mentation method applied directly on the wavelet coef-
ficients vector w.

This segmentation must be done with care, consider-
ing the upsampling-filtering reconstruction algorithm of
Mallat [12] for ’db4’ wavelets. A discrete wavelet trans-
form (DWT) represents a signal as a discrete sum of
continuous wavelets:

s(t) =Y w1 (1), (6)
Jp

where ; ,(t) is the wavelet function (in our case 'db4’)
and w?? is the wavelet coefficient obtained by the DWT.
As shown in [12], such a wavelet is calculated by a
filtering-upsampling algorithm starting from the corre-
sponding coefficient — the inverse discrete wavelet trans-
form (IDWT). This means that we can obtain the scale,
hence the temporal dimension of a wavelet, knowing the
reconstruction filter and the position of the correspond-
ing coefficient in the transformed vector w. Next, as the
signal is a sum of wavelets, we can obtain the tempo-
ral position of a sound, its starting and ending instants.
More precisely, the contribution of the w’*? coefficient
in the reconstructed signal ends at d = p - 2/ and starts
at u=d— (L —1)- (29 — 1), where p is the temporal
position, j is the scale of the corresponding wavelet and
L is the length of the reconstruction filter (L = 8 for a
Daubechies 4 filter).
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As the segmentation is performed on the wavelet co-
efficients vector, we obtain directly the wavelet decom-
position of an event (a sound) and use this decomposi-
tion to characterize it. By its construction, the wavelet
denoising algorithm outputs all the events that are cor-
related with the basis waveform, including those of very
low energy. As a processing option, we propose a sec-
ond thresholding after the segmentation, based on the
power of an event. More precisely, we have calculated
the power for each detected sound (e;) and we have fixed
a threshold equal to the standard deviation of these pow-
ers E = o(e), where e = {¢;}.

Concerning the characterization of the bowel sounds,
in the actual stage of our research we propose few rather
empirical features, easy to extract and physically sig-
nificant: the duration of the sound and the power dis-
tributed upon each frequency band (scale). We present
all the results in the sequel.

IV. PROCESSING RESULTS
A. Ezperimental setup

In order to facilitate an auditive medical validation,
we have attached three electret pressure microphones to
mechanical stethoscope heads, placed on the abdominal
area. After band-pass [50-2250] Hz anti-aliasing filtering,
the signals were digitized by a 12 bit Analog to Digital
Converter, at a sampling rate of 5 kHz. The signals
were recorded on several healthy subjects, for 10 to 15
minutes, before and after lunch.

B. Processing results

As seen before, our limited wavelet decomposition
depth approach is justified both by the physical nature
of the signal and by the experimental setup. This ob-
servation reduces the computational burden from O(K -
N -log N), for Hadjileontiadis’s original algorithm, to
O(K - N - M), where K is the number of iterations and
M is the depth of the decomposition (in our case M =7,
which implies 8 frequency bands). Our optimisation,
based on the orthogonality of the wavelet transform (5)
reduces it to O(N - M). The fixed-point interpretation
speeds up the computation by eliminating the iterative
testing and thresholding of the wavelet coefficient vec-
tor. In fact, it performs an initial step dedicated to
the threshold finding, followed by a unique test on the
coefficient vector. For a 2'8 points signal, on a Pen-
tium II1/500 MHz platform, our Matlab implementation
showed a 4 times faster execution of our optimized algo-
rithm compared to the original.

The results of Hadjileontiadis’s and our denoising al-
gorithms are slightly different (the difference between the
variances of the resulting signals is of magnitude 10~%),
because of our € = 0 in the stop criteria (3) and (5). We
consider the difference insignificant, compared to the dif-
ference between the original signal and the denoised one
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Fig. 3. Denoising and segmentation results. si1: a section of

6.5 seconds of the normalized original signal - var(si)=1; sa:
the denoised segmented signal after the fixed-point algorithm -
var(s2)=0.4477 (116 events); s3: the denoised segmented signal
after the second thresholding - var(s3)=0.3034 (5 events).

(the variance differs by 107!). Furthermore, no differ-
ence between our reconstruction and the one performed
by Hadjileontiadis’s algorithm can be heard listening the
denoised signals.

On the other hand, there is an audible difference be-
tween the denoised signal and the final segmentation
(Fig. 3 (b) and (c)), due to the second optional thresh-
olding E. In fact, this step eliminates all the low energy
events, even if important diagnostic information might
be extracted from the discarded sounds. The difference
between the variance of the output signal after this last
processing step and the variance after the first denoising
is of magnitude 10! (see Fig. 3 for the results).

Concerning the characterization of the sounds, we
present the extracted features for the five events on the
s3 signal from Fig. 3 in table I (e is the variance on the
scale j and 7 is the duration of the event, in seconds).
We have discarded the energy on the first scale, as it
represents the frequencies lower than 20 Hz.

TABLE 1
FEATURE EXTRACTION FOR THE 5 EVENTS FROM FIG. 3.

e | e’ et e’ el e’ 8 T
evy 0| 0000|093 | 049 |0.02 | 0.00 | 0.05
eva | O] 0] 0.00|0.53|0.85 ]| 0.04 | 0.00 | 0.04
evs | 0| 0010 1.33|0.78 ] 0.08 | 0.01 | 0.28
evy | O 0011 1.13|6.58|0.35| 0.15 | 0.10
evs | 0| 00.00|194]6.78 | 0.41 | 0.78 | 0.04

V. CONCLUSION

The aim of this paper is to facilitate the extraction of
some useful diagnostic information from recorded bowel
sounds. In order to achieve this, we have optimized by
a fixed-point approach the denoising algorithms of Coif-
man and Wickerhauser [1] and Hadjileontiadis[2], [3].
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We have proposed a segmentation method performed
directly upon the wavelet coefficients vector and a fea-
ture extraction method, in view of a future classification.

In perspective, the use of several microphones simul-
taneously, as proposed by [13], will allow us to include
another feature in the characterization of an event: its
localization. This will permit to elaborate a map of ab-
dominal activity, which is also of much help for diagnosis,
since sound localization is an important factor.
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