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What is compression?

Avoid saying twice the same thing

Saying things differently, without changing

the meaning

Keep to the essential, discard unimportant

information
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What is compression?

Avoid saying twice the same thing

Saying things differently, without changing

the meaning

Keep to the essential, discard unimportant

information

Coding, Transforming, Approximating
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Why compress ?

Example: a computer screen
• standard PC screen: 1024 × 768

pixels
• more than 16 millions colors (224)

in RGB coding:
28 shades of red, green and blue
⇔ 8 bits for each color

• 1024 × 768 × 224 bits ≈ 19 Mbits

A good home Internet connection has a capacity of 56
kbits/sec to ≈ 5 Mbits/sec !
• an image loads in at least 5 seconds
• a high quality TV film has 25 images/sec !

GIF compression for internet, MPEG (Moving Picture Experts
Group) compression (VCD - DVD)
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Examples of application

Digital photos
• a standard digital photo camera

has 5 Mpixels
• 24 color bits (RGB) →≈ 120

Mbits = 15 Mbytes per photo

• standard SD cards have 64-512 Mbytes and transfer rate
of 2 -10 Mbytes/sec

JPEG (Joint Photographic Experts Group) compression
JPEG 2000 compression
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Examples of application

• a standard FBI fingerprint
scanned at 500 dpi, 28 = 256
grayscales →≈ 80 Mbits = 10
MBytes of data

• fingerprint cards since 1924, →≈ 200 million cards →≈
2000 Terrabytes

• 30000-50000 new cards PER DAY, to send by network
connection and to compare with . . .

• ≈ 29 million records of “usual suspects” !

Wavelet compression
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Compression types

• 1.000.000.000 → 109
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Compression types

• 1.000.000.000 → 109

• Thank you → Merci (9 characters → 5 characters)
Save Our Souls → S.O.S. → · · · − − − · · ·

Turn right →
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Compression types

• 1.000.000.000 → 109

• Thank you → Merci (9 characters → 5 characters)
Save Our Souls → S.O.S. → · · · − − − · · ·

Turn right →

• →
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Data and information

Information – The useful part of a message
• the color of a sheet of paper
• the frequency and the duration of a sound
• the length and the position of a straight line
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Data and information

Information – The useful part of a message
• the color of a sheet of paper
• the frequency and the duration of a sound
• the length and the position of a straight line

Message – The coding of the information
• the character string {r-e-d} in English ({r-o-u-g-e} in

French), the numbers 255 - 0 - 0 in RGB, . . .
• the musical partition, Short Time Fourier Transform, . . .
• the coordinates of (x1, y1) and (x2, y2), the origin,

module and phase of the vector
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Data and information

Information – The useful part of a message
• the color of a sheet of paper
• the frequency and the duration of a sound
• the length and the position of a straight line

Message – The coding of the information
• the character string {r-e-d} in English ({r-o-u-g-e} in

French), the numbers 255 - 0 - 0 in RGB, . . .
• the musical partition, Short Time Fourier Transform, . . .
• the coordinates of (x1, y1) and (x2, y2), the origin,

module and phase of the vector

Data – The physical support of the information
• the binarized image of the word “red”, the ASCII codes

of r, e, and d, the binary codes of 255 - 0 - 0, . . .
• the binarized recording and the STFT algorithm, the

binarized image of the musical partition, . . .
• the binary codes of the coordinates values, . . .
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Compression challenge

Keep as much information as possible and
diminish data

Changing data (physical compression)

Smaller amount of data by code changing

Characteristics:
• lossless compression

• diminishes the amount of data

• perfect reconstruction
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Compression challenge

Keep as much information as possible and
diminish data

Changing messages (logical compression)

Smaller messages using transforms. Problem: the
transform
• must be reversible

• must be understood by the user

• must be safe (for transmission, storage, security)

Characteristics:
• lossless compression

• can diminish or increase the amount of data
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Compression challenge

Keep as much information as possible and
diminish data

Changing information (approximation)

Keeping only essential information

Characteristics:
• lossy compression

• diminishes the amount of data

• unrecoverable (approximate reconstruction)
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Information Theory
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Image and information

Similar images 100 × 100 pixels, 256 greylevels (10 kBytes)
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Measuring information

The information is a measure of uncertainty : more an event
is probable, less it is informative

Example (1)
• Consider a white image
• Chose a pixel (random) and name its color
• The probability of saying “white” is p(white) = 1

• The answer is “Obviously!” (the information is 0)
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Measuring information

The information is a measure of uncertainty : more an event
is probable, less it is informative

Example (1)
• Consider a white image
• Chose a pixel (random) and name its color
• The probability of saying “white” is p(white) = 1

• The answer is “Obviously!” (the information is 0)

Example (2)
• Consider a 10 × 10 pixels white image with a randomly

positioned black pixel
• Chose a pixel (random) and name its color
• The probability of saying “white” is p(white) = 0.99

• The answer is “Well, I was quite sure” (not very informative)
• The probability of saying “black” is p(black) = 0.01

• The answer is “So you found it!” (that’s an information!)
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
• The probability of saying “one is white” is p(white) = 0.97
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
• The probability of saying “one is white” is p(white) = 0.97

• The probability of saying “one is red” is p(red) = 0.01
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
• The probability of saying “one is white” is p(white) = 0.97

• The probability of saying “one is red” is p(red) = 0.01

• The probability of saying “one is blue” is p(blue) = 0.02
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
• The probability of saying “one is white” is p(white) = 0.97

• The probability of saying “one is red” is p(red) = 0.01

• The probability of saying “one is blue” is p(blue) = 0.02

• The probability of the event “one is red and the other is
blue” is p(red, blue) = p(red) · p(blue) = 2 · 10−4
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
• The probability of saying “one is white” is p(white) = 0.97

• The probability of saying “one is red” is p(red) = 0.01

• The probability of saying “one is blue” is p(blue) = 0.02

• The probability of the event “one is red and the other is
blue” is p(red, blue) = p(red) · p(blue) = 2 · 10−4

• You give more information (and the probability diminishes)
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Measuring information

Example (3)
• Consider a 10 × 10 pixels white image with a randomly

positioned red pixel and a two randomly positioned blue
pixels

• Chose, independently, two pixels and name their colors
• The probability of saying “one is white” is p(white) = 0.97

• The probability of saying “one is red” is p(red) = 0.01

• The probability of saying “one is blue” is p(blue) = 0.02

• The probability of the event “one is red and the other is
blue” is p(red, blue) = p(red) · p(blue) = 2 · 10−4

• You give more information (and the probability diminishes)

The information (about an event) is a function of the
probability (of the event): can we find a “good” function f(p)?
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Measuring information

Which function ?
Characteristics:
• The two individual information should sum :

I(red, blue) = I(red) + I(blue) = f (p(red)) + f (p(blue))

• For a sure event (see example 1), the information should
be 0:

I1(white) = f (p(white)) = f(1) = 0
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Measuring information

Which function ?
Characteristics:
• The two individual information should sum :

I(red, blue) = I(red) + I(blue) = f (p(red)) + f (p(blue))

• For a sure event (see example 1), the information should
be 0:

I1(white) = f (p(white)) = f(1) = 0

Definition:
For an event E, the information is

I(E) = −λ log p(E)
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Measuring information

Defining the unit of information:

Simplest case: flipping a coin
• two equiprobable events : p(head) = p(tail) = 1

2

• the quantity of information about such un event will be
defined as a unit of information:

I(tail) = I(head) = −λ log
1

2
= 1

• take base two logarithm ⇒ λ = 1
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Measuring information

Defining the unit of information:

Simplest case: flipping a coin
• two equiprobable events : p(head) = p(tail) = 1

2

• the quantity of information about such un event will be
defined as a unit of information:

I(tail) = I(head) = −λ log
1

2
= 1

• take base two logarithm ⇒ λ = 1

For a binary equiprobable event, the information = 1

The measuring unit of the information is the bit
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Information system

Shannon information diagram

Information
source

- Channel -
Information

user

• Source: image, sound, file, . . .
• Channel: radio, Ethernet, CDs, HDD, . . .
• User: human user, informatic system, industrail

machine,. . .
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Information system

Source: ◦ emits data
◦ first step: sampling and digitizing → succession

of binary digits (bits)
◦ groups bits in symbols, creating an alphabet
◦ optionally: codes symbols to form a optimal

message
◦ source coding ↔ compression
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Information system

Source: ◦ emits data
◦ first step: sampling and digitizing → succession

of binary digits (bits)
◦ groups bits in symbols, creating an alphabet
◦ optionally: codes symbols to form a optimal

message
◦ source coding ↔ compression

Channel: ◦ transmits the the message as coded data
◦ can be noisy !
◦ optionally: the message can be re-coded to

reduce the effects of noise
◦ channel coding ↔ correction codes
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Information system

Source: ◦ emits data
◦ first step: sampling and digitizing → succession

of binary digits (bits)
◦ groups bits in symbols, creating an alphabet
◦ optionally: codes symbols to form a optimal

message
◦ source coding ↔ compression

Channel: ◦ transmits the the message as coded data
◦ can be noisy !
◦ optionally: the message can be re-coded to

reduce the effects of noise
◦ channel coding ↔ correction codes

User: ◦ receives data
◦ decodes the message and extract the information
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Symbols, Bits, Codes

Symbol: elementary part of a message

Bit: unit of information {0, 1}
Code: the expression of a symbol in bits



Introduction

Information Theory

•Measuring information

• Information system

•Entropy

•Noiseless coding theorem

•Coding efficiency

•Redundancy

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 21

Symbols, Bits, Codes

Symbol: elementary part of a message

Bit: unit of information {0, 1}
Code: the expression of a symbol in bits

Example (1):
• Message: black and white image
• Symbol: color of a pixel = “black”, “white”
• Codes: “black”=0, “white”=1
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Symbols, Bits, Codes

Symbol: elementary part of a message

Bit: unit of information {0, 1}
Code: the expression of a symbol in bits

Example (1):
• Message: black and white image
• Symbol: color of a pixel = “black”, “white”
• Codes: “black”=0, “white”=1

Example (2):
• Message: black and white image
• Symbol: colors of two consecutive pixels = “black-black”,

“black-white”, . . .
• Codes:
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Symbols, Bits, Codes

Symbol: elementary part of a message

Bit: unit of information {0, 1}
Code: the expression of a symbol in bits

Example (1):
• Message: black and white image
• Symbol: color of a pixel = “black”, “white”
• Codes: “black”=0, “white”=1

Example (2):
• Message: black and white image
• Symbol: colors of two consecutive pixels = “black-black”,

“black-white”, . . .
• Codes:

◦ 00, 01, 10, 11
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Symbols, Bits, Codes

Symbol: elementary part of a message

Bit: unit of information {0, 1}
Code: the expression of a symbol in bits

Example (1):
• Message: black and white image
• Symbol: color of a pixel = “black”, “white”
• Codes: “black”=0, “white”=1

Example (2):
• Message: black and white image
• Symbol: colors of two consecutive pixels = “black-black”,

“black-white”, . . .
• Codes:

◦ 00, 01, 10, 11
◦ 0, 10, 110, 1110
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Symbols, Bits, Codes

Symbol: elementary part of a message

Bit: unit of information {0, 1}
Code: the expression of a symbol in bits

Example (1):
• Message: black and white image
• Symbol: color of a pixel = “black”, “white”
• Codes: “black”=0, “white”=1

Example (2):
• Message: black and white image
• Symbol: colors of two consecutive pixels = “black-black”,

“black-white”, . . .
• Codes:

◦ 00, 01, 10, 11
◦ 0, 10, 110, 1110
◦ . . .
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Entropy

Consider a 10 × 10 black and white image (source) X :
• The message consists of symbols coded on 1 bit
xi = {0, 1}⇒ the source X emits 100 symbols

• The color of a pixel does not depend on the previous pixels
→ zero-memory source

• Then, for each symbol xi = {0, 1}:

xi p(xi) I(xi) = − log p(xi)

0 p − log p

1 1 − p − log(1 − p)

The mean information of the source is:

H(X) =

1∑

i=0

I(xi)p(xi) = −
1∑

i=0

p(xi) log p(xi)

= −p log p− (1 − p) log(1 − p)
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Entropy

Consider a 10 × 10 black and white image (source) X :
• The message consists of symbols coded on 1 bit
xi = {0, 1}⇒ the source X emits 100 symbols

• The color of a pixel does not depend on the previous pixels
→ zero-memory source

• Then, for each symbol xi = {0, 1}:

xi p(xi) I(xi) = − log p(xi)

0 p − log p

1 1 − p − log(1 − p)

The mean information of the source is:

H(X) =

1∑

i=0

I(xi)p(xi) = −
1∑

i=0

p(xi) log p(xi)

= −p log p− (1 − p) log(1 − p)
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The mean information of a source is called entropy.
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Source entropy

Example
• Consider a 10 × 10 pixels white image with two randomly

positioned black pixels
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Source entropy

Example
• Consider a 10 × 10 pixels white image with two randomly

positioned black pixels
• Then:

xi p(xi)

1 0.98
0 0.02

I(0) = − log p(0) = − log 0.02 = 5.64

I(1) = − log p(1) = − log 0.98 = 0.029
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Source entropy

Example
• Consider a 10 × 10 pixels white image with two randomly

positioned black pixels
• Then:

xi p(xi)

1 0.98
0 0.02

I(0) = − log p(0) = − log 0.02 = 5.64

I(1) = − log p(1) = − log 0.98 = 0.029

The entropy of the source is:

H(X) =
1∑

i=0

I(xi)p(xi)

= −
1∑

i=0

p(xi) log p(xi) = 0.1414

Mean information of 0.1414 bits/symbol
( ⇔ 0.1414 bits/pixel)
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H(0.98)=0.1414 
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Source extensions

Example: same image, different alphabet
• Consider symbols representing sequences of two pixels
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Source extensions

Example: same image, different alphabet
• Consider symbols representing sequences of two pixels
• The source S (zero-memory) emits 50 symbols
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Source extensions

Example: same image, different alphabet
• Consider symbols representing sequences of two pixels
• The source S (zero-memory) emits 50 symbols
• Then, if we code each symbol using 2 bits sk = xixj :

sk p(sk) I(sk) = − log p(sk)

00 p(00) = p(0)p(0) = 0.9604 0.0583
01 p(01) = p(0)p(1) = 0.0196 5.673
10 p(10) = p(1)p(0) = 0.0196 5.673
11 p(11) = p(1)p(1) = 0.0004 11.2877
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Source extensions

Example: same image, different alphabet
• Consider symbols representing sequences of two pixels
• The source S (zero-memory) emits 50 symbols
• Then, if we code each symbol using 2 bits sk = xixj :

sk p(sk) I(sk) = − log p(sk)

00 p(00) = p(0)p(0) = 0.9604 0.0583
01 p(01) = p(0)p(1) = 0.0196 5.673
10 p(10) = p(1)p(0) = 0.0196 5.673
11 p(11) = p(1)p(1) = 0.0004 11.2877

• The entropy is:

H(S) =
4∑

k=1

I(sk)p(sk) = −
4∑

k=1

p(sk) log p(sk) = 0.2829 bits/symbol

n-bits symbols ⇒ n-th extension of the source: H(S)=nH(X)
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Noiseless coding theorem

Shannon’s First Theorem
• Consider a zero-memory source S who outputs 2n symbols
si (i = 1..2n)

• The information unit is the bit (1/0)
• In natural coding, the length of a symbol in bits is li = n

• The information of each si is I(si) = − log p(si)

Non-optimal solution, because the number of bits per symbol
should be proportional to the information
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Noiseless coding theorem

Shannon’s First Theorem
• Consider a zero-memory source S who outputs 2n symbols
si (i = 1..2n)

• The information unit is the bit (1/0)
• In natural coding, the length of a symbol in bits is li = n

• The information of each si is I(si) = − log p(si)

Non-optimal solution, because the number of bits per symbol
should be proportional to the information

Theorem: The coding of a source can be modified, so
symbols can be coded using different number of bits
(li = n→ l′i). The average length of a symbol has an inferior
bound given by the mean information of S:

L′ =
n∑

i=1

p(si)l
′
i ≥ −

n∑

i=1

p(si) log p(si) = H(S) = nH(X)

L′ ≥ nH(X) = H(S)
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Coding efficiency

When n increases (n→ ∞), the average symbol length
decreases towards an optimal value:

LO = lim
n→∞

L′

n
→ H(S) bits/symbol

In theory, one can choose symbols of average length � n!

Example:
• Consider a source S emitting symbols si of length
L = li = n
→ s =“two consecutive pixels”
→ natural coding {00, 01, 10, 11}

• Considering the first Shannon theorem, there exists a
different coding s′ with L′ � n
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Coding efficiency

When n increases (n→ ∞), the average symbol length
decreases towards an optimal value:

LO = lim
n→∞

L′

n
→ H(S) bits/symbol

In theory, one can choose symbols of average length � n!

Example:
• Consider a source S emitting symbols si of length
L = li = n
→ s =“two consecutive pixels”
→ natural coding {00, 01, 10, 11}

• Considering the first Shannon theorem, there exists a
different coding s′ with L′ � n

⇒ changing the code can diminish the number of bits used
for an information ⇒ Compression

Compression ratio C =
L

L′
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Coding efficiency

Example:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

00 00 00 00 00
00 00 00 00 00
00 00 00 10 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 01
00 00 00 00 00
00 00 00 00 00

s p(si) Code A Code B lA lB

s1 0.9604 00 0 2 1

s2 0.0196 01 10 2 2

s3 0.0196 10 110 2 3

s4 0.0004 11 1110 2 4

0 0 0 0 0
0 0 0 0 0
0 0 0 110 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10
0 0 0 0 0
0 0 0 0 0
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Coding efficiency

Example:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

00 00 00 00 00
00 00 00 00 00
00 00 00 10 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 01
00 00 00 00 00
00 00 00 00 00

H(S) = −

4

i=1

p(si) log p(si) = 0.2829

s p(si) Code A Code B lA lB

s1 0.9604 00 0 2 1

s2 0.0196 01 10 2 2

s3 0.0196 10 110 2 3

s4 0.0004 11 1110 2 4

0 0 0 0 0
0 0 0 0 0
0 0 0 110 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10
0 0 0 0 0
0 0 0 0 0
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Coding efficiency

Example:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

00 00 00 00 00
00 00 00 00 00
00 00 00 10 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 01
00 00 00 00 00
00 00 00 00 00

H(S) = −

4

i=1

p(si) log p(si) = 0.2829

LA =
4

i=1

p(si)lA,i = 2

s p(si) Code A Code B lA lB

s1 0.9604 00 0 2 1

s2 0.0196 01 10 2 2

s3 0.0196 10 110 2 3

s4 0.0004 11 1110 2 4

0 0 0 0 0
0 0 0 0 0
0 0 0 110 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10
0 0 0 0 0
0 0 0 0 0

LB =
4

i=1

p(si)lB,i = 1.06
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Coding efficiency

LA = 2 bits/symbol � H(S) = 0.2829

LA,p = 1 bit/pixel � H(X) = 0.1414

LB = 1.06 bits/symbol > H(S) = 0.2829

LB,p = 0.53 bit/pixel > H(X) = 0.1414

The optimal coding solution should be:
LO → H(S) ⇔ LO,p → H(X)

For each symbol si, consider I(si) ≤ l̂O,i ≤ I(si) + 1
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Coding efficiency

LA = 2 bits/symbol � H(S) = 0.2829

LA,p = 1 bit/pixel � H(X) = 0.1414

LB = 1.06 bits/symbol > H(S) = 0.2829

LB,p = 0.53 bit/pixel > H(X) = 0.1414

The optimal coding solution should be:
LO → H(S) ⇔ LO,p → H(X)

For each symbol si, consider I(si) ≤ l̂O,i ≤ I(si) + 1

Then:
si p(si) I(si) Code A Code B lA,i lB,i

�

lO,i

s1 0.9604 0.0583 00 0 2 1 1

s2 0.0196 5.673 01 10 2 2 6

s3 0.0196 5.673 10 110 2 3 6

s4 0.0004 11.2877 11 1110 2 4 12

0.2829 2 1.06 1.2

0.1414 1 0.53 0.6
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Coding efficiency

LA = 2 bits/symbol � H(S) = 0.2829

LA,p = 1 bit/pixel � H(X) = 0.1414

LB = 1.06 bits/symbol > H(S) = 0.2829

LB,p = 0.53 bit/pixel > H(X) = 0.1414

The optimal coding solution should be:
LO → H(S) ⇔ LO,p → H(X)

For each symbol si, consider I(si) ≤ l̂O,i ≤ I(si) + 1

Then:
si p(si) I(si) Code A Code B lA,i lB,i

�

lO,i

s1 0.9604 0.0583 00 0 2 1 1

s2 0.0196 5.673 01 10 2 2 6

s3 0.0196 5.673 10 110 2 3 6

s4 0.0004 11.2877 11 1110 2 4 12

0.2829 2 1.06 1.2

0.1414 1 0.53 0.6

Optimal length : LO,p > LB,p ???
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Coding efficiency

Optimal length : LO,p > LB,p ?

Consider a source emitting n-length symbols and make
n→ ∞.
• LO,p → H(X) bits/pixel(=0.1414)

• LB,p =
∑2n

i=1 lB,ip(si) =
∑2n

i=1 ip(si) =?

• Coding efficiency (code B):

ηB =
H(S)

LB
=
H(X)

LB,p
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Redundancy

Redundant coding ↔ saying twice the same thing

Coding redundancy:

RC = 1 − η = 1 − H(S)

L
= 1 − H(X)

Lp

Coding redundancy → 0 when
• L decreases (Lp → H(X)):
⇒ when the average length per bit is greater than the
bit-entropy, compression can be achieved by reducing the
code length

• H(S) increases (H(X) → Hmax(X)):
⇒ when the bits are almost equally probable (the entropy
is close to its maximum), compression cannot improve by
reducing the code length
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Redundancy

Redundant coding ↔ saying twice the same thing

Coding redundancy:

RC = 1 − η = 1 − H(S)

L
= 1 − H(X)

Lp

Coding redundancy → 0 when
• L decreases (Lp → H(X)):
⇒ when the average length per bit is greater than the
bit-entropy, compression can be achieved by reducing the
code length

• H(S) increases (H(X) → Hmax(X)):
⇒ when the bits are almost equally probable (the entropy
is close to its maximum), compression cannot improve by
reducing the code length

Is the coding reduction the only way to compress?
Is the coding redundancy similar to information redundancy?
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Compression basics



Introduction

Information Theory

Compression basics

•Coding redundancy

• Inter-pixel redundancy

•Psycho-visual redundancy

• Image transforms

•Fidelity criteria

•Compression chain

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 32

Image and information

Similar images 100 × 100 pixels, 256 greylevels (10 kBytes)
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Coding redundancy

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

00 00 00 00 00
00 00 00 00 00
00 00 00 10 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 01
00 00 00 00 00
00 00 00 00 00

s p(si) Code A Code B lA lB

s1 0.9604 00 0 2 1

s2 0.0196 01 10 2 2

s3 0.0196 10 110 2 3

s4 0.0004 11 1110 2 4

0 0 0 0 0
0 0 0 0 0
0 0 0 110 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10
0 0 0 0 0
0 0 0 0 0
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Coding redundancy

1 2 3 4 5 6 7 8 9 10

1
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00 00 00 00 00
00 00 00 00 00
00 00 00 10 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 01
00 00 00 00 00
00 00 00 00 00

LA =
4

i=1

p(si)lA,i = 2

s p(si) Code A Code B lA lB

s1 0.9604 00 0 2 1

s2 0.0196 01 10 2 2

s3 0.0196 10 110 2 3

s4 0.0004 11 1110 2 4

0 0 0 0 0
0 0 0 0 0
0 0 0 110 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10
0 0 0 0 0
0 0 0 0 0

LB =
4

i=1

p(si)lB,i = 1.06
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Coding redundancy

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

00 00 00 00 00
00 00 00 00 00
00 00 00 10 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 01
00 00 00 00 00
00 00 00 00 00

LA =
4

i=1

p(si)lA,i = 2

s p(si) Code A Code B lA lB

s1 0.9604 00 0 2 1

s2 0.0196 01 10 2 2

s3 0.0196 10 110 2 3

s4 0.0004 11 1110 2 4

0 0 0 0 0
0 0 0 0 0
0 0 0 110 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 10
0 0 0 0 0
0 0 0 0 0

LB =
4

i=1

p(si)lB,i = 1.06

Compression rate C=2/1,06=1,89:1
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Inter-pixel redundancy

Consider the image:

1 2 3 4 5 6 7 8

1

2

3

4

21 21 21 95 169 243 243 243

21 21 21 95 169 243 243 243

21 21 21 95 169 243 243 243

21 21 21 95 169 243 243 243

representative of a source emitting 4 gray-levels:
Gray Level Count Probability

21 12 3/8

95 4 1/8

169 4 1/8

243 12 3/8

How much compression by reducing coding redundancy?
Entropy estimate:

H(X) = −
4∑

1

p(i) log p(i) = 1, 25 ⇒ C = 8/1, 25 = 6, 4 : 1
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Spatial redundancy

Consider the difference image:
21 0 0 74 74 74 0 0

21 0 0 74 74 74 0 0

21 0 0 74 74 74 0 0

21 0 0 74 74 74 0 0

which is representative of a source emitting 3 gray-levels:
Gray Level Count Probability

0 12 1/2

21 12 1/8

74 4 3/8

How much compression by reducing coding redundancy?
Entropy estimate:

H(Xd) = −
3∑

1

p(i) log p(i) = 0, 97 ⇒ Cd = 8/0, 97 = 8, 2 : 1
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Psycho-visual redundancy

Are the 256 gray levels of an image necessary?
Can we see 16 millions colors?

Reducing the number of gray levels
⇔ reducing the number of bits per pixel
⇔ Quantizing: 8 bits/pixels → 4 bits/pixel → C=2:1

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Visual artifacts ↔ false contouring
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Psycho-visual redundancy

50 100 150 200 250
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50 100 150 200 250
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The human eye is sensible to
contours
• each pixel is modified by

adding a pseudo-random
number generated from the
neighboring pixels

• noisier image, but visually
closer to the original



Introduction

Information Theory

Compression basics

•Coding redundancy

• Inter-pixel redundancy

•Psycho-visual redundancy

• Image transforms

•Fidelity criteria

•Compression chain

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 38

Psycho-visual redundancy

Quantization = taking the most significant bits (MSB)
⇒ Improved gray scale quantization IGS
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Psycho-visual redundancy

Improved gray scale quantization IGS algorithm:
- modifying the MSB by adding a pseudo-random value

1. Initialize a virtual pixel New = 0000︸︷︷︸
MSB

0000︸︷︷︸
LSB

2. Changea the gray level of the current pixel as:

New = Old+NewLSB

3. Take the NewMSB as the quantized value (IGS code)
4. Go to next pixel.

aIf the MSB of the actual gray level are 1111, left unchanged.

Pixel Old New IGS code

i − 1 ? 00000000 ?

i 01101100 01101100 0110

i + 1 10001011 10010111 1001

i + 2 10000111 10001110 1000

i + 3 11110100 11110100 1111
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Redundancy types

Redundant information:
⇔ Coding redundancy (statistic redundancy)

→ lossless data compression
→ Huffman, Shannon-Fano, arithmetic

⇔ Spatio-temporal redundancy (inter-pixel /
inter-frame redundancy)

→ lossless transforms
→ predictive coding, LZW coding, run-length coding

⇔ Psycho-visual redundancy (approximation)
→ lossy transforms

→ color space transforms
→ thresholding, quantizing
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Redundancy types

Redundant information:
⇔ Coding redundancy (statistic redundancy)

→ lossless data compression
→ Huffman, Shannon-Fano, arithmetic

⇔ Spatio-temporal redundancy (inter-pixel /
inter-frame redundancy)

→ lossless transforms
→ predictive coding, LZW coding, run-length coding

⇔ Psycho-visual redundancy (approximation)
→ lossy transforms

→ color space transforms
→ thresholding, quantizing

Compression = Redundancy reduction
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Transforms: changing the point of view

All described approaches → spatial domain
→ data changing (entropic coding, interpixel coding)
→ information changing (quantization, approximation)

How about translating to another domain ?
- Thank you → Merci (message changing)

1. Color space transforms : RGB → YCbCr

2. Image transforms : Fourier, DCT, wavelets, . . .
• Idea: describing a function (an image, a signal) using

simple, elementary basis functions
• Method: each image is written as a linear combination of

basis functions
• Result: the coefficients of this linear combination describe

the image
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Fourier Transform: example

50 100 150 200 250

50

100

150

200

250

• each line of this 256 gray-levels
256 × 256 image:
cosine oscillating 10 times

• image: f(x, y) =
fix (128[cos(2πfxx) + 0, 999]),
with x, y = 1 . . . 256, fx = 10/256

Fourier transform:
• f(x, y) can be written as:

f(x, y) =
∑

fx

∑

fy

Ffx,fy
e2πj(fxx+fyy)

with

Ffx,fy
=

1

2562

∑

x

∑

y

f(x, y)e−j2π(fxx+fyy)
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Fourier Transform: example

−50 0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 • entropy estimation:
H(f) = −∑

p(f) log p(f) = 4, 17
→ low coding redundancy

• important spatial redundancy
(periodic function) but impossible
differential predictive coding

• rather low psycho-visual
redundancy, difficult to quantize

Fourier transform:

−20 0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 • entropy estimation:
H(F ) =−

∑
p(F ) log p(F )=0, 0008

→ important coding redundancy
• important spatial redundancy

(constant function)
• important psycho-visual

redundancy, easy to quantize and
to threshold
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Fidelity criteria

Lossy compression = Approximation
Original image = M ×N 256 gray-levels matrix:

f(x, y), x = 1 . . .M, y = 1 . . . N

Approximation image = M ×N 256 gray-levels matrix:

f̂(x, y), x = 1 . . .M, y = 1 . . . N

1. Mean square error:

MSEf = E

[
|f(x, y) − f̂(x, y)|2

]
=

1

MN

M∑

x=1

N∑

y=1

[
f(x, y) − f̂(x, y)

]2

2. Signal to noise ratio:
- MSE ≈ noise variance

SNRf =

1
MN

∑M
x=1

∑N
y=1

[
f̂(x, y)

]2

MSE
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Fidelity criteria

3. Peak signal to noise ratio:

PSNRf =
2552

MSE
=

(2b − 1)2

MSE

with 2b − 1 the maximum possible value of a pixel
4. Psycho-visual subjective criterion:

Value Rating Description

1 Excellent An image of extremely high quality, as good as
you could desire.

2 Fine An image of high quality, providing enjoyable
viewing. Interference is not objectionable.

3 Passable An image of acceptable quality. Interference is
not objectionable.

4 Marginal An image of poor quality; you wish you could im-
prove it. Interference is somewhat objectionable.

5 Inferior A very poor image, but you could watch it. Ob-
jectionable interference is definitely present.

6 Unusable An image so bad that you could not watch it.
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Fidelity criteria

MSE = 48, 02 MSE = 45, 97

SNR = 10, 25 SNR = 10, 39

Excellent Marginal Fine



Introduction

Information Theory

Compression basics

•Coding redundancy

• Inter-pixel redundancy

•Psycho-visual redundancy

• Image transforms

•Fidelity criteria

•Compression chain

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 47

Compression chain

Flowchart of a standard compression algorithm

Transforms
• color

transforms
◦ color space
◦ bit-plane

coding
• basis transform

◦ Discrete
Cosine

◦ Wavelets

Message
changing

Approximations
• quantizing
• thresholding

Information
changing

Lossy
compression

Coding
• inter-pixel

◦ run-length
◦ predictive

• entropic
◦ Huffman
◦ Shannon-

Fano
◦ LZW

(inter-pix)

Data changing

Lossless
compression
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Entropic coding
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Variable length

Natural image (monochrome): unequally probable gray levels
Natural coding (binary): 8 bits/pixel (0 . . . 255)

0 64 128 192 255
0

2000

4000

6000

8000

10000

12000

Idea:
Adapt the number of bits/pixel to the color of the pixel:
→ shorter codes for most probable colors
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Variable length coding

Efficiency condition for the new code:
→ no separation code between pixels ⇒ prefix condition:

A color code must not be the beginning of another’s color
code.

Consider a source s emitting 4 symbols.
General coding method: binary tree
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Shannon-Fano Coding

Algorithm:

1. Sort the symbols (gray level intensities) in decreasing
order of probability and store the result in vector s

2. Split the resulting vector s in two smaller vectors s0 and s1:
• the first one (s0) contains the great probability symbols,

their sum being ≤ 0,5
• the second one (s1) the rest of the symbols

3. For each of the two vectors s0 and s1, go to step 2 and
construct, if possible, vectors s00, s01,s10 and s11

4. Continue until arriving to individual symbols

The resulting indices xxxx of the vectors sxxxx are the new
codes.
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Shannon-Fano Coding: Example

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

sk p(sk)

s1 0, 25

s2 0, 20

s3 0, 15

s4 0, 10

s5 0, 10

s6 0, 09

s7 0, 05

s8 0, 03

s9 0, 03
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Shannon-Fano Coding: Example

sk p(sk) Code ck Length lk

s1 0, 25
0

0 00 2

s2 0, 20 1 01 2

s3 0, 15

1

0
0 100 3

s4 0, 10 1 101 3

s5 0, 10

1

0 110 3

s6 0, 09

1

0 1110 4

s7 0, 05

1

0 11110 5

s8 0, 03
1

0 111110 6

s9 0, 03 1 111111 6

- Source entropy: H(S)=−
∑

kp(sk)log p(sk)= 2, 87 bits/pixel

- Shannon-Fano coding: Lp =
∑

k p(sk)lk = 2, 92 bits/pixel

- Natural binary coding: 8 bits/pixel

⇒ Compression C = 8/2, 92 = 2, 74 : 1
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Shannon-Fano Coding

1. Upside - down algorithm
• goes down from the whole set to individual

symbols

• constructs first the most probable codes

• starts constructing the codes form the MSB
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Shannon-Fano Coding

1. Upside - down algorithm
• goes down from the whole set to individual

symbols

• constructs first the most probable codes

• starts constructing the codes form the MSB

2. Very efficient if we can split the probabilities
vector in exactly equally probable parts (1/2 -
1/2), so if individual probabilities are powers of
1/2
→ in this case we obtain total elimination of
coding redundancy, Lp = H(S) !
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Shannon-Fano Coding

1. Upside - down algorithm
• goes down from the whole set to individual

symbols

• constructs first the most probable codes

• starts constructing the codes form the MSB

2. Very efficient if we can split the probabilities
vector in exactly equally probable parts (1/2 -
1/2), so if individual probabilities are powers of
1/2
→ in this case we obtain total elimination of
coding redundancy, Lp = H(S) !

3. Seldom used in practice.
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Huffman Coding

Algorithm:
1. Sort the symbols (gray level intensities) in decreasing

order of probability and store the result in vector s

2. Initialize all the codes at [] (void)

3. Associate the 2 smallest probabilities and modify the
codes of the respective symbols:
• increase their size by a bit placed in the most significant

position
• make this bit 0, respectively 1

4. Create a virtual temporary symbol having a probability
equal to the the sum of the two probabilities from step 1

5. Create a new vector of probabilities associated to the new
vector of symbols, replacing the two smallest by the their
sum

6. Return to step 3. If one of the less probable symbols is a
virtual one, modify the codes of the real symbols “inside”

7. Continue until the sum of 2 probabilities equals 1
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Huffman Coding: Example

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

sk p(sk)

s1 0, 25

s2 0, 20

s3 0, 15

s4 0, 10

s5 0, 10

s6 0, 09

s7 0, 05

s8 0, 03

s9 0, 03
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Huffman Coding: Example

sk p(sk) Code lk

s1 0, 25 1 0 01 2

s2 0, 20 1 1 11 2

s3 0, 15 1 0 0 001 3

s4 0, 10 1 0 1 101 3

s5 0, 10 0
0 0 0

0000 4

s6 0, 09 1 0001 4

s7 0, 05 1

0 0 1

1001 4

s8 0, 03 0
0

10000 5

s9 0, 03 1 10001 5

0, 06 0, 11 0, 19 0, 21 0, 34 0, 41 0, 59 1

- Source entropy: H(S) = 2, 87 bits/pixel

- Huffman coding: Lp = 2, 91 bits/pixel

⇒ Compression C = 8/2, 91 = 2, 75 : 1
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Huffman Coding

1. Bottom - up algorithm
• goes up from individual symbols to the whole

set

• parallel construction of all codes

• starts constructing the codes form the LSB
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Huffman Coding

1. Bottom - up algorithm
• goes up from individual symbols to the whole

set

• parallel construction of all codes

• starts constructing the codes form the LSB

2. Optimal algorithm - shortest possible average
length



Introduction

Information Theory

Compression basics

Entropic coding

•Shannon-Fano

•Huffman

•LZW

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 58

Huffman Coding

1. Bottom - up algorithm
• goes up from individual symbols to the whole

set

• parallel construction of all codes

• starts constructing the codes form the LSB

2. Optimal algorithm - shortest possible average
length

3. Most used in practice (JPEG, . . . ).
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Huffman Coding

1. Bottom - up algorithm
• goes up from individual symbols to the whole

set

• parallel construction of all codes

• starts constructing the codes form the LSB

2. Optimal algorithm - shortest possible average
length

3. Most used in practice (JPEG, . . . ).

4. Different alleged versions:
• truncated Huffman

• shifted Huffman
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Variable length coding
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LZW Coding

• Shannon-Fano, Huffman → variable length coding
◦ need a previous probability estimation for each symbol
◦ assign variable length codes to fixed length symbols

• Lempel-Ziv-Welch (LZW) → fixed length coding
◦ doesn’t need a previous probability estimation of

symbol apparition
◦ assign a fixed length code to variable length symbols,

ALWAYS created by concatenation of two previously
defined symbols

◦ constructs un dictionary of symbols adapted to the
image

Applications:
• TIFF images
• GIF images
• PDF documents
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LZW Algorithm

1. Define the length n > 8 of the code (fixed) ⇔ size of the
dictionary = 2n

2. Define the first 255 symbols of the dictionary as the
normal gray levels

3. Read the first symbol (pixel gray level) to S1

4. Read the next symbol to S2

5. Concatenate S1 and S2 to form a new symbol SN = S1S2

6. If SN is not in the dictionary
• Output S1

• Add SN to the dictionary
• Make S1 = S2

else
• Make S1 = SN

7. Goto step 4 until end of file.
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LZW Coding: Example

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

80 80 50 50 150 150 150 50 50 50

80 80 50 50 150 150 150 50 50 50

200 200 80 80 255 120 120 120 120 120

200 200 80 80 255 255 120 120 120 120

100 200 200 200 80 80 120 120 80 80

200 200 200 200 80 80 120 120 80 80

120 120 200 200 0 0 80 80 150 150

120 120 200 200 0 215 80 80 150 150

120 120 120 120 215 215 100 100 100 100

120 120 120 120 215 215 100 100 100 100

S1 S2 Out (LZW code) Dictionary
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LZW Coding: Example

S1 S2 Dictionary Out (LZW code)

80 80 256 = 80 80 80

80 50 257 = 80 50 80

50 50 258 = 50 50 50

50 150 259 = 50 150 50

150 150 260 = 150 150 150

150 150

260 50 261 = 150 150 50 260

50 50

258 50 262 = 50 50 50 258

50 80 263 = 50 80 50

80 80

256 50 264 = 80 80 50 256

50 50

258 150 265 = 50 50 150 258

150 150

260 150 266 = 150 150 150 260

150 50 267 = 150 50 150

50 50

258 50

262 200 268 = 50 50 50 200 262

200 200 269 = 200 200 200

. . . . . . . . . . . .

9 bits/symbol → Compression ratio CR =
100 · 8
57 · 9 = 1, 56 : 1
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LZW Decoding algorithm

1. Knowing n the fixed length of the code, define the first 255
symbols of the dictionary as the normal gray levels

2. Initialize S1 = LZW (1) (first symbol)
3. Output S1

4. Read the next symbol to S2

5. If S2 is in the dictionary
• Make C = S2(1) (the first element of S2)
• Concatenate S1 and C to form a new symbol SN

• Make S1 = S2

else
• Make C = S1(1) (the first element of S1)
• Concatenate S1 and C to form a new symbol SN

• Make S1 = SN

6. Add SN to the dictionary

7. Output S1

8. Goto step 4 until end of file.
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LZW Decoding: Example

S2(LZW code) C Dictionary S1 = Out (Image)

80

80 80 256 = 80 80 80

50 50 257 = 80 50 50

50 50 258 = 50 50 50

150 150 259 = 50 150 150

260 150 260 = 150 150 150 150

258 50 261 = 150 150 50 50 50

50 50 262 = 50 50 50 50

256 80 263 = 50 80 80 80

258 50 264 = 80 80 50 50 50

260 150 265 = 50 50 150 150 150

150 150 266 = 150 150 150 150

262 50 267 = 150 50 50 50 50

200 200 268 = 50 50 50 200 200

. . . . . . . . . . . .
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LZW Coding

• The dictionary is not transmitted (created from the file, both
for encoding and for decoding)

• The number of symbols in the dictionary depends on the
file

• The size of a symbol is predefined
◦ if too big, inefficient compression: optimal number of

oversized symbols
◦ if too small, inefficient compression: not enough

symbols to exploit all redundancies

Example:
Bits/symbol Compression ratio

9 0.98:1
10 0.99:1
11 1.01:1
12 1.06:1
13 1.11:1



Image compression – 2006/2007 p. 67

Inter-pixel coding
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Black&white images

Run Length Coding

1. Create an empty output vector
2. If the first bit of the image is 1 (first pixel is white), put 0 in

the output vector
3. Starting from the first pixel, count the number of pixels

until the next change and place the result in the output
vector

Output vector:
• odd elements: length of black sequences
• even elements: length of white sequences

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
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Black&white images

Run Length Coding

1. Create an empty output vector
2. If the first bit of the image is 1 (first pixel is white), put 0 in

the output vector
3. Starting from the first pixel, count the number of pixels

until the next change and place the result in the output
vector

Output vector:
• odd elements: length of black sequences
• even elements: length of white sequences

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

• RLC=[0 26 1 52 1 20]
• Compression rate:

CR =
100

6 · 8 = 2.08 : 1
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Black&white images

Constant Area Coding

1. Choose the size p× q of the coding block
2. Count the number of all-white, all-black and mixed blocks

3. Code the most probable as 0, followed by 10 and 11
4. Starting from the left up corner

• read the p× q block
• if monochrome

output the correspondent code (0 or 10)
else

output 11 followed by the pq bits of the block

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
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Black&white images

Constant Area Coding

1. Choose the size p× q of the coding block
2. Count the number of all-white, all-black and mixed blocks

3. Code the most probable as 0, followed by 10 and 11
4. Starting from the left up corner

• read the p× q block
• if monochrome

output the correspondent code (0 or 10)
else

output 11 followed by the pq bits of the block
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Black&white images

Constant Area Coding

1. Choose the size p× q of the coding block
2. Count the number of all-white, all-black and mixed blocks

3. Code the most probable as 0, followed by 10 and 11
4. Starting from the left up corner

• read the p× q block
• if monochrome

output the correspondent code (0 or 10)
else

output 11 followed by the pq bits of the block
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CAC4×4=

0 0 0 0 0

0 0 0 110100 0

0 0 0 0 0

0 0 0 0 110001

0 0 0 0 0

CR = 100
35

= 2, 86 : 1
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Black&white images

Constant Area Coding

1. Choose the size p× q of the coding block
2. Count the number of all-white, all-black and mixed blocks

3. Code the most probable as 0, followed by 10 and 11
4. Starting from the left up corner

• read the p× q block
• if monochrome

output the correspondent code (0 or 10)
else

output 11 followed by the pq bits of the block
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CAC4×4=

0 0 0 0 0

0 0 0 110100 0

0 0 0 0 0

0 0 0 0 110001

0 0 0 0 0

CR = 100
35

= 2, 86 : 1

CAC10×1
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Black&white images

Constant Area Coding

1. Choose the size p× q of the coding block
2. Count the number of all-white, all-black and mixed blocks

3. Code the most probable as 0, followed by 10 and 11
4. Starting from the left up corner

• read the p× q block
• if monochrome

output the correspondent code (0 or 10)
else

output 11 followed by the pq bits of the block

1 2 3 4 5 6 7 8 9 10

1
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10

CAC4×4=

0 0 0 0 0

0 0 0 110100 0

0 0 0 0 0

0 0 0 0 110001

0 0 0 0 0

CR = 100
35

= 2, 86 : 1

CAC10×1= 0 0 0 0 0 0 110010000000 0 0 110000000100

CR = 100
32

= 3, 12 : 1
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Black&white images

White block skipping

For mostly white images:
1. Choose the size p× q of the coding block

2. Starting from the left up corner
• read the p× q block
• if all-white

output 0
else

output 1 followed by the pq bits of the block
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Black&white images

White block skipping

For mostly white images:
1. Choose the size p× q of the coding block

2. Starting from the left up corner
• read the p× q block
• if all-white

output 0
else

output 1 followed by the pq bits of the block
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W BS4×4
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Black&white images

White block skipping

For mostly white images:
1. Choose the size p× q of the coding block

2. Starting from the left up corner
• read the p× q block
• if all-white

output 0
else

output 1 followed by the pq bits of the block
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W BS4×4=

0 0 0 0 0

0 0 0 10100 0

0 0 0 0 0

0 0 0 0 10001

0 0 0 0 0

CR = 100
33

= 3 : 1
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Black&white images

White block skipping

For mostly white images:
1. Choose the size p× q of the coding block

2. Starting from the left up corner
• read the p× q block
• if all-white

output 0
else

output 1 followed by the pq bits of the block
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W BS4×4=

0 0 0 0 0

0 0 0 10100 0
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CR = 100
33

= 3 : 1

W BS1×10
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Black&white images

White block skipping

For mostly white images:
1. Choose the size p× q of the coding block

2. Starting from the left up corner
• read the p× q block
• if all-white

output 0
else

output 1 followed by the pq bits of the block

1 2 3 4 5 6 7 8 9 10

1
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W BS4×4=

0 0 0 0 0

0 0 0 10100 0

0 0 0 0 0

0 0 0 0 10001

0 0 0 0 0

CR = 100
33

= 3 : 1

W BS1×10= [0 0 10000001000 0 0 0 0 10000000001 0 0]T

CR = 100
30

= 3, 33 : 1



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

•Run Length Coding

•Predictive coding

•Optimal prediction – DPCM

Quantizing and thresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 71

Grayscale images

Predictive coding
• Idea: coding only the new information in each pixel
• What is “new”?
→ new= difference between the actual gray level value and
the predicted value

• What is “predicted”?
→ predicted= probable value of the gray level, knowing the
preceding pixels
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Prediction

General formula for the mth order predictor:

f̂n = round

[
m∑

i=1

αifn−i

]

→ the nth value is predicted as a linear combination of
previous values (

∑
i αi = 1)

Previous values:
• in time
→ successive values of a measured signal
→ pixel (x, y) values in successive frames

• in space
→ previous values on the same line
→ neighboring values in the same block
→ same position pixel in previous blocks

Encoder output:
en = fn − f̂n
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Predictive coding algorithm

Line prediction : f̂(x, y) = round

[
m∑

i=1

αif(x, y − i)

]

Encoding algorithm
1. Choose the predictor order m and coefficients αi

2. Initialization: Error image e = input image f
3. For each line x

• For all pixels (x, y), y > m

e(x, y) = f(x, y) − round

[
m∑

i=1

αif(x, y − i)

]

Decoding algorithm
1. Fix the predictor order m and coefficients αi

2. Initialization: Reconstructed image f = error image e
3. For each line x

• For all pixels (x, y), y > m

f(x, y) = e(x, y) + round

[
m∑

i=1

αif(x, y − i)

]
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Example

Observation: for m = 1 and α1 = 1 → differential coding

250
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Example

Observation: for m = 1 and α1 = 1 → differential coding
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p(i) log p(i) = 7.53 HE = −
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i=−255

p(i) log p(i) = 4.14
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Example
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Example

Entropy:

HM = 7, 53

Entropy:

HE = 4.14

Maximum compression by

entropic coding:

CO = 8/7, 53 = 1, 062 : 1

Maximum compression by

entropic coding:

CO = 8/4, 14 = 1, 93 : 1
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Example

Entropy:

HM = 7, 53

Entropy:

HE = 4.14

Maximum compression by

entropic coding:

CO = 8/7, 53 = 1, 062 : 1

Maximum compression by

entropic coding:

CO = 8/4, 14 = 1, 93 : 1

Huffman coding: CH = 1, 058 : 1 Huffman coding: CH = 1, 91 : 1
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Optimal prediction – DPCM

Objective: obtain error images f − f̂ of low entropy
→ low variance
⇔ low MSE = E

[
(f − f̂)2

]

Differential Pulse Code Modulation :
• Model the f image as a random autocorrelated process:

◦ variance: E
[
f2

]
= σ2

◦ horizontal autocorrelation: E [f(x, y)f(x, y − 1)] = σ2ρh

◦ vertical autocorrelation: E [f(x, y)f(x− 1, y)] = σ2ρv

◦ diagonal autocorr.: E [f(x, y)f(x− 1, y − 1)] = σ2ρvh

• Consider a third order predictor based on previous
neighboring pixels:

f̂(x, y) = α1f(x, y − 1) + α2f(x− 1, y − 1) + α3f(x− 1, y)

= [α1 α2 α3]




f(x, y − 1)

f(x− 1, y − 1)

f(x− 1, y)


 = αf

Problem: which are the optimal (low MSE) values for αi?
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Optimal prediction – DPCM

MSE = E

[
(f − f̂)2

]
= E

[
f2

]
+ E

[
f̂2

]
− 2E

[
ff̂

]

= σ2 + σ2α




1 ρv ρvh

ρv 1 ρh

ρvh ρh 1


αT − 2σ2α




ρh

ρvh

ρv




Under certain conditions (separable autocorrelation
ρvu = ρvρh),

α1 = ρh, α2 = −ρvρh, α3 = ρv,

In practice, to avoid autocorrelation calculus, DCPM
predictor:

α1 = 0, 75, α2 = −0, 5, α3 = 0, 75

Observation: for second order predictors

f̂(x, y) = α1f(x, y − 1) + α2f(x− 1, y), α1 = α2 = 0, 5
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Predictor comparisons

First order Second order Third order DPCM

Standard deviation:
σ1o = 7.18 σ2o = 5.39 σDPCM = 3.39

Entropy:
H1o = 4.14 H2o = 3.78 HDPCM = 3.28

Variable length coding maximal compression rate:
C1o = 1, 93 : 1 C2o = 2, 11 : 1 CDPCM = 2, 44 : 1
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Quantizing and thresholding



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

•Quantization

•Uniform probability

•General probability

•Prediction error

quantization
•Prediction error

quantization
•Tresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 80

Quantization

• replacing continuous functions by discrete values functions

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

∀f ∈ [fi−1, fi], f → vi : g(f) = vi

• default quantization: vi = fi−1

• excess quantization: vi = fi

• round quantization: vi = fi+fi−1

2

Quantization = making two dictionaries:
• interval = code (compression, coding)
• code = value (decompression, decoding)
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Quantization levels

Example: quantifying [0. . . 255] graylevels → 3 bits:
• intervals:

→ 3 bits ⇒ 23 intervals (equal size?!)
→ [0..31], [32..63], . . . , [224..255]

• codes:

[0..31] → 000, [32..63] → 001, . . . , [224..255] → 111

• values
◦ default coding: 000 → 0, 001 → 32, . . . , 111 → 224

◦ excess coding: 000 → 31, 001 → 63, . . . , 111 → 255

◦ round coding: 000 → 15, 001 → 47, . . . , 111 → 239
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Quantization levels

Example: quantifying [0. . . 255] graylevels → 3 bits:
• intervals:

→ 3 bits ⇒ 23 intervals (equal size?!)
→ [0..31], [32..63], . . . , [224..255]

• codes:

[0..31] → 000, [32..63] → 001, . . . , [224..255] → 111

• values
◦ default coding: 000 → 0, 001 → 32, . . . , 111 → 224

◦ excess coding: 000 → 31, 001 → 63, . . . , 111 → 255

◦ round coding: 000 → 15, 001 → 47, . . . , 111 → 239

⇒ Different approximations f̂(x) ⇔ quantization errors

q(x) = f(x) − f̂(x)

MSE = E
[
q2

]
=

∫ ∞

−∞
q2p(q)dq ⇔ SNR =

E
[
f2

]

E [q2]
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Uniform probability

• take an [fi−1, fi] interval
→ quantization: ∀f ∈ [fi−1, fi], f → f̂ = vi

• suppose f having a uniform probability on [fi−1, fi]

→ p(f) = 1
∆ , with ∆ = fi − fi−1

• then:
◦ quantification error qi(x) = f(x) − vi

◦ probability p(qi) = 1
∆ for qi ∈ [fi−1 − vi, fi − vi]

◦ MSEi = E
[
q2i

]
= 1

∆

∫ fi−vi

fi−1−vi
q2i dq
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Uniform probability

• take an [fi−1, fi] interval
→ quantization: ∀f ∈ [fi−1, fi], f → f̂ = vi

• suppose f having a uniform probability on [fi−1, fi]

→ p(f) = 1
∆ , with ∆ = fi − fi−1

• then:
◦ quantification error qi(x) = f(x) − vi

◦ probability p(qi) = 1
∆ for qi ∈ [fi−1 − vi, fi − vi]

◦ MSEi = E
[
q2i

]
= 1

∆

∫ fi−vi

fi−1−vi
q2i dq

• for vi = fi−1 (default coding - keeping MSB):
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Uniform probability

• take an [fi−1, fi] interval
→ quantization: ∀f ∈ [fi−1, fi], f → f̂ = vi

• suppose f having a uniform probability on [fi−1, fi]

→ p(f) = 1
∆ , with ∆ = fi − fi−1

• then:
◦ quantification error qi(x) = f(x) − vi

◦ probability p(qi) = 1
∆ for qi ∈ [fi−1 − vi, fi − vi]

◦ MSEi = E
[
q2i

]
= 1

∆

∫ fi−vi

fi−1−vi
q2i dq

• for vi = fi−1 (default coding - keeping MSB):

MSEi =
1

∆

∫ ∆

0

q2i dq =
∆2

3

mean error E [qi] =
1

∆

∫ ∆

0

qidq =
∆2

2
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Uniform probability

For vi = fi−1+fi

2 (round coding):
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Uniform probability

For vi = fi−1+fi

2 (round coding):

• mean error:

E [qi] =
1

∆

∫ ∆
2

−∆
2

qidq = 0

• mean square error:

MSEi = var(qi) =
1

∆

∫ ∆
2

−∆
2

q2i dq =
∆2

12
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Uniform probability

For vi = fi−1+fi

2 (round coding):

• mean error:

E [qi] =
1

∆

∫ ∆
2

−∆
2

qidq = 0

• mean square error:

MSEi = var(qi) =
1

∆

∫ ∆
2

−∆
2

q2i dq =
∆2

12

Round quantization:
• optimal approximation ⇔ “optimal” error (noise)

◦ zero mean error
◦ minimal energy (variance) error (for uniformly

distributed signals)
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Uniform probability

• let f be a gray level image, having uniform probability in
[0, A] : p(f) = 1

A
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Uniform probability

• let f be a gray level image, having uniform probability in
[0, A] : p(f) = 1

A

• image energy:

E
[
f2

]
=

∫ A

0

f2p(f)df =
A2

3

• image variance:

var(f) = E
[
|f − E [f ] |2

]
= E

[
f2

]
− E [f ]

2

=

∫ A

0

f2p(f)df −
[∫ A

0

fp(f)df

]2

=
A2

3
− A2

4
=
A2

12
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Uniform probability

• let f be a gray level image, having uniform probability in
[0, A] : p(f) = 1

A

• image energy:

E
[
f2

]
=

∫ A

0

f2p(f)df =
A2

3

• image variance:

var(f) = E
[
|f − E [f ] |2

]
= E

[
f2

]
− E [f ]

2

=

∫ A

0

f2p(f)df −
[∫ A

0

fp(f)df

]2

=
A2

3
− A2

4
=
A2

12

• take round quantization on n bits (2n intervals)
• take equal intervals ⇒ size ∆ = A/2n

• f has also a uniform probability on each [fi−1, fi]
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Uniform probability

Then:
• mean square error = error variance

var(q) = MSE =
∆2

12
=

A2

12 · 22n



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

•Quantization

•Uniform probability

•General probability

•Prediction error

quantization
•Prediction error

quantization
•Tresholding

Color space transforms

Image transforms

Image compression – 2006/2007 p. 85

Uniform probability

Then:
• mean square error = error variance

var(q) = MSE =
∆2

12
=

A2

12 · 22n

• signal to noise (error) (relative) ratio

SNR =
var(f)

var(q)
= 22n
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Uniform probability

Then:
• mean square error = error variance

var(q) = MSE =
∆2

12
=

A2

12 · 22n

• signal to noise (error) (relative) ratio

SNR =
var(f)

var(q)
= 22n

• SNR in decibels

SNRdB = 10 log10 22n = 20n log10 2 ≈ 6n
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Uniform probability

Then:
• mean square error = error variance

var(q) = MSE =
∆2

12
=

A2

12 · 22n

• signal to noise (error) (relative) ratio

SNR =
var(f)

var(q)
= 22n

• SNR in decibels

SNRdB = 10 log10 22n = 20n log10 2 ≈ 6n

- Each bit adds to the precision of the approximation 6 dB !
- If the quantified image (the approximation) is seen as the
original plus/minus the quantization error (noise), a 8 bits
quantization implies 48 dB SNR !
⇔ practically no difference between continuous gray levels
and 256 gray levels images!
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General probability

In general, the pixel’s gray level distribution is NOT uniform.
• take an [fi−1, fi] interval
→ quantization: ∀f ∈ [fi−1, fi], f → f̂ = vi

• suppose f having a unknown probability p(f) on [fi−1, fi]

• then:
◦ quantification error qi(x) = f(x) − vi

◦ mean error:

E [qi] =

∫ fi

fi−1

(f − vi)p(f)df

MSEi = E
[
q2i

]
=

∫ fi

fi−1

(f − vi)
2p(f)df

Optimality conditions:
• mean error = 0 ⇒ vi not necessarily = fi−1+fi

2

• MSE minimal ⇒ [fi−1, fi] intervals not necessarily equal
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Lloyd-Max algorithm

Estimation of vi values and [fi−1, fi] intervals for a given
image.

1. Choose the number of bits n (2n quantization levels)

2. Randomly initialize vi values
3. Create quantized image by attributing to each pixel the

closest value vi ⇔ implicitly creates intervals [fi−1, fi] with

fi =
vi + vi+1

2

4. Compute the empirical mean value for each interval
[fi−1, fi] and make vi equal to this value

5. Goto step 3 until convergence

Optimal Lloyd-Max quantifier

Particular interest: → Laplacian probability distributions
→ prediction error images
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Laplacian probability
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Laplace law:

p(x) =
1

σx

√
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e−

√
2|x|
σx

Example: error image

e(x, y) = f(x, y) − f(x, y − i)

Almost Laplacian, with
• mean value µe ≈ 0

• standard deviation σe ≈ 7, 18
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Laplacian probability

For σx = 1:

Nb. of quantization bits

1 2 3

Code fi vi fi vi fi vi

0
−∞

-0,707
−∞

-1,810
−∞

-2,994
1

0
0,707

-1,102
-0,395

-2,285
-1,576

2
∞ 0

0,395
-1,181

-0,785
3

1,102
1,810

-0,504
-0,222

4
∞ 0

0,222
5

0,504
0,785

6
1,181

1,576
7

2,285
2,994

∞

For real images, [fi−1, fi] intervals and vi values are
obtained by multiplying by the real σ and rounding.
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Prediction error quantization

Combination of predictors and quantizers

Lossy predictive coding:
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Prediction error quantization

Combination of predictors and quantizers

Lossy predictive coding:
• Delta Modulation (DM):

- differential predictor (1 pixel, by line) + 1 bit quantization
◦ if error < 0 (e(x, y) = f(x, y) − f̂(x, y) ∈ (−∞, 0])

vi = −value (Lloyd-Max, uniform, empiric, ...)
◦ else

vi = +value
• Lossy Differential Pulse Code Modulation (DPCM):

◦ optimal DPCM predictor (3 preceding neighboring
pixels)

◦ n bit quantization, with [fi−1, fi] intervals and vi values
given by Lloyd-Max or uniform quantization

• Adaptive predictive quantization:
- optimal predictor + n bit quantization by sub-image
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Example of DM

• Error image: Laplace distribution with σe = 10

• Delta modulation with Lloyd-Max quantizer: v0,1 = ±7

• Current image line fx(y):
[17, 18, 17, 18, 16, 18, 18, 17, 24, 31, 32, 34, 32, 32, 35, 44, 56, 74, 90, 92, 94, 95, 96, 97, 97]

25
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Example of DM

• Error image: Laplace distribution with σe = 10

• Delta modulation with Lloyd-Max quantizer: v0,1 = ±7

• Current image line fx(y):
[17, 18, 17, 18, 16, 18, 18, 17, 24, 31, 32, 34, 32, 32, 35, 44, 56, 74, 90, 92, 94, 95, 96, 97, 97]
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• granular noise
• slope overload

Encoder Decoder Error

f f̂ e ė ḟ f̂ ḟ f − ḟ

17 - - - 17 - 17 0

18 17 1 7 24 17 24 -6

17 24 -7 -7 17 24 17 0

18 17 1 7 24 17 24 -6

16 24 -8 -7 17 24 17 -1

. . . . . . . .

35 31 4 7 38 31 38 -3

44 38 6 7 45 38 45 -1

56 45 11 7 52 45 52 4

74 52 22 7 59 52 59 15

90 59 31 7 66 59 66 24

92 66 26 7 73 66 73 19

94 73 21 7 80 73 80 14

95 80 15 7 87 80 87 8

96 87 9 7 94 87 94 2

97 94 3 7 101 94 101 -4

97 101 -4 -7 94 101 94 3
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Example of lossy DPCM (Lloyd-Max)

Compressed images Error images
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Example of lossy DPCM (Lloyd-Max)

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)

(c)

(d)

(e)

(f)

global adaptive (4×4 pixels)

(a) (b) (c) (d) (e) (f)

Bits/pixel 1 2 3 1,125 2,125 3,125

Compression ratios 8:1 4:1 2,66:1 7,11:1 3,77:1 2,56:1

MSE 9,90 4,30 2,31 4,61 1,70 0,76
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Thresholding

• Idea:
keeping only significant values while making all others 0

• Problem: what is significant?
• Difficult to say on original images but:

◦ on prediction error images
- low prediction error ⇔ small variations in the original
image ⇔ imperceptible for human eye

◦ on transformed images
- small value coefficients (Fourier) ⇔ small variations in
the original image ⇔ imperceptible for human eye

Mainly on transformed images. Adapted by sub-images.

Algorithm:
1. Split the original image in sub-images (optional!)
2. Transform each sub-image
3. Threshold (make small values 0)
4. Code 0 values on 1 bit and Run Length
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Thresholding&Quantizing

• Idea:
quantizing only significant values while making all others 0

• Method:
- change the original values by multiplication (mask)
- quantize&threshold (small values → 0 by quantizing)
⇔ non-uniform quantization !

• On transformed images
- small value coefficients rounded to 0, all others quantified
depending on their psycho-visual importance

Algorithm:
1. Split the original image in sub-images (optional!)
2. Transform each sub-image
3. Multiply the transform’s coefficients by a mask
4. Quantize the result

5. Code 0 values on 1 bit and Run Length
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Color space transforms
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Color to grayscale images

All colors → mixtures of primary colors R,G,B

• Standard form of a color image → three superposed
images (pure red, green and blue)

• RGB coding: 8 bits (256 levels) for each color
• each of the three images can be seen as a gray level image

Is this representation optimal from a compression point of
view?

• human vision has different sensibilities for the three colors
• human eye is more sensible to luminance than to colors
• luminance ∼ gray level image (black&white television)

Compression idea:

• change RGB coding to luminance plus pseudo-color
• keep most of the luminance information
• discard the less visible pseudo-color information
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RGB to YCbCr

Y = luminance Cb = chrominance blue Cr=chrominance red

Approximate transform:
• diagonal gray level

(intensity, luminance): ≈Y
• eye different sensibility to

red, green and blue, so:

Y ≈ 0, 3R+ 0, 6G+ 0, 1B

• chrominances:

Cb =
B − Y

2
+ 128 = −0, 15R− 0, 3G+ 0, 45B + 128

Cr =
R− Y

1.6
+ 128 = 0, 44R− 0, 38G− 0, 06B + 128
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RGB to YCbCr

Usually implemented color transform (JPEG/JPEG2000):

Y = 0.2568R + 0.5041G+ 0.0979B + 16

Cb = −0.1482R − 0.2910G+ 0.4392B + 128

Cr = 0.4392R − 0.3678G− 0.0714B + 128

Original image G & B subsampling Cb & Cr subsampling

R:8, G:8, B:8 R:8, G:2, B:2 Y:8, Cb:2, Cr:2
1:1 2:1 2:1
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RGB to YCbCr

Red image Green image Blue image

Y image Cb image Cr image
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Grayscale to black&white images

Binarizing
• Most “brutal” quantizing
• Adapted for simple gray scale images:
→ 2 modes distribution (lot of clear pixels, lot of dark pixels)
→ Scanned documents, drawings, handwriting, . . .

• Fixed threshold algorithm:
For each pixel:
◦ if gray level > threshold

pixel value=1 (white)
else

pixel value=0 (black)
• Binary image compression methods (RLC, CAC, . . . )
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Grayscale to black&white images

Bit-Plane Coding
• Each image (color or monochrome) is a superposition of at

most 3 monochrome (gray level) images
• Each pixel gray level l → 8 bits (MSB → LSB):

l = b72
7 + b62

6 + · · · + b02
0 =

7∑

i=0

bi2
i

with bi = {0, 1}
• Bit-plane i= black&white image constructed with bi values

of each pixel
• Compression techniques:

◦ Quantizing = keeping only the MS bits bi, i > level ⇔
only i bit-planes

◦ Gray code conversion
◦ Binary image compression methods (run-length,

constant area, . . . )
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Bit-Plane Coding

Bit 7 Bit 6 Bit 5 Bit 4

Bit 3 Bit 2 Bit 1 Bit 0
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Quantizing

C=8:7=1,14:1 C=8:6=1,33:1 C=8:5=1,6:1 C=8:4=2:1
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IGS Quantizing

Original 4 bits quantizing 4 bits IGS quantizing
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Run-length coding

• quantization = keeping only significant bit-planes
• RLC = coding each bit-plane individually

Bit-plane 7 lines 1-10

0 50 100 150 200 250 300 350 400 450

10

9

8

7

6

5

4

3

2

1

RL Coding

• line 1: 61 12 31 19 30 95 1 64 11 126
• line 2: 61 12 31 19 30 160 11 126
• . . .
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Run-length coding

RL Coding (bits/pixel)

B7 B6 B5 B4 B3 B2 B1 B0 Total CR

0.19 0.52 0.96 1.00 1.00 1.00 1.00 1.00 6, 67 1, 2 : 1

• No compression for bit-planes i ≤ 4 (9 bit/length)
• Possible further compression by entropic coding (Huffman)

H(B7) = 6, 8bits/pixel

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

• Possible further compression by quantizing
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BCD to Gray code

• BCD coding: each pixel gray level l → 8 bits:

l = b72
7 + b62

6 + · · · + b02
0 =

7∑

i=0

bi2
i with bi = {0, 1}

• Sensible to small variations in gray level values

127 → 01111111

128 → 10000000

→ a visually imperceptible change ⇒ changing all
bit-planes!

• Gray code → only one bit changes for each gray level unit
• BCD → Gray code conversion

MSB g7 = b7

bits 0-6 gi = bi ⊕ bi+1

with ⊕ the XOR (exclusive OR) symbol.
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Bit-Plane Coding - Gray Code

Bit 7 Bit 6 Bit 5 Bit 4

Bit 3 Bit 2 Bit 1 Bit 0
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Bit-Plane Coding - BCD / Gray Code

BCD 7 BCD 6 BCD 5 BCD 4

Gray 7 Gray 6 Gray 5 Gray 4
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Run-length coding

BCD bit-planes RL Coding (bits/pixel)

B7 B6 B5 B4 B3 B2 B1 B0 Total CR

0.19 0.52 0.96 1.00 1.00 1.00 1.00 1.00 6, 67 1, 2 : 1

Gray coded bit-planes RL Coding (bits/pixel)

B7 B6 B5 B4 B3 B2 B1 B0 Total CR

0.19 0.34 0.47 0.92 1.00 1.00 1.00 1.00 5, 92 1, 4 : 1

• No compression for bit-planes i ≤ 3 (9 bit/length)
• Possible further compression by entropic coding (Huffman)
• Possible further compression by quantizing (worse result

for the same quantization!)
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Image transforms
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Changing the point of view

All described approaches → spatial domain

How about translating to another domain ?
- Thank you → Merci

Image transforms: Fourier, DCT, wavelets, . . .
• Idea: describing a function (an image, a signal) using

simple, elementary basis functions
• Method: each image is written as a linear combination of

basis functions
• Result: the coefficients of this linear combination describe

the image
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Geometric analogy

Let v be a vector in R
2

• −→v = −→v1 + −→v2 = a1
−→e1 + a2

−→e2
• −→e1⊥−→e2 basis vectors:

- null scalar product: 〈−→e1 ,−→e2〉 = 0

- unit length: |e1| =
√
〈−→e1 ,−→e1〉 = 1

• a1 = 〈−→v ,−→e1〉 = |v||e1| cosφ1

a2 = 〈−→v ,−→e2〉 = |v||e2| cosφ2

Within a predefined orthonormal basis −→ei , the coefficients ai

perfectly describe the vector of interest
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Geometric analogy

Let v be a vector in R
2

• −→v = −→v1 + −→v2 = a1
−→e1 + a2

−→e2
• −→e1⊥−→e2 basis vectors:

- null scalar product: 〈−→e1 ,−→e2〉 = 0

- unit length: |e1| =
√
〈−→e1 ,−→e1〉 = 1

• a1 = 〈−→v ,−→e1〉 = |v||e1| cosφ1

a2 = 〈−→v ,−→e2〉 = |v||e2| cosφ2

Within a predefined orthonormal basis −→ei , the coefficients ai

perfectly describe the vector of interest

Pythagoras Theorem:

|v|2 = 〈−→v ,−→v 〉 = 〈−→v1 + −→v2 ,−→v1 + −→v2〉
= 〈−→v1 ,−→v1〉 + 2 〈−→v1 ,−→v2〉 + 〈−→v2 ,−→v2〉
= a2

1 + a2
2
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Geometric analogy

Let −→v be a vector in R
n

• decomposition: −→v =
∑n

i
−→vi =

∑n
i ai

−→ei

• coefficients: ai = 〈−→v ,−→ei 〉
• Pythagoras: |v|2 =

∑n
i a

2
i

Imagine an algorithm that rearranges the coefficients ai by
their absolute value: |a1| ≥ |a2| ≥ |a3| ≥ ...|an|

• perfect reconstruction: −→v =
∑n

i
−→vi =

∑n
i ai

−→ei

→ the vector can be perfectly reconstructed if we know the
coefficients

• approximation: −→vK =
∑K<n

i
−→vi =

∑K<n
i ai

−→ei

→ the vector can be approximatively reconstructed using
only the greatest coefficients

• amelioration: −−−→vK+1 =
∑K+1<n

i
−→vi = −→vK + ak+1

−−→ek+1

→ better approximation can be obtained, if needed, by
iteration
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Functional analysis

A basis of functions:
• complete: all functions f(x) (vectors, signals, images) can

be written as a weighted sum of basis functions ψu(x))
(vectors, signals, images):

f(x) =
∑

u

Fuψu(x) (1)

• orthonormal: the basis functions ψu(x) are orthogonal
and have unit norm (length)

〈ψu(x), ψu(x)〉 = δu (2)
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Functional analysis

A basis of functions:
• complete: all functions f(x) (vectors, signals, images) can

be written as a weighted sum of basis functions ψu(x))
(vectors, signals, images):

f(x) =
∑

u

Fuψu(x) (1)

• orthonormal: the basis functions ψu(x) are orthogonal
and have unit norm (length)

〈ψu(x), ψu(x)〉 = δu (2)

Then:
• the equation (1) is the expression of a function (signal,

image) as a sum of its projections on the basis functions
• the coefficients Fu are the scalar values of these

projections:
Fu = 〈f(x), ψu(x)〉
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Physical interpretation of Fu

The scalar product of a two discrete signals (images)
having N samples is defined as:

〈f(x), g(x)〉 =
N∑

1

f(x)g(x) (3)
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Physical interpretation of Fu

The scalar product of a two discrete signals (images)
having N samples is defined as:

〈f(x), g(x)〉 =
N∑

1

f(x)g(x) (3)

The same equation (3) define also the correlation between
the signals f and g (up to the multiplicative factor N ).
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Physical interpretation of Fu

The scalar product of a two discrete signals (images)
having N samples is defined as:

〈f(x), g(x)〉 =
N∑

1

f(x)g(x) (3)

The same equation (3) define also the correlation between
the signals f and g (up to the multiplicative factor N ).

Observations:
• important correlation between f and ψu ⇔ f similar to
ψu ⇔ Fu grand

• decorrelation ⇔ f orthogonal to ψ ⇔ Fu → 0
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Physical interpretation of Fu

The scalar product of a two discrete signals (images)
having N samples is defined as:

〈f(x), g(x)〉 =
N∑

1

f(x)g(x) (3)

The same equation (3) define also the correlation between
the signals f and g (up to the multiplicative factor N ).

Observations:
• important correlation between f and ψu ⇔ f similar to
ψu ⇔ Fu grand

• decorrelation ⇔ f orthogonal to ψ ⇔ Fu → 0

Parseval Theorem:

||f ||2 =
∑

x

|f(x)|2 =
∑

u

|Fu|2. (4)

⇔Pythagoras Theorem
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Physical interpretation of Fu

Observation:
• the norm of a signal ||f ||2 = 〈f, f〉 is the energy!
• according to Parseval, ||f ||2 =

∑
u |Fu|2

• Fu are the weights (coefficients) of the unitary norm
(energy) basis functions

⇒ each coefficient Fu is a measure of the energy contributed
by the basis function ψu to the signal of interest !
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Physical interpretation of Fu

Observation:
• the norm of a signal ||f ||2 = 〈f, f〉 is the energy!
• according to Parseval, ||f ||2 =

∑
u |Fu|2

• Fu are the weights (coefficients) of the unitary norm
(energy) basis functions

⇒ each coefficient Fu is a measure of the energy contributed
by the basis function ψu to the signal of interest !

Consequently:
• Fu coefficients represent the original function f(x)

• Fu are a measure of energy of the basis function ψu

• Fu are a measure of similarity between the signal of
interest and the basis function ψu
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Physical interpretation of Fu

Observation:
• the norm of a signal ||f ||2 = 〈f, f〉 is the energy!
• according to Parseval, ||f ||2 =

∑
u |Fu|2

• Fu are the weights (coefficients) of the unitary norm
(energy) basis functions

⇒ each coefficient Fu is a measure of the energy contributed
by the basis function ψu to the signal of interest !

Consequently:
• Fu coefficients represent the original function f(x)

• Fu are a measure of energy of the basis function ψu

• Fu are a measure of similarity between the signal of
interest and the basis function ψu

How do we choose the coefficients?
How do we choose the basis?
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Fourier Transform: example

50 100 150 200 250
0

50

100

150

200

250 • line of a 256 gray-levels
256 × 256 image

• f(x) =
fix (128[sin(2πfx) + 0, 999]), with
x = 1 . . . 256, f = 10/256

• sine oscillating 10 times

Fourier transform:

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

140

• f(x) can be written as:

f(x) =
∑

u

auψu(x) =
∑

f

F (f)ej2πfx

with F (f) = 1
256

∑
x f(x)e−j2πfx

• basis functions ψf (x):
→ complex exponentials ej2πfx

• coefficients af :
→ Fourier transform F (f)
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Fourier Transform: example

−50 0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 • entropy estimation:
H(f) = −∑

p(f) log p(f) = 4, 17
→ low coding redundancy

• important spatial redundancy
(periodic function) but impossible
differential predictive coding

• rather low psycho-visual
redundancy, difficult to quantize

Fourier transform:

−20 0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 • entropy estimation:
H(F ) = −

∑
p(F ) log p(F ) = 0, 10

→ important coding redundancy
• important spatial redundancy

(constant function)
• important psycho-visual

redundancy, easy to quantize and
to threshold
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Choosing coefficients. Partial reconstruction

As we have seen:
• according to Parseval, an important coefficient Fu ⇒ a

great amount of the energy of the function (signal) f(x) is
contributed by the basis function (signal) ψu
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Choosing coefficients. Partial reconstruction

As we have seen:
• according to Parseval, an important coefficient Fu ⇒ a

great amount of the energy of the function (signal) f(x) is
contributed by the basis function (signal) ψu

• an important coefficient Fu ⇒ the signal f(x) is similar to
the basis signal ψu
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Choosing coefficients. Partial reconstruction

As we have seen:
• according to Parseval, an important coefficient Fu ⇒ a

great amount of the energy of the function (signal) f(x) is
contributed by the basis function (signal) ψu

• an important coefficient Fu ⇒ the signal f(x) is similar to
the basis signal ψu

Idea:

1. An approximated signal f̂(x) reconstructed
considering only the most important (in absolute
value) coefficients Fu will preserve most of the
energy of the original signal f(x)
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Choosing coefficients. Partial reconstruction

As we have seen:
• according to Parseval, an important coefficient Fu ⇒ a

great amount of the energy of the function (signal) f(x) is
contributed by the basis function (signal) ψu

• an important coefficient Fu ⇒ the signal f(x) is similar to
the basis signal ψu

Idea:

1. An approximated signal f̂(x) reconstructed
considering only the most important (in absolute
value) coefficients Fu will preserve most of the
energy of the original signal f(x)

2. The approximated signal f̂(x) reconstructed as
described here will be “similar” to the original
signal f(x)
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1. Energy conservation

• f(x), x = 1 . . .N : a signal of finite energy and
Fu, u = 1 . . .N his N correspondent coefficients
◦ the energy of the signal

E = ||f(x)||2 =
N∑

x=1

f(x)2 =
N∑

u=1

F 2
u
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1. Energy conservation

• f(x), x = 1 . . .N : a signal of finite energy and
Fu, u = 1 . . .N his N correspondent coefficients
◦ the energy of the signal

E = ||f(x)||2 =
N∑

x=1

f(x)2 =
N∑

u=1

F 2
u

• f̂(x): a partial reconstruction of f(x), using P coefficients
◦ the energy of the approximation

Ê = ||f̂(x)||2 =
N∑

x=1

f̂(x)2 =
N∑

u=1

(g(Fu) · Fu)2 ,

with g(Fu) = 1 a mask being 1 for the P retained
coefficients and 0 elsewhere
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1. Energy conservation

• f(x), x = 1 . . .N : a signal of finite energy and
Fu, u = 1 . . .N his N correspondent coefficients
◦ the energy of the signal

E = ||f(x)||2 =
N∑

x=1

f(x)2 =
N∑

u=1

F 2
u

• f̂(x): a partial reconstruction of f(x), using P coefficients
◦ the energy of the approximation

Ê = ||f̂(x)||2 =
N∑

x=1

f̂(x)2 =
N∑

u=1

(g(Fu) · Fu)2 ,

with g(Fu) = 1 a mask being 1 for the P retained
coefficients and 0 elsewhere

Criterion to minimize: E − Ê = ||f(x)||2 − ||f̂(x)||2

⇔ maximizing the energy of the approximationÊ = ||f̂(x)||2

⇔ retaining the P greatest coefficients in absolute value
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2. Signal similarity

• f̂(x): a partial reconstruction of f(x), using P coefficients

• r(x) = f(x) − f̂(x) =
∑N−P

k=1 Fkψk: the residual error and
its decomposition

Criterion to minimize: Mean Square Error (MSE)

MSE = ||f(x) − f̂(x)||2 = ||r(x)||2

=
N−P∑

k=1

F 2
k

The MSE is minimized when it is constructed from the
smallest (in absolute value) coefficients Fk

⇔ the P retained coefficients for the approximation are the
greatest.
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2. Signal similarity

• f̂(x): a partial reconstruction of f(x), using P coefficients

• r(x) = f(x) − f̂(x) =
∑N−P

k=1 Fkψk: the residual error and
its decomposition

Criterion to minimize: Mean Square Error (MSE)

MSE = ||f(x) − f̂(x)||2 = ||r(x)||2

=
N−P∑

k=1

F 2
k

The MSE is minimized when it is constructed from the
smallest (in absolute value) coefficients Fk

⇔ the P retained coefficients for the approximation are the
greatest.

⇒ The two criteria (energy difference and MSE) are
minimized in the same time by choosing the greatest
coefficients in absolute value.
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Histograms

−2 −1 0 1 2
0

5

10

15

20

25

30

35

40

45

−6 −4 −2 0 2 4 6
0

100

200

300

400

500

Original signal

• “Dirac coefficients”
• the energy is distributed

upon all coefficients
(samples)

Transform coefficients

• redistribution of the energy
upon a small number of
great value coefficients

• a lot of coefficients ≈ 0
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Choosing coefficients. Conclusion

Principle of lossy compression by approximation

• Decomposing a signal f(x) on an orthonormal basis of
dimension N implies a redistribution of the energy of the
signal upon the basis functions (signals).

• If the basis is well chosen, the energy concentrates upon
few coefficients, which correspond to the basis functions
that contribute the most to the reconstruction of a good
approximation of the original signal.

• If we want to reconstruct a good approximation (i.e.
minimize the MSE and maximize the retained energy), we
should retain the greatest coefficients. The approximation
will improve with every new term added, but the benefit
could be unimportant considering the amount of data.
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Choosing coefficients. Conclusion

Principle of lossy compression by approximation

• Decomposing a signal f(x) on an orthonormal basis of
dimension N implies a redistribution of the energy of the
signal upon the basis functions (signals).

• If the basis is well chosen, the energy concentrates upon
few coefficients, which correspond to the basis functions
that contribute the most to the reconstruction of a good
approximation of the original signal.

• If we want to reconstruct a good approximation (i.e.
minimize the MSE and maximize the retained energy), we
should retain the greatest coefficients. The approximation
will improve with every new term added, but the benefit
could be unimportant considering the amount of data.

How do we choose the coefficients? X

How do we choose the basis?
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Choosing the basis

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

• 10 × 10 B&W image f(x, y)

• two isolated black pixels
∼ two Dirac pulses

• optimal basis : Dirac (natural
image)
- very low entropy
- only two non-zero coefficients

50 100 150 200 250

50

100

150

200

250

• 256× 256 gray level image f(x, y)

• sinusoidal pattern by line
• optimal basis : Fourier

- very low entropy
- only three (two significant)
non-zero coefficients



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

•Geometric analogy

•Functional analysis

•FT

•DCT

•DCT approximations

•DCT zonal coding

•DCT threshold coding

• JPEG

•WT

Image compression – 2006/2007 p. 127

Choosing the basis

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

• 10 × 10 B&W image f(x, y)

• two isolated black pixels
∼ two Dirac pulses

• optimal basis : Dirac (natural
image)
- very low entropy
- only two non-zero coefficients

50 100 150 200 250

50

100

150

200

250

• 256× 256 gray level image f(x, y)

• sinusoidal pattern by line
• optimal basis : Fourier

- very low entropy
- only three (two significant)
non-zero coefficients

Is there a unique optimal basis for all images? No.
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Choosing the basis

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

• 10 × 10 B&W image f(x, y)

• two isolated black pixels
∼ two Dirac pulses

• optimal basis : Dirac (natural
image)
- very low entropy
- only two non-zero coefficients

50 100 150 200 250

50

100

150

200

250

• 256× 256 gray level image f(x, y)

• sinusoidal pattern by line
• optimal basis : Fourier

- very low entropy
- only three (two significant)
non-zero coefficients

Is there a unique optimal basis for all images? No.
Are there sub-optimal basis acceptable for all images? Yes.
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Transform = Change of basis

Two dimensional transforms formalism:
• M ×N image of interest (function, signal):

f(x, y), x = 1 . . .M, y = 1 . . . N

• family of u, v basis images (functions):

ψu,v(x, y)

• coefficients (weights), obtained by the direct transform:

Fu,v = 〈f(x, y), ψu,v(x, y)〉 =
∑

x

∑

y

f(x, y)ψu,v(x, y)

• inverse transform:

f(x, y) =
∑

u

∑

v

Fu,vψu,v(x, y)
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Separable transforms

Theoretical two dimensional global transforms
→ work simultaneously on lines and columns (in x and y):

• ψu,v(x, y) basis functions have 4 parameters:
◦ domain definition x = 1 . . .M, y = 1 . . . N , as they are

2D images
◦ shape (gray levels pattern) definition: u, v (frequency,

location, scale, . . . )

• Fu,v coefficients are computed as projections of the whole
image upon the ψu,v(x, y) basis function

Fu,v = 〈f(x, y), ψu,v(x, y)〉 =
∑

x

∑

y

f(x, y)ψu,v(x, y)
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Separable transforms

In practice, most of the transforms are separable:
→ work successively on lines and columns (in x and y):

• ψu,v(x, y) = ψu(x)ψv(y)

Fourier basis:

e2πj(ux/M+vy/N) = e2πjux/Me2πjvy/N

• Fu,v coefficients are computed in two steps:
1. projections of the image upon ψu(x) basis functions
2. projections of the result upon ψv(y) basis functions

Fourier coefficients:

Fu,v =
∑

x

e−2πjux/M
∑

y

f(x, y)e−2πjvy/N
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Changing the basis

A given image f(x, y) can be represented:

Natural basis: Dirac
• sum of weighted (Fi,j = gray level) Dirac pulses

(ψi,j(x, y) = δi,j(x, y))
• the image is described by the gray level values of each

pixel ⇔ by the coefficients (weights,amplitudes) of each
Dirac pulse

Fourier basis
• sum of weighted (Fi,j) complex exponentials (ψi,j(x, y))
• the image is described by its spectrum ⇔ by the

coefficients (weights, amplitudes) of each exponential

How do we change the basis?
• Fourier transform
• Practically: matrix multiplication



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

•Geometric analogy

•Functional analysis

•FT

•DCT

•DCT approximations

•DCT zonal coding

•DCT threshold coding

• JPEG

•WT

Image compression – 2006/2007 p. 132

Changing the basis

The image f(x, y) is a M ×N matrix f

Pre-multiplying by a M ×M matrix T1 gives:

F1 = T1f ,

where the element (i, j) of F1 is:

F1(i, j) =
∑

k

T1(i, k)f(k, j) = 〈T1(i, :), f(:, j)〉

⇔ the scalar product between the line i of the transform
matrix T1 and the column j of the image.

• If the lines of T1 are basis functions, the elements of F1

are the coefficients of the transform of the columns of f .
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Changing the basis

The image f(x, y) is a M ×N matrix f

Pre-multiplying by a M ×M matrix T1 gives:

F1 = T1f ,

where the element (i, j) of F1 is:

F1(i, j) =
∑

k

T1(i, k)f(k, j) = 〈T1(i, :), f(:, j)〉

⇔ the scalar product between the line i of the transform
matrix T1 and the column j of the image.

• If the lines of T1 are basis functions, the elements of F1

are the coefficients of the transform of the columns of f .

• Post-multiplying f by a N ×N matrix T2 having basis
functions as columns, we obtain the transform coefficients
of the image lines.
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Changing the basis

The image f(x, y) is a M ×N matrix f

Pre-multiplying by a M ×M matrix T1 gives:

F1 = T1f ,

where the element (i, j) of F1 is:

F1(i, j) =
∑

k

T1(i, k)f(k, j) = 〈T1(i, :), f(:, j)〉

⇔ the scalar product between the line i of the transform
matrix T1 and the column j of the image.

• If the lines of T1 are basis functions, the elements of F1

are the coefficients of the transform of the columns of f .

• Post-multiplying f by a N ×N matrix T2 having basis
functions as columns, we obtain the transform coefficients
of the image lines.

• Separable transforms are performed by two successive
matrix multiplications of the original image.
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Changing the basis, practical approach

1. In practical applications:
• the full-size image is divided in square sub-images
• the remaining rectangular sub-images are padded with

zeros to become square
⇒ Transform matrices T1,T2 are square and have the size
of the image (sub-image) to transform N ×N

2. Transform matrices T1,T2 contain the same basis
functions on their lines (respectively columns):
• T1 = T T

2 = T transform matrix
• basis functions are orthonormal, so T T = T−1
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Changing the basis, practical approach

1. In practical applications:
• the full-size image is divided in square sub-images
• the remaining rectangular sub-images are padded with

zeros to become square
⇒ Transform matrices T1,T2 are square and have the size
of the image (sub-image) to transform N ×N

2. Transform matrices T1,T2 contain the same basis
functions on their lines (respectively columns):
• T1 = T T

2 = T transform matrix
• basis functions are orthonormal, so T T = T−1

Choosing the lines of the transform matrix T means choosing
the transform.

Transform of f image:F = TfT
T
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Fourier Transform

Fourier transform:
• basis functions: complex exponentials

ψu(x) = ej2πux/N , u = −N/2..N/2 − 1

• for a 8 × 8 matrix (sub-image) f :

T =




e−j2π(−4)·0/8 e−j2π(−4)·1/8 . . . e−j2π0·7/8

e−j2π(−3)·0/8 e−j2π(−3)·1/8 . . . e−j2π(−3)·7/8

· · . . . ·
e−j2π3·0/8 e−j2π3·1/8 . . . e−j2π3·7/8




• T matrix → complex conjugate, because basis functions
are complex!
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Discrete Cosine Transform

Discrete cosine transform:
• real basis functions

ψu(x) = cu cos

(
(2x+ 1)uπ

2N

)

with

cu =





√
1
N for u = 0√
2
N for u = 1 . . .N − 1

• for a 8 × 8 matrix (sub-image) f :

T =




1√
8

cos (2·0+1)0π
16

1√
8

cos (2·1+1)0π
16 . . . 1√

8
cos (2·7+1)0π

16
1
2 cos (2·0+1)1π

16
1
2 cos (2·1+1)1π

16 . . . 1
2 cos (2·7+1)1π

16

· · . . . ·
1
2 cos (2·0+1)7π

16
1
2 cos (2·1+1)7π

16 . . . 1
2 cos (2·7+1)7π

16



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Discrete Cosine Transform

T =




1√
8

1√
8

. . . 1√
8

1
2 cos π

16
1
2 cos 3π

16 . . . 1
2 cos 15π

16

· · . . . ·
1
2 cos 7π

16
1
2 cos 21π

16 . . . 1
2 cos 105π

16




f =




140 144 147 140 140 155 179 175

144 152 140 147 140 148 167 179

152 155 136 167 163 162 152 172

168 145 156 160 152 155 136 160

162 148 156 148 140 138 147 162

147 167 140 155 155 140 136 162

136 156 123 167 162 144 140 147

148 155 136 155 152 147 147 136




F = TAT
T =




1210 −18 15 −9 23 −9 −14 −19

20 −34 26 −9 −11 11 14 7

−11 −23 −2 6 −18 3 −21 0

−8 −5 14 −14 −8 −3 −3 8

−3 9 8 2 −11 18 19 15

4 −2 −18 8 9 −4 0 −7

9 1 −3 3 −1 −7 −1 −2

0 −8 −3 2 1 4 −6 0
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Inside the matrix F

• What represent F (u, v) elements?
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Inside the matrix F

• What represent F (u, v) elements?
• Coefficients of the DC decomposition
⇔ projection coefficients on the DC basis
⇔ weights of the basis functions in image decomposition
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Inside the matrix F

• What represent F (u, v) elements?
• Coefficients of the DC decomposition
⇔ projection coefficients on the DC basis
⇔ weights of the basis functions in image decomposition

• F (0, 0) (first line, first column)?
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Inside the matrix F

• What represent F (u, v) elements?
• Coefficients of the DC decomposition
⇔ projection coefficients on the DC basis
⇔ weights of the basis functions in image decomposition

• F (0, 0) (first line, first column)?
• proportional to the mean value of f

F (0, 0) =
1√
8

∑

y

1√
8

∑

x

f(x, y)

=
1

8

∑

x,y

f(x, y) = 8 · mean(f)
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DCT basis

Consider F (0, 0) = 8 · mean(f) and all other F (u, v) = 0

F =




F (0, 0) 0 . . . 0

0 0 . . . 0

· · · ·
0 0 . . . 0




and reconstruct a “simplified” image

f = T
T
FT =F (0, 0)




1/8 1/8 . . . 1/8

1/8 1/8 . . . 1/8

· · · ·
1/8 1/8 . . . 1/8



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DCT basis

Consider F (0, 0) = 8 · mean(f) and all other F (u, v) = 0

F =




F (0, 0) 0 . . . 0

0 0 . . . 0

· · · ·
0 0 . . . 0




and reconstruct a “simplified” image

f = T
T
FT =F (0, 0)




1/8 1/8 . . . 1/8

1/8 1/8 . . . 1/8

· · · ·
1/8 1/8 . . . 1/8




First basis function (image) −→

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
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DCT basis

In general, considering only one F (u, v) non null, one can
obtain by inverse DCT the corresponding basis image.
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DCT basis insight

• F (0, 0): DC coefficient (mean value)
• F (u, v): AC coefficients (variations)

◦ line 1: vertical variations, low to
high frequency

◦ column 1: horizontal variations
◦ others : angular variations

(diagonal)
Human eye:
• sensible to luminance (mean gray level) (DC coefficient)
• more sensible to horizontal and vertical variations than to

angular variations
• more sensible to low frequencies than to high frequencies
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DCT basis insight

• F (0, 0): DC coefficient (mean value)
• F (u, v): AC coefficients (variations)

◦ line 1: vertical variations, low to
high frequency

◦ column 1: horizontal variations
◦ others : angular variations

(diagonal)
Human eye:
• sensible to luminance (mean gray level) (DC coefficient)
• more sensible to horizontal and vertical variations than to

angular variations
• more sensible to low frequencies than to high frequencies

Keeping only the upper-left corner of the F matrix (i.e
reconstructing using only continuous and low frequencies
mainly vertical and horizontal basis functions) leads to good
approximation and compression
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DCT improvement

F (0, 0): high value (8 times the mean gray level)
→ common solution: subtract 128 from the original image

�
����������������

140 144 147 140 140 155 179 175

144 152 140 147 140 148 167 179

152 155 136 167 163 162 152 172

168 145 156 160 152 155 136 160

162 148 156 148 140 138 147 162

147 167 140 155 155 140 136 162

136 156 123 167 162 144 140 147

148 155 136 155 152 147 147 136

�
����������������

�
����������������

1210 −18 15 −9 23 −9 −14 −19

20 −34 26 −9 −11 11 14 7

−11 −23 −2 6 −18 3 −21 0

−8 −5 14 −14 −8 −3 −3 8

−3 9 8 2 −11 18 19 15

4 −2 −18 8 9 −4 0 −7

9 1 −3 3 −1 −7 −1 −2

0 −8 −3 2 1 4 −6 0

�
����������������

�
����������������

12 16 19 12 12 27 51 47

16 24 12 19 12 20 39 51

24 27 8 39 35 34 24 44

40 17 28 32 24 27 8 32

34 20 28 20 12 10 19 34

19 39 12 27 27 12 8 34

8 28 −5 39 34 16 12 19

20 27 8 27 24 19 19 8

�
����������������

�
����������������

186 −18 15 −9 23 −9 −14 −
20 −34 26 −9 −11 11 14

−11 −23 −2 6 −18 3 −21

−8 −5 14 −14 −8 −3 −3

−3 9 8 2 −11 18 19

4 −2 −18 8 9 −4 0

9 1 −3 3 −1 −7 −1

0 −8 −3 2 1 4 −6
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DCT approximations

• Previous approach (“keep or kill”) → Thresholding
⇔ multiplying by a {0, 1} mask:

M =




1 1 1 0 . . . 0

1 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·
0 0 0 0 . . . 0



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DCT approximations

• Previous approach (“keep or kill”) → Thresholding
⇔ multiplying by a {0, 1} mask:

M =




1 1 1 0 . . . 0

1 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·
0 0 0 0 . . . 0




• reconstructed image f̂ = T
T
F̂T = T

T(M � F)T (with � =
element by element multiplication
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DCT approximations

• Previous approach (“keep or kill”) → Thresholding
⇔ multiplying by a {0, 1} mask:

M =




1 1 1 0 . . . 0

1 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·
0 0 0 0 . . . 0




• reconstructed image f̂ = T
T
F̂T = T

T(M � F)T (with � =
element by element multiplication

• Problem: optimal threshold ? ⇔ mask matrix M ?
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DCT approximations

• Previous approach (“keep or kill”) → Thresholding
⇔ multiplying by a {0, 1} mask:

M =




1 1 1 0 . . . 0

1 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·
0 0 0 0 . . . 0




• reconstructed image f̂ = T
T
F̂T = T

T(M � F)T (with � =
element by element multiplication

• Problem: optimal threshold ? ⇔ mask matrix M ?

Two approaches:
• maximum energy (zonal coding) → global
• maximum magnitude (threshold coding) → adaptive
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DCT zonal coding

Statistic global approach: each DCT coefficient F (u, v) is
seen as a particular measure of a random process

Algorithm:
1. Split the image in n× n sub-images of size N ×N pixels
2. Compute the DCT coefficients F (ui, vi) for each

sub-image i

3. Compute the energy Eu,v =
∑
i

(F (ui, vi))
2

4. Choose the mask according to a strategy:
• keep a fixed number of coefficients of maximum energy

(fixed ratio compression)
• keep the maximum energy coefficients that preserve a

fixed proportion of the total energy (variable ratio
compression)
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DCT zonal coding

Statistic global approach: each DCT coefficient F (u, v) is
seen as a particular measure of a random process

Algorithm:
1. Split the image in n× n sub-images of size N ×N pixels
2. Compute the DCT coefficients F (ui, vi) for each

sub-image i

3. Compute the energy Eu,v =
∑
i

(F (ui, vi))
2

4. Choose the mask according to a strategy:
• keep a fixed number of coefficients of maximum energy

(fixed ratio compression)
• keep the maximum energy coefficients that preserve a

fixed proportion of the total energy (variable ratio
compression)

- Previous mask M → keep 6 coefficients out of 64
- Compression ratio: CR = 10, 66 : 1 (+ the coordinates
CR = 6, 1 : 1)
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DCT zonal coding

Improve the compression ratio by changing the “keep or kill”
approach:
• quantize the remaining coefficients according to their

importance
• bit allocation mask:

B :

�
�����������	

8 7 6 0 . . . 0

7 5 0 0 . . . 0

6 0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·

0 0 0 0 . . . 0



������������

MB :

�
�����������	

1 1

2

1

4
0 . . . 0

1

2

1

8
0 0 . . . 0

1

4
0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·

0 0 0 0 . . . 0



������������
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DCT zonal coding

Improve the compression ratio by changing the “keep or kill”
approach:
• quantize the remaining coefficients according to their

importance
• bit allocation mask:

B :

�
�����������	

8 7 6 0 . . . 0

7 5 0 0 . . . 0

6 0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·

0 0 0 0 . . . 0



������������

MB :

�
�����������	

1 1

2

1

4
0 . . . 0

1

2

1

8
0 0 . . . 0

1

4
0 0 0 . . . 0

0 0 0 0 . . . 0

· · · · · ·

0 0 0 0 . . . 0



������������

- Original sub-image: f → 64 pixels ×8 bits = 512 bits
- Compressed & transformed sub-image:
F̂ = round(F � MB) → 8 + 7 + 7 + 6 + 5 + 6 = 39 bits
- Compression ratio: CR = 13, 13 : 1 (+ the coordinates
CR = 6, 8 : 1)
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DCT threshold coding

Adaptive approach

Algorithm:
1. Split the original image in n× n sub-images of size N ×N

pixels
2. Compute the DCT coefficients F (ui, vi) for each

sub-image i
3. For each sub-image, choose the mask according to a

strategy:
• keep the coefficients F (ui, vi) greater than a global

threshold T (variable ratio compression)
• keep a fixed number of coefficients of maximum

magnitude ⇔ image adapted threshold Ti (fixed ratio
compression)

• keep the coefficients if they exceed a local threshold
Ti(u, v) (variable ratio compression)
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DCT threshold coding

Improve the compression ratio by changing the “keep or kill”
approach:
• merge the thresholding and the quantization procedures:
• typical bit allocation mask:

MJPEG =




1
16

1
11

1
10

1
16

1
24

1
40

1
51

1
61

1
12

1
12

1
14

1
19

1
26

1
58

1
60

1
55

1
14

1
13

1
16

1
24

1
40

1
57

1
69

1
56

1
14

1
17

1
22

1
29
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DCT threshold coding

Improve the compression ratio by changing the “keep or kill”
approach:
• merge the thresholding and the quantization procedures:
• typical bit allocation mask:

MJPEG =



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⇔ third thresholding strategy: individual threshold depending
on the position (u, v) !

F̂ = round(F � MJPEG) ⇔ f̂ = T
Tround(F � MJPEG)T
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DCT compression method

Coding:

1. Subtract 128 from the gray level image
2. Split the results in 8 × 8 sub-images f

3. Transform each sub-image by DCT to obtain F

4. Quantize F to obtain F̂ = round(F � MJPEG)

Decoding:

1. Reconstruct F̃ = F̂ � MJPEG

2. Reconstruct approximations of each sub-image by inverse
DCT f̂ = round(TT

F̃T)

3. Reassemble the complete image
4. Add 128
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DCT coding example

�
����������������

140 144 147 140 140 155 179 175

144 152 140 147 140 148 167 179

152 155 136 167 163 162 152 172

168 145 156 160 152 155 136 160

162 148 156 148 140 138 147 162

147 167 140 155 155 140 136 162

136 156 123 167 162 144 140 147

148 155 136 155 152 147 147 136

�
����������������

�
����������������

186 −18 15 −9 23 −9 −14 −19

20 −34 26 −9 −11 11 14 7

−11 −23 −2 6 −18 3 −21 0

−8 −5 14 −14 −8 −3 −3 8

−3 9 8 2 −11 18 19 15

4 −2 −18 8 9 −4 0 −7

9 1 −3 3 −1 −7 −1 −2

0 −8 −3 2 1 4 −6 0

�
����������������

�
����������������

12 16 19 12 12 27 51 47

16 24 12 19 12 20 39 51

24 27 8 39 35 34 24 44

40 17 28 32 24 27 8 32

34 20 28 20 12 10 19 34

19 39 12 27 27 12 8 34

8 28 −5 39 34 16 12 19

20 27 8 27 24 19 19 8

�
����������������

12 −2 1 −1 1 0 0 0

2 −3 2 0 0 0 0 0

−1 −2 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�
�

Compression ratio: CR = 64
12 = 5, 33

(+ position coding → CR = 64·8
12·8+12·6 = 3, 04 )
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DCT decoding example

�
����������������

12 −2 1 −1 1 0 0 0

2 −3 2 0 0 0 0 0

−1 −2 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�
����������������

�
����������������

18 11 8 13 17 23 41 60

20 16 17 23 25 26 38 52

24 22 26 33 32 27 32 42

30 26 28 33 30 22 25 34

32 26 25 26 22 15 19 29

27 22 21 22 18 11 15 25

18 16 21 27 23 14 13 21

10 13 22 33 30 18 13 17
�
����������������

�
����������������

192 −22 10 −16 24 0 0 0

24 −36 28 0 0 0 0 0

−14 −26 0 0 0 0 0 0

−14 0 22 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�
����������������

�
����������������

146 139 136 141 145 151 169 188

148 144 145 151 153 154 166 180

152 150 154 161 160 155 160 170

158 154 156 161 158 150 153 162

160 154 153 154 150 143 147 157

155 150 149 150 146 139 143 153

146 144 149 155 151 142 141 149

138 141 150 161 158 146 141 145

�
����������������

Mean square error : MSE = 72, 65
Compression ratio: CR = 3, 04
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Different quantizations MJPEG

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Original f Reconstructed using MJPEG

(MSE = 72, CR = 3, 04)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

. . . using 2MJPEG

(MSE = 46, CR = 1, 66)
. . . using 4MJPEG

(MSE = 14, CR = 0, 96)



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

•Geometric analogy

•Functional analysis

•FT

•DCT

•DCT approximations

•DCT zonal coding

•DCT threshold coding

• JPEG

•WT

Image compression – 2006/2007 p. 151

Comparisons
Different quantization threshold coding:
→ dividing MJPEG ⇒ rougher quantization

(a)

(b)

(c)

(d)

(e)

(f)

(a), (b), (c) - threshold coding using MJPEG mask
(d), (e), (f) - threshold coding using 1

4MJPEG mask
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Comparisons

Fixed ratio coding : keep 8 coefficients out of 64

(a)

(b)

(c)

(d)

(e)

(f)

(a), (b), (c) - threshold coding
(d), (e), (f) - zonal coding
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Further compression

Threshold coding:
→ keeps (quantized) great magnitude coefficients
→ change to 0 small magnitude coefficients
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Further compression

Threshold coding:
→ keeps (quantized) great magnitude coefficients
→ change to 0 small magnitude coefficients

1. Specify the positions of the preserved coefficients:
12 · 6 = 72 bits
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Further compression

Threshold coding:
→ keeps (quantized) great magnitude coefficients
→ change to 0 small magnitude coefficients

1. Specify the positions of the preserved coefficients:
12 · 6 = 72 bits

2. Run-length code horizontally the mask:
[2, 1, 2, 3, 4, 4, 2, 6, 1, 16, 1, 22] → 11 · 6 = 66 bits (last
run-length optional!)
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Further compression

Threshold coding:
→ keeps (quantized) great magnitude coefficients
→ change to 0 small magnitude coefficients

1. Specify the positions of the preserved coefficients:
12 · 6 = 72 bits

2. Run-length code horizontally the mask:
[2, 1, 2, 3, 4, 4, 2, 6, 1, 16, 1, 22] → 11 · 6 = 66 bits (last
run-length optional!)

3. Run-length code the mask using a zig-zag pattern:
[5, 1, 4, 3, 2, 7, 1, 41] → 7 · 6 = 42 bits (last run-length
optional!)
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Further compression

Previous example:
-quantized DCT

�
����������������

192 −22 10 −16 24 0 0 0

24 −36 28 0 0 0 0 0

−14 −26 0 0 0 0 0 0

−14 0 22 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�
����������������

- Run length (zig-zag): [10, 4, 1, 3, 1, 46] → 5 · 6 = 30 bits

- Possible coding of the sequence:
[192,−22, 24,−14,−36, 10,−16, 28,−26, 14, 24, 22, 256, 10, 4, 1, 3, 1]

- Lengths in bits:
[8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 6, 6, 6, 6, 6]

- Total length: 124 bits

- Compression: CR = 64 · 8/124 = 4, 13 : 1
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Further compression

- Possible coding of the sequence:
[192,−22, 24,−14,−36, 10,−16, 28,−26, 14, 24, 22, 256, 10, 4, 1, 3, 1]

- Lengths in bits:
[8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 6, 6, 6, 6, 6]

Ideas:
• separate DC and AC coefficients
• code DC coefficients differentially (between sub-images)
• code AC coefficients according to their psycho-visual

importance (⇔ JPEG mask)
• combine AC coefficients coding with their position (include

run-lengths of previous zeros)
• Huffman code (including the separation character)

Lookup tables in standard JPEG for Huffman and RLC

JPEG Standard
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Lookup tables



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

•Geometric analogy

•Functional analysis

•FT

•DCT

•DCT approximations

•DCT zonal coding

•DCT threshold coding

• JPEG

•WT

Image compression – 2006/2007 p. 157

Lookup tables



Introduction

Information Theory

Compression basics

Entropic coding

Inter-pixel coding

Quantizing and thresholding

Color space transforms

Image transforms

•Geometric analogy

•Functional analysis

•FT

•DCT

•DCT approximations

•DCT zonal coding

•DCT threshold coding

• JPEG

•WT

Image compression – 2006/2007 p. 158

Lookup tables
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Lookup tables
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JPEG overflow

1. Color space transform (RGB→YCrCb) (optional)
2. Downsampling Cr and Cb planes (8:2:2, 4:1:1) (optional)
3. Divide image planes in 8×8 pixels blocks
4. Perform DCT on each block

5. Quantize and threshold the DCT by masks (compression
quality)

6. Predictive code DC coefficients between blocks
7. Run-length code AC coefficients in zig-zag pattern
8. Huffman coding (combine RLC and AC values)

9. Construct header, mask information, . . .
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Wavelet Transform

• Global transform (DCT = block by block)
◦ inherent local because of wavelets
◦ avoids blocking artefacts (FBI fingerprints)

• Multi-resolution nature
◦ permits progressive compression
◦ permits progressive restitution of the image

• Very good compression quality
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