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Abstract—EEG (Electroencephalography) is used to measure Il. EEG MODELS
the electrical activity of a human brain. It is widely used to ] )
analyse both normal and pathological data, because of its we There are several different approaches to model and simu-
high temporal resolution. Different algorithms were proposed in late EEG signals, depending on the purpose of their applica-
the literature for EEG signal processing, but a difficult issle  tjons. The most popular of them are:
is their validation on real signals. An important goal is thus . . .
to realistically simulate EEG data. The starting point of this « Source modelling from EEG signals (inverse problem,
research was the model proposed by Rankine et al. for the source separation)[2]
surface newborn EEG signal generation [1]. The model, based Biological modelling (neurocomputing)[3], [4]

on both statistical, fractal and classical frequency modding, has « EEG/SEEG modelling mimicking real signals [1]
parameters estimated from the real data. A first objective is

to validate and parametrize this model on adult surface EEG.  Following [1], [5], we focus in this paper on third approach.
A second and more important goal is to parametrize it and to  Signal imitation is made using real signal characteristics.
apply it to depth EEG measurements (SEEG). The first results Datasets of real EEGs are analysed, in order to obtain these

presented in this communication show that the proposed mode foti ; :
can be applied in both cases (surface and depth adult EEG), characteristics. Depending on the model, different supple

although the parameters are slightly different. As expectd [1], &'y assumptions are made, and validation is performedhagai
seizures cannot be modelled using this approach. large real datasets.

Rankine et al. separate two models having different char-
acteristics:seizure modelandbackground model aiming to
characterize different new-born real EEGs (Figs. 1 and 2).

Index Terms—EEG, simulation, fractal dimension

I. INTRODUCTION

Electroencephalography (EEG) is the most widely used
method to record electrical activity of the human brain.sThi ol
data can be used to analyse the behaviour of the normal brain,
as well as to diagnose different pathologies, as for example

Real EEG

epilepsy. Since our knowledge about the generators of the 0]
electrical activity in brain is still on a fairly basic leyahost s - - - - -
of the signal processing algorithms developed for EEG $igna Time(samples)

can be validated only by medical expertise. In order to have _
reliable results, we need to use large datasets for teSinge F'9- 1+ Background EEG signal.
EEG recording is time consuming and problematic (because

of the high variability of the signals), consistent largeadsets

are quite difficult to obtain. Simulated realistic datasetsild 100}
help to build more consistent algorithms and test them more @ sor
properly. 3 o
Depth EEG (called further as SEEG — Stereoelectroen- e A A Y RV
cephalography) uses the same principle of electrical iactiv 0100 150 200 A ey 0 400 480 500

recording like EEG, but electrodes are surgically inseit¢al
the brain. As expected, because of the invasiveness of ffig 2. Seizure EEG signal.
technique, SEEG data is even less frequent than EEG data.
Because of their acquisition method, the SEEG signals sspp¥/e focus here on the [1] background EEG model, our aim
edly directly record brain sources, while the surface EE& isbeing to find if it can be applied on adult surface and depth
mixture of source signals. Simulated signal can be usefilil balata. We will asses its validity for both background and sz
for SEEG dedicated studies and for forward/inverse problesignals. The different steps of the cited model and employed
applications: with a realistic source modelling, one capest methodological tools, are described in more detail in the ne
more realistic scalp EEG modelling. Moreover, in an inverszection.
problem setup, simulated SEEG can be compared to the one
Sgltizlgteedtﬁg r:]r.le source estimation algorithms and thus utsedA'E Background EEG modelling
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where ¢ is constant,f is frequency andy is the power law  2) Sgnal simulation: Assuming that estimated realistic
exponent. If one wants to generate a simulated EEG signafobability distributions have been obtained for both ttaetal

x(t), the first step is to expresS(f) as X (f)X*(f), with dimensionsF'D and for the phase®(f), a realistic simulated

X (f) being the amplitude spectrum of the EEG signél), background EEG can be generated by randomly choosing a

obtained by the Fourier transform: value for FD and a phase vectd{ f) and introducing them
N in (4),(2) and (3).
X(f) = Y=, (2 In order to validate the approach, [1] suggests to extract
f1” FD and 4(f) from a real EEG measurements and to use

whered(f) is the phase of the Fourier transform. In order tthe described method to generate a synthetic signal: if the
obtain a more realistic signal, [1] proposes to generateragév method is correct, than the original signal and the simdlate
X;(f) using different phase vectots(f). Severalz;(t) can one should be similar (correlated). The correlation indexed

be obtained by inverse Fourier transform frdm(f), and the further on as, can be computed in time domaip.}, as well
final simulated background EEG signal is generated as  in frequency (after computing the Welch periodogramiy),

B . and in time-frequency (spectrograms after short-time feour
x(t) = Zf (X:(f)) (3) transforms p; s).

As it can be seen, this model needs three parameteysand
0(f). The amplitude: is of secondary importance, so we will
focus only on the last two parameters. In order to use raalist The described model was applied to different classes of
values, they must be extracted from real data. EEG signals: surface and depth, background and seizure. The
1) Parameter estimation: The method used in [1] to esti- database contained 400 signal fragments from 3 different
mate the power law exponemtexploits the linear relationship patients, 4 seconds each. Seizure periods were pointed out
betweeny and the fractal dimensiod’D of a signal [6], by neurologists beforehand. Surface EEG signal was filtered
expressed by: with cut-off frequencies at 0.5 and 30Hz whereas source
FD — 57 4) SEEG signal was filtered with low-pass filter at 128Hz (no
2 assumptions on SEEG signal spectral behaviour was made).
This step is useful because tiféD can be estimated from Consequently, surface EEG signals contained 256 samples
the real EEGs using one of the fractal dimension estimatiamd source SEEG signals contained 1024 samples for every
methods. Different fractal dimension estimators (such @s-B 4 seconds window.
counting, Information and Correlation dimensions) can be
used, with quite similar results on classical fractals.udlig’s
FD estimation[7] is a particular example of fractal dimemsi A. Adult surface EEG
derived from box-counting. This algorithm works directly i At first, the simulation method was applied to adult sur-
the time domain (analysing the geometrical form of signaljface EEG data. For generality, we tested the model both to
so it can be used for relatively short time intervals. background and seizure EEG, downsampled to 64Hz (as in
As said previously, in order to simulate realistic signalg$l]).
the needed parameterd’D and 6(f)) must respect real The power spectral density (PSD) was computed for several
signals characteristics. As in [1], we have estimated theimgu time windows of 4s length, to find out if it exhibily f process
the following procedure, applied to a database of real adbkhaviour (figure 3). Under theé/f hypothesis, the fractal

IIl. RESULTS

background EEG/SEEG signals: dimensionF' D can be estimated using (4).
« estimate the’D and compute the phase for each signal
« assume that, over the databagd) follows a beta distri- N TR I

bution and estimate the distribution parameters (method
of moments [8]). Probability density function of a beta

distribution with two parametersy and 3 can be ex-
pressed as . : M

Lla+p) _ R S T e
pdf(z,0,0) = Fr e (-2 e 0]

oo

whereT'(z) = t*~le~tdt is theT function.

Fig. 3. PSD of an adult background (left) and seizure (rigtEG signal

1) Parameter extraction for background EEG data: Fractal
mension (thusy) and phase spectrum were calculated for
. . . ... every time window from the database and empirical distri-
° tESt. (Kolmogor_ov-Smlrr?ov)_ the empirical d's_t”buuonsoutions were estimated as described previously. Resudts ar
agalnst thgorehcal distributions generated using the Pi$hown in figure 4 was found to follow a beta distribution
viously estimated parameters. with o = 1.936 and3 = 2.975. # was found to follow uniform
1Since real EEGs are non-stationary,is considered constant for every distribution 'n[—T."v ]. These hypOthes_|_5 were confirmed using
epoch of 4 seconds (assuming a quasi-stationary signaigiorie epoch). ~ Kolmogorov-Smirnov test at &% significance level.

o assume that th% phagdollows a uniform distribution in di
[_ﬂ-v 7T]
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Fig. 4. Surface background EEG FD and phase spectrum dititrils Fig. 6. Real and simulated seizure EEG signals

TABLE |

TABLE I
CORRELATIONS(MEAN AND SD) FOR BACKGROUNDEEG

CORRELATIONS(MEAN AND SD) FOR SEIZUREEEG

) new-born [1] | adult

Pt 0.795 (0.081)] 0.675 (0.075)
i 0.716 (0.131)] 0.803 (0.150)
pes | 0.817 (0.113)[ 0.705 (0.075)

D new-born [1] | adult

Dt 0.345 (0.176)| 0.661 (0.705)
of 0.799 (0.093)] 0.494 (0.178)
pes | 0.901 (0.056)| 0.680 (0.090)

2) Parameter extraction for seizure EEG data: The same  Here it can be seen that, unlike in the previous case, in
procedure could be applied also for seizure signals. Stilhe time domain this method give better results than [1]. On
as seen in Fig. 3, the PSD does not display/g process the contrary, in frequency domain correlations are very. low
behaviour: because of rhythmic seizure activity, a peak@ tThis might be related to the power spectrum density of serfac
seizure frequency band might be observed. Consequently, sgjzure EEG that does not folloly f law. Still, due to the high
(4) does not hold and other modelling techniques must besult in the time domain, we think that after an appropriate
applied (see also [1]). power spectrum density estimation (i.e. different frdmyf

3) \alidation: In order to validate the approach, the secongrocess), this model could be used also to seizure EEGs.
procedure described previously was used: starting fronak re
signal, F'D is estimated and thus. Its phase spectrum wasB. Adult depth EEG (SEEG)
computed ) as well as its power (used to estimaje These  The main difference from the practical point of view be-
parameters were used to generate a particular synthetialsigyeen applying the same approach on EEG and SEEG data
that was later compared with the real one using the validatigy that, since the frequencies contained in the SEEG might be
procedure described previously (3 correlatippspy, pi). higher, filtering and downsampling is not applied. Examples

of power spectra are given Fig. 7.
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Fig. 5. Real and simulated background EEG signals 1), Paramer extraction for background SEEG data: Fr,ac'
tal dimension (and thug) and phase spectrum were estimated
a) Background EEG: The obtained modelling results are/®" €Very time window. Results are shown in Fig. 8.
rather similar between new-born and adult data. Adult mog-~ccording to power spectrum density (Fig. 8), we can see
elled signals show a better correlation than new-borns én t at SEEG could be con&der_ed_a]s/g‘ processy distribution
frequency domain, but correlation in time and time-frequyen was foundzto f_OHOW beta (_1|str|but|on withy = 1.578 and
domains are lower. Globally, it seems that adult backgrouﬁd: 2.945° This hypothesis was tested with Kolmogorov-

EEGs can be modelled using the described approach (vajidﬁ‘?émmov test and could not be rejected at Hé significance
in [1] for new-borns). evel. Meanwhiled distribution was found not to exhibit uni-

b) Seizure EEG: Same analysis was performed fOI1‘orm distribution. Therefore, in order to improve this mgde
seizure EEGs Sinée Rankine et al. had proposed anot ame other distributions should be tried as descriptorhief t
model for seizure EEGs, it was decided to compare the istribution.
correlations of our model with Rankine’s et al. model. 2Note that the values are quite different from the surface EEG
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Fig. 8. Source background SEEG FD and phase spectrum diiirib Fig. 10. Real and simulated seizure SEEG signals

2) Parameter extraction for seizure SEEG data: The same EEG [1] can be used for adult EEGs (background and seizure,

proce?u(;e tnaspl;%er:j applie(: (?Isci f?r s%iz;:re_ SEEGS& éA‘Lﬁ'face and depth). According to our results, it seems thiat i
expected, e o€s not dispiay Af behaviour, an possible (although slightly less reliable) to generate @ulta
phase distribution as well is far from the uniform distriout ckground EEG than a newborn EEG. Similarly, it is harder
the described approach is not appropriate for a reasona%jlﬁt possible) to mimic background SEEG signals than sarfac

simulation of seizure SEEG data. EEGs. On the contrary, seizure EEG/SEEG signals cannot be

3) Valijdation: SirFiIar prgi(_aldu_re as on EEG has been dor}%liably generated, probably due to the model assumption on
(except downsampling and filtering). the spectral behaviout ( /).

. a) Background SEEG: As before,_for. every particular A first immediate perspective is to confirm the presented
S|gnal of background SEEG a synthetic signal was genera}ﬁ%ings on a larger database. It might be useful to introduce
using the extracted parameters. some categorisation in order to have more specific classes of
EEG signals to work with (depending on the actual cerebral
‘ activity or on the recording site). Finally, it could be irgsting
i VAR T | WY ‘ to apply different models for the power spectrum estimation
ok N o) | (besidesl/ f, clearly not appropriate for seizure data) and for
L A the phase (not necessarily following a uniform distribofias

seen in the SEEG case).
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IV. CONCLUSION AND FUTURE RESEARCH

The goal of the research presented in this paper was to
explore if an existing model of surface new-born background



