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EEG/SEEG signal modelling using frequency and fractal analysis
Vairis Caune, Juris Zagars, Radu Ranta

Abstract—EEG (Electroencephalography) is used to measure
the electrical activity of a human brain. It is widely used to
analyse both normal and pathological data, because of its very
high temporal resolution. Different algorithms were proposed in
the literature for EEG signal processing, but a difficult issue
is their validation on real signals. An important goal is thus
to realistically simulate EEG data. The starting point of this
research was the model proposed by Rankine et al. for the
surface newborn EEG signal generation [1]. The model, based
on both statistical, fractal and classical frequency modelling, has
parameters estimated from the real data. A first objective is
to validate and parametrize this model on adult surface EEG.
A second and more important goal is to parametrize it and to
apply it to depth EEG measurements (SEEG). The first results
presented in this communication show that the proposed model
can be applied in both cases (surface and depth adult EEG),
although the parameters are slightly different. As expected [1],
seizures cannot be modelled using this approach.

Index Terms—EEG, simulation, fractal dimension

I. I NTRODUCTION

Electroencephalography (EEG) is the most widely used
method to record electrical activity of the human brain. This
data can be used to analyse the behaviour of the normal brain,
as well as to diagnose different pathologies, as for example
epilepsy. Since our knowledge about the generators of the
electrical activity in brain is still on a fairly basic level, most
of the signal processing algorithms developed for EEG signals
can be validated only by medical expertise. In order to have
reliable results, we need to use large datasets for testing.Since
EEG recording is time consuming and problematic (because
of the high variability of the signals), consistent large data sets
are quite difficult to obtain. Simulated realistic datasetswould
help to build more consistent algorithms and test them more
properly.

Depth EEG (called further as SEEG – Stereoelectroen-
cephalography) uses the same principle of electrical activity
recording like EEG, but electrodes are surgically insertedinto
the brain. As expected, because of the invasiveness of the
technique, SEEG data is even less frequent than EEG data.
Because of their acquisition method, the SEEG signals suppos-
edly directly record brain sources, while the surface EEG isa
mixture of source signals. Simulated signal can be useful both
for SEEG dedicated studies and for forward/inverse problem
applications: with a realistic source modelling, one can expect
more realistic scalp EEG modelling. Moreover, in an inverse
problem setup, simulated SEEG can be compared to the one
obtained by the source estimation algorithms and thus used to
validate them.
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II. EEG MODELS

There are several different approaches to model and simu-
late EEG signals, depending on the purpose of their applica-
tions. The most popular of them are:

• Source modelling from EEG signals (inverse problem,
source separation)[2]

• Biological modelling (neurocomputing)[3], [4]
• EEG/SEEG modelling mimicking real signals [1]

Following [1], [5], we focus in this paper on third approach.
Signal imitation is made using real signal characteristics.
Datasets of real EEGs are analysed, in order to obtain these
characteristics. Depending on the model, different supplemen-
tary assumptions are made, and validation is performed against
large real datasets.

Rankine et al. separate two models having different char-
acteristics:seizure modelandbackground model, aiming to
characterize different new-born real EEGs (Figs. 1 and 2).
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Fig. 1. Background EEG signal.
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Fig. 2. Seizure EEG signal.

We focus here on the [1] background EEG model, our aim
being to find if it can be applied on adult surface and depth
data. We will asses its validity for both background and seizure
signals. The different steps of the cited model and employed
methodological tools, are described in more detail in the next
section.

A. Background EEG modelling

The background surface EEG model [1] uses the fact that
the EEG power spectrum approximately follows a power law:

S(f) ≈ c

|f |γ
(1)
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where c is constant,f is frequency andγ is the power law
exponent1. If one wants to generate a simulated EEG signal
x(t), the first step is to expressS(f) as X(f)X∗(f), with
X(f) being the amplitude spectrum of the EEG signalx(t),
obtained by the Fourier transform:

X(f) =

√
c

|f |
γ

2

ejθ(f), (2)

whereθ(f) is the phase of the Fourier transform. In order to
obtain a more realistic signal, [1] proposes to generate several
Xi(f) using different phase vectorsθi(f). Severalxi(t) can
be obtained by inverse Fourier transform fromXi(f), and the
final simulated background EEG signal is generated as

x(t) =
∑

i

F−1(Xi(f)) (3)

As it can be seen, this model needs three parameters:c, γ and
θ(f). The amplitudec is of secondary importance, so we will
focus only on the last two parameters. In order to use realistic
values, they must be extracted from real data.

1) Parameter estimation: The method used in [1] to esti-
mate the power law exponentγ exploits the linear relationship
betweenγ and the fractal dimensionFD of a signal [6],
expressed by:

FD =
5 − γ

2
(4)

This step is useful because theFD can be estimated from
the real EEGs using one of the fractal dimension estimation
methods. Different fractal dimension estimators (such as Box-
counting, Information and Correlation dimensions) can be
used, with quite similar results on classical fractals. Higuchi’s
FD estimation[7] is a particular example of fractal dimension
derived from box-counting. This algorithm works directly in
the time domain (analysing the geometrical form of signal),
so it can be used for relatively short time intervals.

As said previously, in order to simulate realistic signals,
the needed parameters (FD and θ(f)) must respect real
signals characteristics. As in [1], we have estimated them using
the following procedure, applied to a database of real adult
background EEG/SEEG signals:

• estimate theFD and compute the phase for each signal
• assume that, over the database,FD follows a beta distri-

bution and estimate the distribution parameters (method
of moments [8]). Probability density function of a beta
distribution with two parameters,α and β can be ex-
pressed as

pdf(x, α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, x ∈ [0, 1]

whereΓ(z) =

∫
∞

0

tz−1e−tdt is theΓ function.

• assume that the phaseθ follows a uniform distribution in
[−π, π]

• test (Kolmogorov-Smirnov) the empirical distributions
against theoretical distributions generated using the pre-
viously estimated parameters.

1Since real EEGs are non-stationary,γ is considered constant for every
epoch of 4 seconds (assuming a quasi-stationary signal during one epoch).

2) Signal simulation: Assuming that estimated realistic
probability distributions have been obtained for both the fractal
dimensionsFD and for the phasesθ(f), a realistic simulated
background EEG can be generated by randomly choosing a
value forFD and a phase vectorθ(f) and introducing them
in (4),(2) and (3).

In order to validate the approach, [1] suggests to extract
FD and θ(f) from a real EEG measurements and to use
the described method to generate a synthetic signal: if the
method is correct, than the original signal and the simulated
one should be similar (correlated). The correlation index,noted
further on asρ, can be computed in time domain (ρt), as well
in frequency (after computing the Welch periodogramm,ρf )
and in time-frequency (spectrograms after short-time Fourier
transforms,ρtf ).

III. R ESULTS

The described model was applied to different classes of
EEG signals: surface and depth, background and seizure. The
database contained 400 signal fragments from 3 different
patients, 4 seconds each. Seizure periods were pointed out
by neurologists beforehand. Surface EEG signal was filtered
with cut-off frequencies at 0.5 and 30Hz whereas source
SEEG signal was filtered with low-pass filter at 128Hz (no
assumptions on SEEG signal spectral behaviour was made).
Consequently, surface EEG signals contained 256 samples
and source SEEG signals contained 1024 samples for every
4 seconds window.

A. Adult surface EEG

At first, the simulation method was applied to adult sur-
face EEG data. For generality, we tested the model both to
background and seizure EEG, downsampled to 64Hz (as in
[1]).

The power spectral density (PSD) was computed for several
time windows of 4s length, to find out if it exhibits1/f process
behaviour (figure 3). Under the1/f hypothesis, the fractal
dimensionFD can be estimated using (4).
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Surface background EEG
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Fig. 3. PSD of an adult background (left) and seizure (right)EEG signal

1) Parameter extraction for background EEG data: Fractal
dimension (thusγ) and phase spectrum were calculated for
every time window from the database and empirical distri-
butions were estimated as described previously. Results are
shown in figure 4.γ was found to follow a beta distribution
with α = 1.936 andβ = 2.975. θ was found to follow uniform
distribution in[−π, π]. These hypothesis were confirmed using
Kolmogorov-Smirnov test at a5% significance level.
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Fig. 4. Surface background EEG FD and phase spectrum distributions

TABLE I
CORRELATIONS(MEAN AND SD) FOR BACKGROUNDEEG

ρ new-born [1] adult
ρt 0.795 (0.081) 0.675 (0.075)
ρf 0.716 (0.131) 0.803 (0.150)
ρtf 0.817 (0.113) 0.705 (0.075)

2) Parameter extraction for seizure EEG data: The same
procedure could be applied also for seizure signals. Still,
as seen in Fig. 3, the PSD does not display a1/f process
behaviour: because of rhythmic seizure activity, a peak in the
seizure frequency band might be observed. Consequently, eq.
(4) does not hold and other modelling techniques must be
applied (see also [1]).

3) Validation: In order to validate the approach, the second
procedure described previously was used: starting from a real
signal,FD is estimated and thusγ. Its phase spectrum was
computed (θ) as well as its power (used to estimatec). These
parameters were used to generate a particular synthetic signal
that was later compared with the real one using the validation
procedure described previously (3 correlationsρt, ρf , ρtf ).
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Fig. 5. Real and simulated background EEG signals

a) Background EEG: The obtained modelling results are
rather similar between new-born and adult data. Adult mod-
elled signals show a better correlation than new-borns in the
frequency domain, but correlation in time and time-frequency
domains are lower. Globally, it seems that adult background
EEGs can be modelled using the described approach (validated
in [1] for new-borns).

b) Seizure EEG: Same analysis was performed for
seizure EEGs. Since Rankine et al. had proposed another
model for seizure EEGs, it was decided to compare the
correlations of our model with Rankine’s et al. model.
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Fig. 6. Real and simulated seizure EEG signals

TABLE II
CORRELATIONS(MEAN AND SD) FOR SEIZUREEEG

ρ new-born [1] adult
ρt 0.345 (0.176) 0.661 (0.705)
ρf 0.799 (0.093) 0.494 (0.178)
ρtf 0.901 (0.056) 0.680 (0.090)

Here it can be seen that, unlike in the previous case, in
the time domain this method give better results than [1]. On
the contrary, in frequency domain correlations are very low.
This might be related to the power spectrum density of surface
seizure EEG that does not follow1/f law. Still, due to the high
result in the time domain, we think that after an appropriate
power spectrum density estimation (i.e. different from1/f
process), this model could be used also to seizure EEGs.

B. Adult depth EEG (SEEG)

The main difference from the practical point of view be-
tween applying the same approach on EEG and SEEG data
is that, since the frequencies contained in the SEEG might be
higher, filtering and downsampling is not applied. Examples
of power spectra are given Fig. 7.
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Fig. 7. PSD of an adult background (left) and seizure (right)SEEG signal

1) Parameter extraction for background SEEG data: Frac-
tal dimension (and thusγ) and phase spectrum were estimated
for every time window. Results are shown in Fig. 8.

According to power spectrum density (Fig. 8), we can see
that SEEG could be considered as a1/f process.γ distribution
was found to follow beta distribution withα = 1.578 and
β = 2.9452 This hypothesis was tested with Kolmogorov-
Smirnov test and could not be rejected at the5% significance
level. Meanwhileθ distribution was found not to exhibit uni-
form distribution. Therefore, in order to improve this model,
some other distributions should be tried as descriptors of the
θ distribution.

2Note that the values are quite different from the surface EEG.
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Fig. 8. Source background SEEG FD and phase spectrum distributions

2) Parameter extraction for seizure SEEG data: The same
procedure has been applied also for seizure SEEGs. As
expected, the PSD does not display a1/f behaviour, and
phase distribution as well is far from the uniform distribution:
the described approach is not appropriate for a reasonable
simulation of seizure SEEG data.

3) Validation: Similar procedure as on EEG has been done
(except downsampling and filtering).

a) Background SEEG: As before, for every particular
signal of background SEEG a synthetic signal was generated
using the extracted parameters.
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Fig. 9. Real and simulated background SEEG signals

TABLE III
CORRELATION (MEAN AND SD) FOR BACKGROUNDSEEG

ρ adult SEEG
ρt 0.587 (0.064)
ρf 0.582 (0.201)
ρtf 0.720 (0.049)

According to Table III, the simulated and real signals are
moderately correlated (a higher value for the time-frequency
correlation though). Still, as shown in Fig. 9, the modelling
gives visually correct results when compared to real data.

b) Seizure SEEG: Same procedure was applied for
seizure time windows, but the obtained signals show very
low correlations results both in time and frequency domains.
Again, this is probably due to the specific frequency content
of epileptic seizures. An example is displayed in Fig. 10.

IV. CONCLUSION AND FUTURE RESEARCH

The goal of the research presented in this paper was to
explore if an existing model of surface new-born background
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Fig. 10. Real and simulated seizure SEEG signals

EEG [1] can be used for adult EEGs (background and seizure,
surface and depth). According to our results, it seems that it is
possible (although slightly less reliable) to generate an adult
background EEG than a newborn EEG. Similarly, it is harder
(but possible) to mimic background SEEG signals than surface
EEGs. On the contrary, seizure EEG/SEEG signals cannot be
reliably generated, probably due to the model assumption on
the spectral behaviour (1/f ).

A first immediate perspective is to confirm the presented
findings on a larger database. It might be useful to introduce
some categorisation in order to have more specific classes of
EEG signals to work with (depending on the actual cerebral
activity or on the recording site). Finally, it could be interesting
to apply different models for the power spectrum estimation
(besides1/f , clearly not appropriate for seizure data) and for
the phase (not necessarily following a uniform distribution, as
seen in the SEEG case).
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