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Abstract— Brain source localization accuracy is known to
be dependent on the EEG sensor placement over the head
surface. In Brain-Computer Interfaces (BCI), according to
the paradigm used, Motor Imagery (MI) and Steady-State
Visual Evoked Potential (SSVEP) in particular, electrodes are
not well distributed over the head, and their number is not
standardized as in classical clinical applications. We propose
in this paper a method for quantifying the expected quality of
source localization with respect of the sensor placement, known
as EEG montage. Our method, based on a subspace correlation
metric, can be used to assess which brain sources can be
distinguished (as they generate sufficiently different potentials
on the electrodes), and also to identify regions/volumes in which
precise source localization is impossible (i.e. all sources inside
those regions could generate similar electrode potentials). In
particular, for a MI dedicated montage, we show that source
localization is less precise than for standard montages, although
the local density of electrodes over the areas of interest is higher.

I. INTRODUCTION

Source localization is seldom used in EEG-based Brain-
Computer Interface (BCI) applications (with some notable
exceptions, e.g. [1], [2], [3], [4]), for several good reasons.
Among them, one of the most important is the electrode
placement. Indeed, properly addressing the source localiza-
tion problem implies processing signals coming from surface
EEG electrodes, in a sufficient number and well distributed
over the head surface [5]. On the contrary, for practical
reasons mostly (supposed areas of interest, installation time,
comfort of the subject), most of end-user BCI applications
use surface electrodes in a small number placed over specific
brain regions (motor/sensitive areas for motor imagery for
example).

The aim of this work is to propose a systematic and
rigorous approach for exploring the feasibility of source
localization from BCI-like electrode setups. Our approach
is based on a subspace correlation measure exploited as an
euclidean distance and fed into a clustering algorithm. The
result is a parcelation of the brain volume in distinguishable
regions, depending on the electrode placement. Within each
region, the sources are virtually impossible to distinguish,
meaning that every such region could be approximated by a
unique equivalent source. The proposed approach yields thus
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a coarse but irregular discretization of the brain volume, with
well defined (small) and badly defined (big) regions whose
repartition depends on the electrode setup. It is noteworthy
that other authors have proposed a coarse discretization. For
example, in [6], the authors propose to subsample the brain
volume based on physiologically/anatomically defined brain
atlases.

II. SOURCE LOCALIZATION BASICS

Electric brain source localization consists in determining
the positions, orientations and strength of neural sources
using the electrical potential measurements, usually acquired
by scalp EEG electrodes. Formally, this can be stated as an
inverse problem: knowing some measurements and a model
linking the sources to the measurements (here a propagation
model), one wants to estimate the sources that have generated
these measurements. There are a set of common assumptions
for all localization methods:

• at each time instant t, a source can be modeled as
a current dipole, and thus characterized by 6 pa-
rameters per source: the position rn = (xn, yn, zn),
(3 × 1), and the dipolar moment vector jn(t) =
(jn,x(t), jn,y(t), jn,z(t)), (3× 1), where the three com-
ponents are the amplitudes of the projections along the
x, y, z axis;

• the propagation coefficients km,n, (3× 1), between the
n-th source (at position rn) and the m-th electrode do
not vary in time and they do not depend on the time-
frequency characteristics of the sources.

Basically, these assumptions come both from neuroanatomi-
cal considerations (alignment of the pyramidal neurons in the
cortex for the source model) and Maxwell equations for the
electromagnetic fields at low frequencies (for the propagation
model) (see e.g. [7] for more details on the modeling).

The previous assumptions allow to model at each time t
the potentials on the head surface as a linear combination of
dipolar sources:

V = KJ (1)

where V (M ×1) are the potentials on the M electrodes, K
(M × 3N ) is the so-called lead-field matrix and J, (3N × 1)
are the (elementary) dipolar moments.

The lead-field matrix K can be obtained using analytic
or numerical approaches. For example, if the head is ap-
proximated by one or several concentric spheres (standing
e.g. for brain, skull, scalp), one can derive analytic solutions
for every point on the surface of the spheres. More elaborated
models include a realistic model of the head geometry,
extracted from imagery modalities (CT scan, MRI). These
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numerical models can be limited to surfaces (e.g. for brain,
skull, scalp), in which case they are known as BEM (Bound-
ary Elements Methods) or they can discretize the volumes
also (including separate discretization of gray/white matter
if needed). Among these last solutions, the most used are the
FEM (Finite Elements Methods).

Apart from the geometry, one needs to make assumptions
on the electrical properties of the tissues in these different
volumes (or finite elements). The widely accepted hypothesis
is that the tissues are purely resistive, i.e. they are charac-
terized by their conductivities σ (which in principle can be
different by spatial direction also).

To conclude, the lead-field matrix, which is at the basis of
all source-localization procedures, is computed as a function
of the medium characteristics (geometry and conductivity)
and the positions of the considered possible sources and
the electrodes. Usually, the N possible source positions are
defined as a grid inside the brain volume, with a resolution
depending on the accuracy of our model, while the electrodes
are in far smaller number M � N . K matrix is thus not
invertible, and different ways of finding the sources from (1)
have been proposed in the literature over the last 30 years
(see e.g. [8]).

III. SUBSPACE CORRELATION METRIC

A lead field matrix K (M × 3N ) can thus be seen as
a collection of N groups of 3 vectors in RM , each group
related to a source position. Formally speaking, every group
defines a 3D subspace of RM . This means that any current
density vector jn associated to the position n ∈ {1 . . . N}
(i.e. pointing in any direction and having any amplitude)
lies in the n-th subspace, as it can be written as a linear
combination between the 3 vectors defining the respective
subspace.

The question one can ask is: are there two 3D subspaces
Si and Sj , and, within each subspace, two current vectors ji
and jj having identical projections on the sensors? In other
words, is it possible to obtain the same scalp potentials from
sources lying at two different positions (but with potentially
different orientations and amplitudes)? The answer to this
question is given by the dimension of the common subspace
between Si and Sj .

Consider two groups of 3 vectors forming two matrices
Ki and Kj (M × 3). These matrices, assumed linearly
independent, define the 3D subspaces Si and Sj associated
to the positions ni and nj . A basis for each subspace can
be obtained for example by whitening: after computing the
product Φi = KT

i Ki, the basis vectors Zi are obtained as
follows:

Zi = KiUiD
−1/2
i , (2)

with Di and Ui respectively the diagonal matrix of eigenval-
ues and the eigenvector matrix of the matrix Φi. Strictly the
same development yields a basis Zj of Sj . Of course, these
solutions are not unique, any orthogonal (rotation) matrix
will yield alternative basis vectors for the same subspaces.
The question of the common subspace between Si and Sj

becomes then: are there some particular rotations that we can
apply to Zi and Zj such as they become aligned, i.e. their
3 basis vectors become identical?

An simple solution for finding two rotation matrices V
and W (3× 3) that will align the subspaces spanned by Zi

and Zj is given in Golub and Loan [9, p. 603-605]. It starts
by computing the singular value decomposition of the 3× 3
matrix ZT

i Zj :

ZT
i Zj = VΣWT (3)

Let

Yi = ZiV

Yj = ZjW (4)

be the rotated versions of the Zi and Zj basis, thus them-
selves also basis of Si and Sj . It is easy to see that

YT
i Yj = Σ, (5)

meaning that a vector k in Yi is orthogonal to all vectors
l 6= k from Yj and that the cosine of the angle between
vectors having the same index k in both Yi and Yj basis is
given by the k-th singular value σk. In particular, if σk = 1,
the k-th vectors from the two basis are aligned. If the three
basis vectors are aligned (i.e. Σ is the identity matrix), then
the two subspaces are aligned.

In principle, with a non-singular lead-field matrix, this
is not possible. Indeed, if two subspaces are completely
aligned, it means that the columns of the lead-field cor-
responding to one of the subspaces can be written as a
linear combination of the columns corresponding to the
other subspace. But, on the other hand, it is fairly possible
and quite current for two subspaces to be “approximately”
aligned: if the grid of source positions is dense and the
sensors are far, it is quite naturally that the potentials on
the sensors will be very similar, approximately the same.

We can define thus a “distance” between two subspaces
in order to quantify how similar they are. We propose the
smallest singular value of Σ in (5). This can be seen as
the euclidean distance between the third basis vectors from
Yi and Yj . Indeed, if we note these vectors as yi,3 and
yj,3, simple geometrical considerations show that the squared
distance writes:

d2i,j = ‖yi,3 − yj,3‖22
= ‖yi,3‖22 + ‖yj,3‖22 − 2‖yi,3‖2‖yj,3‖2 cosφij,3
= 2(1− cosφij,3), (6)

where φij,3 is the angle between the vectors yi,3 and yj,3,
both having unit norm by construction.

Expression (6) defines thus an euclidean distance between
the subspaces Si and Sj related to locations ni and nj .
A small distance will imply that there exists two dipoles,
situated at these two positions, that project very similarly on
the electrodes. In other words, they are potentially indistin-
guishable, especially in the presence of noise.



IV. CLUSTERING

Given a distance between any pair of source positions
in the head, one can use it to construct clusters of source
positions: close positions (in terms of distance (6)) are
impossible to identify by any inverse problem technique, be-
cause they project similarly onto the sensors. Consequently,
one can take for example the centroid of every cluster
as a representative source for the whole cluster, and thus
potentially subsample the lead-field matrix. This reduced
lead-field matrix can significantly speed up computations
and, moreover, it might indicate quantitatively the precision
limits of source localization algorithms depending on the
positions inside the head volume.

We propose here a completely unsupervised clustering
procedure, based on agglomerative hierarchical clustering
(AHC) [10]. In brief, AHC starts by initializing each cluster
to a point. So at the beginning, we have as many clusters
as points. Then an iterative procedure i) selects the two
closest clusters and ii) agglomerates them into a new cluster
until a stopping criterion is reached (pre-defined number
of clusters, maximum distance between the closest clusters,
...). The first step depends on a distance criterion such as
the minimum distance between any points of two different
clusters. The second step, called linkage, depends thus on the
cluster merging criterion. Several linkage procedures have
been proposed [10]. In our application, we aim to merge two
clusters only if the projection of the dipoles within those two
clusters onto the sensors (i.e. the forward problem) risk to be
impossible to distinguish. In particular, the two most different
dipoles in the two clusters need to be similar enough. We
choose then the distance between two clusters and thus the
resulting linkage procedure as the complete linkage (also
known as farthest neighbour).

A very important observation is that the subspaces in-
volved in this argumentation are groups of lead-field vectors.
Consequently, they depend on the used model and, most
important, on the positions of the sensors. The subspaces
associated to two positions, and thus their angles and thus
distance (6), depend on the employed sensors. If their number
is high or low, or if their positions are regularly distributed
over the head or concentrated onto specific areas can dramat-
ically change the clustering and thus the spatial sampling or
the “resolution” of the obtained reduced lead-field.

The AHC procedures continues iteratively until all the
points are merged together in a unique cluster. A common
graphical representation is the dendrogram, which is a binary
tree-like structure associating at each node two clusters in
a bigger cluster (see fig. 1 for an example on our data).
If our aim is to cluster the points in similar regions, we
have to cut the dendrogram in order to separate the different
branches of the binary tree. Different procedures exist but,
again guided by our application, we choose to fix a distance
threshold: if two clusters are farther away than that threshold
(meaning that the maximum distance between any two points
in the two clusters is bigger than the threshold), then we
consider them as separate regions. The threshold we propose

Fig. 1. Example of dendrogram for the 32 electrodes MI montage. The
red horizontal line indicates the threshold T for cluster separation

Fig. 2. 3-layer head model (Colin27)

is based on the correlation: if two scalp maps (i.e. potentials
on the sensors) are correlated below 0.95, we consider them
as different. As the correlation is equal to the cosine in eq.
(6), the threshold on the dendrogram is readily computed as
T =

√
2(1− 0.95) = 0.316.

V. SIMULATION AND RESULTS

A. Simulation setup

The absolute potentials (forward problem) were simulated
as follows: a three shell mesh model (Colin 27) was extracted
from Brainstorm [11] toolbox (see Fig. 2) in order to have a
realistic geometry. The cortical layer mesh (inner shell) had
7292 nodes, while the scalp mesh (outer shell) had 1922
nodes.

A regularly spaced grid was constructed inside the inner
shell (brain), with a 7 mm distance between neighbouring
points, which yielded N = 6184 points (dipole positions).
For each position, three elementary dipoles were considered.

Three standard sensor setups were tested using M =
{19, 32, 63} scalp electrodes placed on the head surface
(outer shell) according to the 10-10 system. A fourth set was
specially designed for Motor Imagery tasks: it contained 32
electrodes placed on the scalp, above the motor-sensory areas
and the occipital areas (figure 3). Sensor coordinates were



Fig. 3. Motor Imagery montage

also extracted from the Brainstorm toolbox and snapped to
the mesh vertices by nearest-neighbour rule.

For each sensor setup, the absolute EEG scalp potentials
V were simulated by projecting the sources of interest to
the sensors using a lead field matrix K (M ×3N ) computed
using the BEM model implemented in the Helsinki toolbox
[12], with conductivity ratios of 40:1 between the brain and
the skull and 1:1 between brain and scalp.

B. Results

As expected, none of the sensor setups is able to distin-
guish between all N subspaces. Recall that each subspace is
generated by 3 lead-field columns, corresponding to dipoles
situated 7 mm away one from another and that two subspaces
are indistinguishable if their minimum correlation (cosine of
the largest principal angle) is above 0.95. But the results
are very different from one sensor setup to another. The
number of distinguishable clusters starts by increasing with
the number of sensors, as expected (the more sensors you
have, the better the resolution - see table I)1. But the most
important factor influencing the resolution seems to be the
spatial distribution of the sensors. Indeed, the last column
of the table shows the number of clusters distinguishable
using the 32 electrodes Motor Imagery montage, yielding
a far lower resolution than spatially distributed montages,
including the simple 10-20 montage of 19 electrodes. These

TABLE I
NUMBER OF DISTINGUISHABLE CLUSTERS DEPENDING ON THE SENSOR

SETUP

Sensor setup
19 32 63 32MI

# clust 617 666 737 426

global results are reinforced by a more in depth analysis. As
one could expect, the clusters of similar dipoles do not have
the same volume. As it can be seen in fig. 4, the farther away
a cluster is from the sensors, the biggest its volume. But for
the well distributed montages all clusters have dimensions

1It is noteworthy that first results on a much denser setup (256, BioSemi
montage) show that the resolution stops increasing. These results will be
elaborated elsewhere.

below 10 cm3, while for the 32MI montage, the volumes
can increase well above 20 cm3. Of course, the big clusters
are situated far from the sensors, in this case in the frontal
regions (see example in figure 6.

Important differences exist also among well distributed
montages, as shown in figure 5. For low density montages
(19 electrodes), there are almost no distinguishable regions
(clusters) having volumes below 1 cm3, corresponding to 3
dipole positions (for our grid of 7 mm, a volume covered by a
dipole is roughly 0.34 cm3), while for high density montages
one could in principle obtain much smaller distinguishable
regions.

A specific question could be investigated for the 32MI
montage: even if globally it yields a lower resolution than the
classical 32 or even 19 electrode montages, one might expect
to have a better resolution in the parietal and occipital areas,
where the sensors are densely placed. Still, this intuition is
not confirmed by the cluster number analysis limited to the
dipoles situated in these specific areas. More precisely, if we
focus on the dipoles situated within a given distance from
the 32MI sensors, we can quantify how they are regrouped
together by the clustering procedure (or equivalently, in how
many distinguishable regions one can split the occipito-
parietal area below the electrodes). The results are given in
table II, for dipoles situated at less than 20 mm or at less
than 30 mm from the 32MI sensors.

TABLE II
NUMBER OF DISTINCT REGIONS (CLUSTERS) OBTAINED USING

DIFFERENT MONTAGES, IN THE OCCIPITO-PARIETAL AREA (DIPOLES

SITUATED AT AT MOST 20 OR 30 MM FROM THE 32MI ELECTRODES)

Montage <20 mm (118 dipoles) <30 mm (962 dipoles)
19 71 204
32 75 254
63 78 262

32MI 73 234

VI. CONCLUSION AND FUTURE WORK

We propose in this paper an original and quantifiable
method for subsampling the lead-field matrix for source lo-
calization applications. More precisely, we introduce a novel
distance between two possible dipole positions in the brain,
based on subspace correlation between the corresponding
lead-field groups of columns (each dipole lies in a subspace
spanned by 3 lead-field columns associated to the dipole
position). This distance allows us to cluster the brain in
distinguishable regions (i.e. , dipoles within a cluster cannot
be reliably distinguished, meaning that each cluster can be
represented by a single dipole).

We evaluate different EEG montages using the proposed
technique. While some of the results are expected (although
not yet quantified to the best of our knowledge), others
are more unexpected. In particular, we have shown that the
obtained resolution increases with the number of sensors,
but that their spatial distribution is more important than
their number. This conclusion extends also to brain regions
situated below densely sampled scalp regions, like in BCI



Fig. 4. Volume of the obtained clusters with respect to their distance to the sensors (the centroid of the cluster with respect to the closest sensor). From
left to right, 19, 32, 63 and 32MI montages

Fig. 5. Histograms presenting the number of clusters by volume, for the 4 analyzed montages. The number of clusters having volumes in the intervals
[0, 1], [1, 2.5], [2.5 5], [5 10] and above are given above each bar

Fig. 6. Cortex parcelation yielded by the 32MI montage. Note the big
cluster surfaces in the frontal ares (uncovered areas) compared to parietal
areas (covered by sensors)

applications. For the Motor Imagery montage used in [13]
for example, the number of separable brain regions in the
areas of interest (occipito-parietal) does not benefit from the
increased number of sensors above these areas.

Although more results are needed, the first conclusion
seems to be that using dense but local montages does not
improve source localization, and these montages are not
adequate if one aims to estimate active brain regions during
specific BCI tasks.

Clearly, this research needs to be extended to denser
montages (128 and 256 electrodes) and confronted with atlas
based segmentation of the human brain: which functional
areas can be distinguished?, how many equivalent dipoles
are needed for a given region?, etc. Besides, inverse prob-
lem (source localization) needs to be performed after the
clustering in order to completely validate our approach.

REFERENCES

[1] M. G. Wentrup, K. Gramann, E. Wascher, and M. Buss, “Eeg source
localization for brain-computer-interfaces,” in Conference Proceed-
ings. 2nd International IEEE EMBS Conference on Neural Engineer-
ing, 2005., March 2005, pp. 128–131.

[2] B. Kamousi, Z. Liu, and B. He, “Classification of motor imagery
tasks for brain-computer interface applications by means of two
equivalent dipoles analysis,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 13, no. 2, pp. 166–171, June
2005.

[3] F. Lotte, A. Lécuyer, and B. Arnaldi, “FuRIA: An inverse
Solution based Feature Extraction Algorithm using Fuzzy Set
Theory for Brain-Computer Interfaces,” IEEE Transactions on Signal
Processing, vol. 57, no. 8, pp. 3253–3263, 2009. [Online]. Available:
https://hal.inria.fr/inria-00368282

[4] B. J. Edelman, B. Baxter, and B. He, “Eeg source imaging enhances
the decoding of complex right-hand motor imagery tasks,” IEEE
Transactions on Biomedical Engineering, vol. 63, no. 1, pp. 4–14,
Jan 2016.

[5] J. Song, C. Davey, C. Poulsen, P. Luu, S. Turovets, E. Anderson,
K. Li, and D. Tucker, “Eeg source localization: sensor density and
head surface coverage,” Journal of neuroscience methods, vol. 256,
pp. 9–21, 2015.
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