
Connectivity estimation of three parametric methods on simulated
electroencephalogram signals

Hugo Vélez-Pérez, Valérie Louis-Dorr, Radu Ranta, Michel Dufaut

Abstract— The global framework of this paper is the connec-
tivity estimation in multichannel electroencephalogram (EEG)
recordings, modeled as multidimensional autoregressive (AR)
processes. The coherence, directed transfer function and partial
directed coherence functions are evaluated on two simulated
EEG signals for their later application on real EEG recordings.
The results were evaluated computing the relative error and
a second proposed performance criterion (η) based on the
entropy of the estimated connectivity matrix.

I. INTRODUCTION

Some works based on stereo electroencephalography
(SEEG) recordings ([1], [2]) have showed a certain electro-
physiological synchronization between deep brain anatom-
ical structures during seizures. This deep synchronization
can be expressed by correlations on scalp electrodes in
electroencephalogram (EEG) recordings, even if this activity
transfer is only partial. This hypothesis has been reinforced
by Franaszczuk and Bergey [3] and by Caparos [4], who
proposed either parametric or non parametric methods to
estimate the synchronization between rhythmic waves often
observed at seizure onset.

The objective of this work is to evaluate, on two simulated
EEG signals, the capacity of three parametric methods, co-
herence (C), directed transfer function (DTF) [5] and partial
directed coherence (PDC) [6], based on the autoregressive
model (ARM), to reveal existent interactions between sig-
nals. This analysis will guide their possible later application
to real scalp EEG signals. In section 2, we remind the
theoretical bases of ARM applied to EEG analysis. The
methods derived from the ARM and the used evaluation
criteria are presented in the third section. In the fourth section
we present the simulated EEG signals used in this study,
while the results and the discussion are presented in the
following section. Finally, in last section, we conclude and
we note some perspectives of this work.

II. EEG MODELING

The most widely model used in EEG signal processing
is the ARM. EEG signals are non stationary signals; never-
theless, is possible to consider a certain stationarity for short
time intervals. For a given time interval, the multidimensional
ARM is:

x(t) =
p

∑
k=1

A(k)x(t− k)+ e(t) (1)
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with A(k) =
[
a1(k) a2(k) . . . an(k)

]T as the n×n ARM
coefficients (ARMC) matrix, n the number of channels, x(t−
k) the time-delayed values vector, p the model order and e(t)
the error vector. To solve (1) is necessary to find p (smaller
than the sequence length) and next to estimate the ARMC.

To find p, the classical approach minimizes the Akaike’s
Information Criterion (AIC) [7], based on the maximum
likelihood estimation of the signal probability density func-
tion. To find A(k), the solution of Yule-Walker’s equations
[8] must be computed. For this application, the Levinson-
Durbin’s algorithm [9] is applied.

III. SYNCHRONIZATION IN FREQUENCY DOMAIN

Once the multichannel ARM has been obtained and to
investigate its spectral properties, (1) can be written in
frequency domain as:

x( f ) = Ā( f )−1e( f ) = H( f )e( f ) (2)

where Ā( f ) = I−A( f ) =
[
ā1( f ) ā2( f ) . . . ān( f )

]
and

I the identity matrix. H( f ) is called the transfer function
matrix of the system. The power spectral matrix S( f ) is
obtained by:

S( f ) = H( f )VH∗( f ) (3)

where ∗ denotes transposition and complex conjugate and V
is the noise covariance matrix.

A. Coherence

The first studied estimator is the well known C function
between two channels i and j, introduced as a measure of
linear association degree between two signals in frequency
domain:

Ci j( f ) =
|si j( f )|√
|sii( f )||s j j( f )|

(4)

where si j are elements of S( f ). C is a positive and symmetric
function, normalized between 0 and 1.

B. Directed Transfer Function

In 1991, Kaminski and Blinowska introduced the DTF
estimator [5], defined as:

γi j( f ) =
|Hi j( f )|√
n
∑

m=1
|Him( f )|2

(5)

The DTF describes the ratio of the influence from the j-th
channel to i-th channel with respect to the influence of all
inflows to i-th channel.



C. Partial Directed Coherence

In 1999, Baccalá and Sameshima, proposed the PDC,
defined as [6]:

πi j( f ) =

∣∣āi j( f )
∣∣√

|ā∗j( f )||ā j( f )|
(6)

where āi j( f ) is the i, j-th element and ā j a vector column
of Ā( f ). PDC was introduced to provide a clearer connec-
tivity of Granger causality, showing the direct interactions
(feedforward and feedback) between every pair of channels
within a multichannel process.

D. Evaluation criteria

1) Relative Error (Erelative): To evaluate the performance
of the previous estimators, an error function was introduced
by Astolfi in [10]:

Erelative( f ) =

√
n
∑

i=1

n
∑
j=1

(ζ̄i j( f )− ¯̂
ζi j( f ))2

√
n
∑

i=1

n
∑
j=1

ζ̄i j( f )2

(7)

where ζ̄i j( f ) and ¯̂
ζi j( f ) are the mean of C, DTF or PDC

function from the theoretical and estimated models respec-
tively. These averages are computed by frequency band in
[10]. As in this work we aim to evaluate the global connec-
tivity estimation regardless of the frequency, we consider a
Erelative computed over the whole frequency domain.

2) Entropic criterion (η): A connectivity graph, as pre-
sented in Fig. 1(a), does not take into account neither time
delays nor frequency relations. From Parseval’s theorem,
we might consider a global matrix Ag =

√
∑

p
k=1 A(k)2,

which contains the connectivity information as given by the
graph, regardless of the time delay. Therefore, the non-zero
coefficients will correspond only to the graph edges and their
amplitude to amount of the transfered energy.

(a) (b)
Fig. 1. Connectivity graph (a) and its MA image representation (b).

In a similar way, a Z = {ζi j} matrix can be obtained by
grouping all ζi j values obtained from C

(
ζi j =

√
∑ f ζi j( f )

)
,

DTF or PDC
(

ζi j =
√

∑ f ζi j( f )2
)

. Ẑ = {ζ̂i j} will corre-
spond to estimated functions. Assuming that a connection
should exist also in frequency domain (i.e. a non-zero
coefficient in Z), we propose a new criterion to compare
the connectivity information given by Ag and Z. First, as
we are only interested in connectivity estimation, two new

matrices MA and MZ ((p−1)×(p−1) sized) are constructed
by eliminating diagonal terms from previous matrices. Next,
we normalize the MA and MZ elements into a range between
0 and 1. To compare the connectivity information contained
in MZ to the information contained in MA, we compute the
Shannon entropy, redefined for a matrix M = {mi j} like:

H(M) =−
n

∑
i=1

n

∑
j=1

p(mi j) log2(p(mi j)) (8)

The entropy can be estimated from a simple histogram,
to avoid the estimation of the probability law p(mi j). The
connectivity information from MA can be compared:
• with MZ (based on the theoretical C, DTF, PDC), which

evaluates if the synchronisation method can accurately
describe the connectivity pattern regardless of the pos-
sible modeling errors;

• with MẐ (estimated C, DTF, PDC), which takes into
account the possible estimation errors of the ARMC.

We can compute then two version of a new η criterion, a
theoretical value (η) and an estimated one (η̂):

η =
∣∣∣∣1− H(MZ)

H(MA)

∣∣∣∣ (9)

η̂ is obtained replacing Z by Ẑ. A value close to 0
indicates similar information in Ag and Z (Ẑ). The lowest
theoretical value η indicates the most appropriate method to
evaluate connectivity patterns, while an important change in
the estimated value η̂ (comparing to η) indicates a particular
sensibility of the method to possible model estimation errors.

IV. MODELS AND SIMULATIONS

A. Model I (MI)

The first simulated model was inspired from the model
used by Baccalá in [11].

x1(k) = 0.95x1(k−1)−0.75x1(k−2)+ e1(k)
x2(k) =−0.5x1(k−1)+ e2(k)
x3(k) = 0.25x1(k−1)−0.4x2(k−2)+ e3(k)
x4(k) = 0.75x1(k−1)+0.1x4(k−1)−0.6x3(k−2)+ e4(k)
x5(k) = 0.2x5(k−1)+0.65x7(k−1)+0.25x4(k−2)+ e5(k)
x6(k) = 0.75x6(k−1)−0.4x6(k−2)+ e6(k)
x7(k) = 0.8x6(k−1)−0.3x5(k−2)+ e7(k)
x8(k) =−0.5x6(k−1)+ e8(k)

This model behaves as an oscillator driving, directly or
indirectly, the other structures according to Fig. 1(a). It con-
tains two independent sources (channels 1 and 6), whereas
the other channels are generated by 1 and 6. For this model,
p = 2, the ARM coefficients are chosen in [−1;1] interval and
e is a zero mean Gaussian noise with 0.5 standard deviation.

B. Model II (MII)

Because the objective is to apply these methods to real
EEG recordings, it is necessary to verify if it is possible to
introduce in the ARM signals generated in a different way.
The second proposed model is identical to the first one, for
the mixing, but 2 simulated EEG are introduced in channels



1 and 6 instead of the previous ARM signals. The used
signals are 2 newborn simulated EEG signals taken from
Stevenson and Rankine [12]: a background signal in channel
1 and a seizure signal in channel 6. The signals produced by
simulating MI and MII are shown in Fig. 2.

(a) (b)
Fig. 2. Signals obtained by simulating the MI (a) and MII (b).

V. RESULTS AND DISCUSSION

A hundred simulations were executed in order to obtain
mean results over different noise generations. For MI, most
of the times, the estimated p did agree with theoretical p;
however, for MII, p varied between simulations, which puts
in evidence that if signals are not generated in an AR way,
the model becomes more difficult to estimate.

In Fig. 3, graphs of theoretical (left column) and estimated
(right column) C, DTF and PDC of MI are presented. For all
these estimators, we can compute MZ matrices, which can
be represented by scaled gray level images (Fig. 4) to be
compared with the scaled image of MA matrix (Fig. 1(b))(a
0 diagonal was reintroduced for displaying facility).

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Theoretical and estimated C (a-b), DTF (c-d) and PDC (e-f) for
MI.

Because C is a positive and symmetric function, all chan-
nel relations are present, so a symmetric graph is obtained.

(a) (b)

(c) (d)

(e) (f)
Fig. 4. Gray scale representation for theoretical and estimated C (a-b),
DTF (c-d) and PDC (e-f) for MI.

(a) (b)

(c) (d)

(e) (f)
Fig. 5. Estimated and gray scale representation for C (a-b), DTF (c-d) and
PDC (e-f) for MII.

For DTF, direct and indirect relations are expressed, proving
its notion of causality. Finally, for PDC, only the direct



connectivities are displayed. We can appreciate in Fig. 3 how
the estimated functions are very close to theoretical ones.
Comparing the gray scale image of MA in Fig. 1(b) with
the right column of Fig. 5, we notice that estimated PDC
image is very close to the MA image, while DTF presents
little differences and the C image is quite far.

These observations are confirmed by Table I, which con-
tains the mean values for the computed criteria. Unlike in
[10], in our tests (only one type of noise) PDC seems to be
more robust than DTF and C (smaller Erelative). However,
these Erelative values are not far between them. We also
notice that the greatest value of η and η̂ is given by C,
followed by the DTF, whereas the smallest value corresponds
to PDC in both cases. That is explained because C highlights
all channel relations (symmetric function), DTF estimates
the direct and indirect connexions and finally PDC only
highlights the direct relations between channels. According
to results of η̂ , PDC outperforms DTF and C, as expected.

TABLE I
Erelative , η FOR MI AND η̂ FOR MI AND MII.

Model Criterion C DTF PDC

Model I
Erelative 0.0636 0.0646 0.0614

η 1.5345 0.3984 0.0641
η̂ 1.4909 0.4181 0.0384

Model II η̂ 1.2601 0.6206 0.2129

However, the results for MII are more questionable. As we
appreciate in Fig. 5, when we introduce more realistic signals
in the mixing, invalid theoretical connections appear between
channels, leading to an incorrect connectivity interpretation.
We remark that is not possible to obtain theoretical graphs
for C, DTF and PDC because we do not have access to
theoretical values of signals x1 and x6. Therefore, the η and
Erelative can not be obtained. As for MI, the connectivity
of MII is better highlighted by PDC than by DTF or C.
In spite of PDC being the best estimator, we can observe
that for MII, η̂PDC is much closer to η̂DT F than MI. In
fact, during our simulations, we observed also the inversion
of these two values. Also, we can observe an important
degradation of the PDC estimator (from 0.04 to 0.21) when
MII is used, while the DTF estimator is much more robust
(from 0.42 to 0.62) and less influenced by the quality of the
AR modeling . Therefore, it is necessary to have in mind
that, if ARM is questionable for real or close to real signals,
frequency domain parametric connectivity estimators may
lead to erroneous interpretations (especially PDC).

VI. CONCLUSION AND FUTURE WORKS

In this work, the property of C, DTF and PDC to put in ev-
idence the connectivity in EEG models was evaluated. If we
are interested in studying direct and/or indirect connections,
DTF and PDC are the best relationship estimators. According
to both used criteria, PDC is the best direct connectivity

estimator, if the ARM is correctly estimated. Nevertheless,
in spite of DTF is not being able to reveal only the direct
connections between the channels like PDC, it also seems a
good estimator, whose results are not far from PDC results.
Moreover, the DTF is less sensible to modeling difficulties.
From the results obtained in the MII, we can conclude that,
in spite of the sensibility of these estimators to the presence
of more realistic signals in the model, it is possible to apply
them to real EEG recordings. The proposed entropic criterion
η highlights direct interchannel relationships and permits
a quantitative evaluation of the connectivity in function.
This connectivity estimation becomes an important aspect
in the characterization of seizures in scalp EEG recordings
and, particularly, in the location of the anatomical origin of
seizures.

Future investigations aim to evaluate the noise influence.
In order to account for the quasi stationarity of signals in
longer simulated and real EEG, a sliding window could be
applied. Because our underlying hypothesis here is that the
results obtained for the whole frequency domain can be
extrapolated by frequency band, we think it is possible to
work on electrophysiological frequency bands of real EEG
in order to describe or to obtain different connectivity graphs
for each band.
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