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Abstract: Blind source separation (BSS) is a relatively reaechnique, more and more applied in
electroencephalographic (EEG) signal processinf, 8k classical mixing model of the BSS does not
take into account the real recording set-up. I, fac major problem in electrophysiological recai
systems€.9.ECG, EEG, EMG) is to find a region in the humamuywhose bio-potential activity can be
considered as neutral as possibdg a quasi-inactive reference place. Nowadays,\itels known that it

is impossible to find a “zero-potential” site orethuman body. In particular, the most common way of
performing EEG recordings is by using as a comnefarence an electrode placed somewhere on the
head. Starting from this Common Reference Mont&feM), several other montages can be constructed
for interpretation or processing purposes. Regasdlaf the chosen montage, the reference electrode
intervenes in the mixing model of the BSS. The ofdje of this work is to analyse the influence loé t
montage on the mixing matrix and the quality of B8S solution. This communication proposes to
formalize the source separation problem in a nawo-petential reference context and shows that the
Average Reference Montage (ARM), augmented by talir‘average measure”, leads to better source
separation results (separability ind&). This conclusion is supported by simulated EE&rsgithe most
common montages.e. Common Reference Montage, Average Reference Ientnd Bipolar-
Longitudinal Montage, as well as by real EEG exaspl
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Montage (ARM) and the Bipolar-Longitudinal Montage
(BLM), see Fisch and Spehlmann (1999).

Regardless of the employed montage, all measure@ EE
signals can be seen as a result of an unknown maixti
several unknown cortical sources, extra-cortictdfacts and
noise. A relatively recent signal processing teghaj the
Blind Source Separation (BSS), can be used to aepHrese
mixed measured signals in “independent” sourceghwban

be further-on used either for artefact eliminat@nfor brain

In Electroencephalography (EEG), one of the mostroon  activity evaluation, see Croft (2000), Delorme (2Q)ames
recording systems is the 10-20 system of electrod2003), Ting (2006), Romo (2007). A brief descioptiof the
placement. EEG recordings are performed by usingieneral BSS model is presented section 2.

electrodes placed at standardized locations ohghd. These
measuring electrodesire referenced either to cephalic o
non-cephaliaeference electrode§ his paper focuses on the

1. INTRODUCTION

An important issue for the actual standard systéanio-
potentials recording (electrophysiological activiteasuring
systems as ECG, EEG, EMQG) is to find a region entthman
body whose bio-potential activity could be consateras
neutral as possible. That is desirable becausesldwtrical
activity at that place affects measurements apthir active
electrode sites, see Dien (1998) and Yao (2001).

The classical BSS model supposes ideally measigedls,

[ . . .
i.e. zero-referenced, while real electrophysiological

former,i.e. the most frequently employed cephalic referenc
The anatomical landmarks most frequently used pbale
references sites are the nasion, the inion, owerotitipital
area, the preauricular points, see Schachter (2006). All this
reference sites contribute with some non-desiraffkxts on
the recordings.

The previously described recoding set-up is knovan
Common Reference Montage (CRM, cephalic) and thés
basis montage in modern acquisition systems. Nesleds,
to ease interpretation and processing in the aleseiha zero-
potential reference, several multiple combinatio$
differential measures have been derived from théViQiy
some simple manipulations (see section 3). The m

common of these montages are the Average Referer}ﬁ

recordings have a non-null reference. A solutiocoppsed by

Buet al (2007) consists in identifying the reference sidna

constraining the BSS model to particular mixing tegs
which implies that the non-zero reference signal
independent from all other measures. In the rengrdet-up
used by the authors (intra-cranial measures),apgoach is

based on the hypothesis that the reference elecpiaded on

dhe scalp is not influenced by the intracranial suees.

If for intra-cranial measures this hypothesis @ltph not
proven) can be employed, in a cephalic referencalp £EEG
(CRM) context it cannot hold, as the referencetedele itself
records a noisy mixture of cerebral and extra-aaieb
squrces. Therefore it is important to evaluate ghality of
Re obtained separation function of the input digjriae. from
& employed montage. One could object that altiifferent



montages can be obtained by linear transformatiom fthe A more realistic model considers noisy measuresiaen
CRM (and therefore the source separation solutmulsl be be written as follows:
the same). Still, the noise affects them differgnéind the -
solutions are not identical, as it is shown in isect3 and X=Astn ®)

illustrated by simulation and by real examplesédot®n 4. where X is the noisy measure vectoM%1), A is the

The employed evaluation criterion is the classicainknown full-column rank mixing matrixMxN) , s is the

Separability Index|6), see Cichocki (2002). In particular, itSources vector Nx1) and n is a vector ¥Mx1) of

is proven that the ARM, augmented by a “virtual mea” independent Gaussian noises. By BSS, one will fand

consisting in the actual average of the CRM signmésforms ~ separation matri¥V and noisy source estimaies

better than CRM or BLM and that it tends asympadljc

towards an ideal zero-referenced montage (ZRM), ar®l2 Performance Evaluation

therefore should be used when source separatiamithigs

are applied. The classical performance evaluation for sourcearsgon
> SOURCE SEPARATION algorithms is based on the transfer matéetween original

sourcess and estimated oneg (G=WA).
The final objective of blind source separationoiseécover all o ) ]
In general, these observations are modelled asnearli @nd a diagonal permuted matrix and is computed by

mixture of independent sources, both the mixingesgsand performing the following manipulations: the firgiep is to
the sources being unknown. normalize the rowsy of the matrix G by dividing each

] . ) element by the maximum absolute value of the row:
Several Blind Source Separation (BSS) algorithme Heeen

proposed and analysed during the last decades. \ldowieis . |gi|

not the objective of this paper to explore the affeness of 9 = ma){9| (4)
these different methods. We have therefore choserobthe '

most robust algorithms for temporally auto-corretht From the normalized matrixc’, the separability index is
sources, namely SOBI-RO (Robust Second Order Blinsbmputed as follows:

Identification), introduced by A. Belouchraet al (1997,

2000). This algorithm was already successfully UsedEEG ZN: ZN:(G'(i .))_1

separation, for example by Kierkels (2006) and Rome | £ ')

2008 IS =- (5)

(2008). N(N 1)

2.1 Classical BSS Model From (5) we can see that for a perfect separatien|S index
is zero.

The classical linear mixing model can be writteh,each

instantk, as: 3. SOURCE SEPARATION ON REFERENCED EEG

RECORDINGS
X =As 1)

) _ The previously proposed model considers soursesnd
wherex is a vector oM observed signals (EEG electrodes)sensorsx as measured relatively to an ideal null reference.
A is the unknown full-column rank mixing matrik&N) and  However, in clinical implementation, it is not pise to
s is the vector ofN independent unknown sources (in thgneasure relatively to a “zero-potential” electrobtepractice,
classical approackl=N, that is, we have the same number ofne should consider “the measure” as the electpaitemade
sensors and sources). In order to estimate thenatigources py the recording electrode and the reference eldetr
It Is necessary to calculate the following linearrherefore, it is necessary to consider the wayntieasures
transformation: are performedj.e. the recording set-up employed (CRM,

y =Wx = WAs ) ARM or BLM). In particular, \_Nhen a cephalic r_efe(xenis
used, the reference electrode is not exempt freninffuence

wherey is a vector oN estimated sources aid is theNxM  of the same sources as the other measuring elestrod
linear transformation that allows separating thgedisignals We propose here to formalize the source separatioblem

in their independent  components. Theoretically, hSuG, 5" o zero-potential reference context for cépha
trans_formatloriw should be the (left-) inverse of the MIiXiNg aference. The newly derived models will allow areno
matrix A, when sources are perfectly recovered. HOWeVEfiecise definition of the different montages and toéir

obtaining the exact inverse of the mixing mate is influence on the performances of the BSS algorithms
impossible to achieve, see for example CichockiOR0 P g

Thus, source separation algorithms are focusedhding a 3.1 Common Reference Montage (CRM)

matrix W such as3=WA be a permuted and scaled dia‘gonaﬂlowadays, the EEG recordings are obtained from sicba

matrix (one non-null value by line and cqu_njn), ulhi CRM, which is used further-on to derive the othemitages
implies that the sources are recovered, exceptiag brder such as ARM and BLM. Consider a simple ideal modé

and their amplitude. N zero-referenced sources (i=1..N), N zero-referenced
measuring electrodes and one so-called reference electrode



R=xn+1 (zero-referenced itself). TH¢+1 noisy mixed signals As our goal is to estimate tH&, we must write the newly

are modelled, in a source separation framework, as: obtained average-referenced measures as a mixfutkeo
~ original sourcess. Writing (13) in terms of its hypothetical
X=As+n (6) zero-referenced real potentials and noise vectershtain:

with A a (N+1xN) full-column rank mixing matrix. N N

, o X .:)g—in.+n.—iZn.
On the other hand, in a realistic noisy set-up, dbmmon- Aol N4 ' N4 (14)
referenced observationsx,, (EEG signals) can be ™
represented as:

=X, th

>(Avg,i Avg,i Avgii

- Now, is possible to write new BSS model for the rage
Xy =X ~R,R=X,, i =[12,...,N] (7) reference montage as follows:
where X, is a vector which contains thieth cephalic- Xpg = Ang B3+, (15)

referenced electrodex is a hypothetical zero-referencedyith
vector containing the noisy records from thth recording

= . 1%
electrode, R is the reference vector associated to the Ay, = (ai,j _awi)_ﬁ D‘Z(a,,j ‘am;) (16)
cephalic reference electrode,, . To separate the informative =
measures and the noise, equation (6) can be remwe: i=j=[2..,N]

Koy =% =X + (N = Nyy) = Xg, + 1, (8) However, theA,,, matrix (16) is singular, so any BSS

algorithm fails in finding all the sources. Fromogimer point
In a source separation framework, the model for ib&@ of view, the singularity of the mixing matrix enfitens the
common reference montage becomes: fact that by removing the mean signal we lose some
©) information. In order to avoid this lost of infortien one can

X. =A_[3+n : :
R R R add the average reference as an extra virtual Isignthe

with the elements of th&g matrix being average reference montage. Consequently, one daman
o augmented ARM havindN+1 measures. For purposes of
Az = (8, —ay..,) where,i,j = [12....\N] (10) following the same logic in the equations we defing last

Starting from X, , the source separation algorithm will T1easure as Ruq» thus we have:

compute aNIxN) non-singular separation matridVg, which ~ _ 1 + 1
can be used to obtain the transfer maGiEWrAg and to Xpvgner = Xy WZ:‘Xj Ny WZ”‘ (17)
compute thdS for the CRM (4) and (5). ~ . +nJ

. . . . XAvg,N+l ‘Avg,N+1 Avg,N+1
A. Estimating the Noise in CRM
In matrix form, the augmented measures vedty can be

obtained as noisy mixture of the original sourcefotlows:
(11) -)‘(',Avg = A,Avg |3+ r-]'Avg (18)

N . . : with A',,, a full-column matrix. The elements of rows N..
Considering that all noises are independent zerannvehite A9

Gaussian of standard deviationwe can compute the power Of A, are:
of n.; as follows

As the noise affects the reference electrode aotthers, it
will be present in the common referenced signalsin (8):

n,, =N —n

R,i i N+L

N

o =(a e )~ _ 19
2 =20 (12) aAVQ»J_(a‘:i aN+li) N%(ai,j aN+l.j) (19)

o =07 +oy,
and those of the last roi+1:

that is, the noise affecting the CRM measures isetvas

powerful as for the ideal zero-referenced montage. , 1 &
Consequently, even if all sources are found by ®ur Qg ., :‘NDZ(%,J- ‘amj)
separation, the performance ind&should be worse. =

3.2 Average Reference Montage (ARM) i=[12,...N]

As mentioned above, the Average Reference Montage Tihus, the obtained mixture is over determined dadsecal
obtained from the previously described CRM. MordSS algorithms have to be slightly modified to takéo
precisely, the mixed signals of the ARM can bed=tifrom account this problem. The most currently employelition

the CRM as follows: is to evaluate the number of sources in the mix{ureour
L caseN sources folN+1 measures) by using some criterion

Xpgi = Xes = Rugr Rug :_Zim ,i=[12..N] (13) based on the eigen-values of the covariance mafrithe
N <= measured signals (Akaike Information Criterion AIC,

Minimum Description Length MDL or Bayesian Inforriat



Criterion BIC, see Cichocki 2002 for details). hist paper, with the elements of rows IN.of A  are:
the effectiveness of source number evaluation bgseh

criteria is not tested, as again, the objectivi® isvaluate the Bigng, = (am. —aw) (25)
different montages and not source separation msthod
Therefore, we have imposed the number of sourced towhere, i,j =[12,..N]. The system being full-ranked, BSS

(nevertheless, in our simulated set-up, MDL systemally algorithms provide a separation matrW/ ,,, and the
gave the same result). Consequently, SOBI-RO ret@n separability index is calculated from tHéxN transfer
separation matrixV’a,q (NXN+1) and the complete transfer matrix:

matrix G'ag@W'adA'ag IS square, and therefore the

separability index can again be computed accortiing4) G Long = WiangA Long (26)
and (5).

A. Estimating the Noise in ARM

by equations (6) and (7).

A. Estimating the Noise in BLM
In the same way we did for CRM if we want to penfoa

noise analysis, from (23) we have: According to (23), the noise affecting longitudimakasures

is:
1 N
nA\/g.i = ni _Nzni nLong,i = ni - ni+1 (27)
j=1
, 1 (20) If we compare (27) with (11) we can see that theysimilar,
Mavgnag = My _ﬁzni thus the noise power in longitudinal montage caolitained
i by (12).
From (20), considering that all noise presentedxjp are 4. SIMULATION RESULTS

zero-mean white Gaussian independent noises oflatan

L \ To validate the previous discussion, we simulatedr f
deviationg, we can compute the power of ; as follows:

different noisy montages: an “ideal” zero-referahagontage
ZRM (3), with a mixing matrix l+1xN), the “realistic”

, N-1 i
T :E((nAvg,i )2): N o’ (21) common cephalic reference montage CRM (10) and the
N+1 derived augmented average ARM (18) and bipolar BR¥)
Thgn :E((n'Avg,N)z):Ta2 montages.

i A. Simulated Sources
whereE(() is the expected value operator.

A set of N=6 signals with different frequencies and shapes

3.3 Bipolar Longitudinal Montage (BLM) with a duration time of 5 s and a sampling rat@%8 Hz was
created to be the original zero-referenced souigeats
(brain frequency range signals and eye artefakts)rder to
obtain the EEG recordings in our simulation thegiogl
T Xy (22) simulated sources were mixed up by using 1000 mando

(N+1xN) mixing matrices. For each mixture, 5 levels of
where i =[12,..N -1], j = [23,..N]. Considering th&N CRM  Gaussian noise were added (SNR = 0, 5, 10, 15 ardB2
measures, 0n|yf\|_l BLM independent measures can beThen, with the obtainedll+1 mixed Signals (EEG simulated
obtained, so the system will be under-determined the Potentials) we proceeded to implement the fouredft
BSS solution will be incomplete. To simplify thetaion, Montages mentioned before in previous sections (ZRM
we consider here thH-1 measures as being obtained froncRM, ARM, BLM see Fig. 1. and Fig. 2.).
(22) withj=i+1 . To avoid the indetermination,N" measure
can be introduced in the model as,, =X

R,N

common reference measure (another solution, witlamyt A A WNWWWMMWWM

physiological signification though, would be to sdothe loop AANARANASAN AR AARAAS

by considering X, = X\ —X.,).- Equation (22) can be s W

written in terms of its hypothetical zero-referethqgmtentials T i

and noise vectors as follows: Mg A hman AN

0 o5 1 15 2 25 3 35 4 45 5 0 05 1 18 2 28 a3 35 4 45 &

As ARM, bipolar montages can be obtained also ftom
CRM EEG recordings as follows:

i e a a) b) PR IETRTE NPT Ty A NPT YRRy
.C. b i Lokl e e kv L e}

l

x

Longi — ;('R,i - iR,i+1 =X X, TN Ny, (23)

Fig. 1. a) Original Simulated Brain Sources. b) gyomixture using a
N+1xN mixing matrix (ZRM).

Thus, it is possible to write a new BSS model fe BLM as g goyrce Separation
follows:

x

LongN — Xrn = Xy T Xy Ny =Ny,

As mentioned, the robust second order blind infaiona
tong = A Long B+ N g (24) algorithm (SOBI-RO) was applied to perform source
separation on the EEG signals obtained for themblsited

X



EEG montages. In order to evaluate the performémdbe
obtained separated signals we computed the ewatuatpresented the best performances, but this ideatlitiom

criterion mentioned in previous sections (Sepaitghiihdex,

IS) Table I.

simulations for the 5 different SNR values. Accaglto the
noise evaluation from (12) and (21), the separat@sults

should be different.

Table I. Performance Evaluation IS

Indeed, as expected,

the ideal Zero-Reference Igenta

cannot be obtained in practice and should be seseana

presents the average over 1000 differeasymptotic best possible value.

Among the possible realistic montages, the ARM iolet
the bestS indices, as the noise that affects it is smahant
for CRM and for BLM. Moreover, as seen in (20), whbe
number of source®l increases, the average montage noise
tends towards the ZRM noise. The other two claksica

EEG Noise Interval in Signal to Noise Ratio (SNR, dB) montages (CRM and BLM) are noisier and therefore th
Montages 0 5 10 15 20 obtained results are less accurate. Even if thiglosion is
not visually apparent for the simulated examplessented
ZRM 1022 | .0546 | .0288 | .0170 | .0125 figure 2, real EEG implementations seem to confirnAs
CRM 1390 | 0042 1 0620 I oa0a | o273 seen flgu_re 3, the source separation solutionsdéferent
(not only in order and amplitude) for the three tages.
ARM 1183 | .0807 | .0531 | .0346 | .0234 . . . .
Visually identifiable artefacts are simultaneouphgsent on
BLM .1387 .0948 .0622 .0404 .0274  several estimated sources for CRM and BLM based
a) D) Haromsusnpsimpspetrensply  C)
b o AL
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Fig. 2. a) Simulated
CRM, SNR =10 dB.
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Fig. 3. a) CRM, EEG real signals. b) ARM, implermezhfrom CRM EEG real signals. ¢) BLM, from CRM EEgal signals. d)
Source Separation for CRM. e) Source SeparatioARM. f) Source Separation for BLM.



separation (figures 3.d and 3.f), but correctlyssafed for using second order statistics onliyledical Engineering

the ARM (figure 3.e). Moreover, the number of estied & Physics vol. 28, Issue 8, pp. 780-794.
sources (applying the MDL criterion) is differentcarding R. Romo-Vazquez, R. Ranta, V. Louis-Dorr and D. Maq
to the employed montage. Although not investigatede, (2007), “Ocular artifacts removal in scalp EEG:

this observation supports the conclusion that sourc  Combining ICA and wavelet denoising”, published in
separation solutions are highly dependent on thetage. 5th International Conference on Physics in Signal and

Consequently, whenever source separation is nded&EG Image ProcessindMulhouse, France
processing, the role of the montage should be figaed. S Hu, M. Stead, and G. Worrell (2007), “Automatic

According to our first results, the ARM should bevipeged, identification and removal of scalp reference sidoa
but this conclusion needs a more detailed and geginical intracranial EEGs based on independent component
evaluation on real EEG signals. analysis” IEEE Transactions On Biomedical

6. CONCLUSIONS AND FURTHER WORK Englneerlng vol. 54, no. 9, pp. 1560-1572

The main goal of this communication is to analyse most A Cichoki and S. Amari (2002), "Adaptive Signakaimage

employed EEG montages from a source separatiort pin Pr_ocessing Learning Algorithms and Applicationkhn
view. We have shown that, in noisy conditions, thest Wiley & and Sonshap. 4, page.161

results are obtained by using the Average Refetencp. Belouchrani, K. Abed-Meriam, J. Cardoso, and E.
Montage (ARM), who tends asymptotically to the best Moulines (1997), “A blind source separation techieiq
possible solution (Zero Referenced ZRM). This cosicin, using second order statistict£EE Transactions on
although confirmed on real EEG examples, needs eemo  Signal Processingvol. 45, No. 2, pp. 434-444
precise and detailed validation on real 10-20 aegusignals,

as well as on high-density EEGs. A. Belouchrani, and A. Cichocki (2000), “Robust teming
procedure in blind source separation cont&t€ctronics
An interesting point, currently under analysis,ti® non- Letters vol. 36, No. 24, pp. 2050-2053

cephalic reference acquisition system analysiss @pproach .
will be presented and compared to the cephalicrding J. Kierkels, G. van Boxtel, and L. Vogten (20063, rhodel-

system in a future work. based objec_tive eyaluation of eye movement coomecti
of ocular artifacts in the EEG: a comparison of
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