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Abstract:  Blind source separation (BSS) is a relatively recent technique, more and more applied in 
electroencephalographic (EEG) signal processing. Still, the classical mixing model of the BSS does not 
take into account the real recording set-up. In fact, a  major problem in electrophysiological recording 
systems (e.g. ECG, EEG, EMG) is to find a region in the human body whose bio-potential activity can be 
considered as neutral as possible i.e., a quasi-inactive reference place. Nowadays, it is well known that it 
is impossible to find a “zero-potential” site on the human body. In particular, the most common way of 
performing EEG recordings is by using as a common reference an electrode placed somewhere on the 
head. Starting from this Common Reference Montage (CRM), several other montages can be constructed 
for interpretation or processing purposes. Regardless of the chosen montage, the reference electrode 
intervenes in the mixing model of the BSS. The objective of this work is to analyse the influence of the 
montage on the mixing matrix and the quality of the BSS solution. This communication proposes to 
formalize the source separation problem in a non zero-potential reference context and shows that the 
Average Reference Montage (ARM), augmented by a virtual “average measure”, leads to better source 
separation results (separability index IS). This conclusion is supported by simulated EEGs using the most 
common montages i.e. Common Reference Montage, Average Reference Montage and Bipolar-
Longitudinal Montage, as well as by real EEG examples. 
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1. INTRODUCTION 

An important issue for the actual standard systems for bio-
potentials recording (electrophysiological activity measuring 
systems as ECG, EEG, EMG) is to find a region in the human 
body whose bio-potential activity could be considered as 
neutral as possible. That is desirable because the electrical 
activity at that place affects measurements at all other active 
electrode sites, see Dien (1998) and Yao (2001).  

In Electroencephalography (EEG), one of the most common 
recording systems is the 10-20 system of electrode 
placement. EEG recordings are performed by using 
electrodes placed at standardized locations on the head. These 
measuring electrodes are referenced either to cephalic or 
non-cephalic reference electrodes. This paper focuses on the 
former, i.e. the most frequently employed cephalic reference. 
The anatomical landmarks most frequently used as cephalic 
references sites are the nasion, the inion, over the occipital 
area, the preauricular points, … see Schachter (2006). All this 
reference sites contribute with some non-desirable effects on 
the recordings.  

The previously described recoding set-up is known as 
Common Reference Montage (CRM, cephalic) and it is the 
basis montage in modern acquisition systems. Nevertheless, 
to ease interpretation and processing in the absence of a zero-
potential reference, several multiple combinations of 
differential measures have been derived from the CRM by 
some simple manipulations (see section 3). The most 
common of these montages are the Average Reference 

Montage (ARM) and the Bipolar-Longitudinal Montage 
(BLM), see Fisch and Spehlmann (1999).  

Regardless of the employed montage, all measured EEG 
signals can be seen as a result of an unknown mixture of 
several unknown cortical sources, extra-cortical artefacts and 
noise. A relatively recent signal processing technique, the 
Blind Source Separation (BSS), can be used to separate these 
mixed measured signals in “independent” sources, which can 
be further-on used either for artefact elimination or for brain 
activity evaluation, see Croft (2000), Delorme (2001), James 
(2003), Ting (2006), Romo (2007). A brief description of the 
general BSS model is presented section 2.  

The classical BSS model supposes ideally measured signals, 
i.e. zero-referenced, while real electrophysiological 
recordings have a non-null reference. A solution proposed by 
Hu et al (2007) consists in identifying the reference signal by 
constraining the BSS model to particular mixing system 
which implies that the non-zero reference signal is 
independent from all other measures. In the recording set-up 
used by the authors (intra-cranial measures), this approach is 
based on the hypothesis that the reference electrode placed on 
the scalp is not influenced by the intracranial measures.  

If for intra-cranial measures this hypothesis (although not 
proven) can be employed, in a cephalic referenced scalp EEG 
(CRM) context it cannot hold, as the reference electrode itself 
records a noisy mixture of cerebral and extra-cerebral 
sources. Therefore it is important to evaluate the quality of 
the obtained separation function of the input signals, i.e. from 
the employed montage. One could object that all the different 



     

montages can be obtained by linear transformation from the 
CRM (and therefore the source separation solution should be 
the same). Still, the noise affects them differently, and the 
solutions are not identical, as it is shown in section 3 and 
illustrated by simulation and by real examples in section 4. 

The employed evaluation criterion is the classical 
Separability Index (IS), see Cichocki (2002). In particular, it 
is proven that the ARM, augmented by a “virtual measure” 
consisting in the actual average of the CRM signals, performs 
better than CRM or BLM and that it tends asymptotically 
towards an ideal zero-referenced montage (ZRM), and 
therefore should be used when source separation algorithms 
are applied.   

2. SOURCE SEPARATION 

The final objective of blind source separation is to recover all 
the independent sources from the observed EEG recordings. 
In general, these observations are modelled as a linear 
mixture of independent sources, both the mixing system and 
the sources being unknown. 

Several Blind Source Separation (BSS) algorithms have been 
proposed and analysed during the last decades. However, it is 
not the objective of this paper to explore the effectiveness of 
these different methods. We have therefore chosen one of the 
most robust algorithms for temporally auto-correlated 
sources, namely SOBI-RO (Robust Second Order Blind 
Identification), introduced by A. Belouchrani et al (1997, 
2000). This algorithm was already successfully used for EEG 
separation, for example by Kierkels (2006) and Romero 
(2008).  

2.1 Classical BSS Model  

The classical linear mixing model can be written, at each 
instant k, as: 

                                            Asx =                                       (1) 

where x is a vector of M observed signals (EEG electrodes),  
A is the unknown full-column rank mixing matrix (M×N) and 
s is the vector of N  independent unknown sources (in the 
classical approach M=N, that is, we have the same number of 
sensors and sources). In order to estimate the original sources 
it is necessary to calculate the following linear 
transformation: 

                                      WAsWxy ==                              (2) 

where y is a vector of N estimated sources and W is the N×M 
linear transformation that allows separating the mixed signals 
in their independent components. Theoretically, such 
transformation W should be the (left-) inverse of the mixing 
matrix A, when sources are perfectly recovered. However, 
obtaining the exact inverse of the mixing matrix A is 
impossible to achieve, see for example Cichocki (2002). 
Thus, source separation algorithms are focused in finding a 
matrix W such as G=WA  be a permuted and scaled diagonal 
matrix (one non-null value by line and column), which 
implies that the sources are recovered, excepting their order 
and their amplitude.  

A more realistic model considers noisy measures and it can 
be written as follows: 

                                           nAsx +=~                              (3) 

where x~  is the noisy measure vector (M×1), A is the 
unknown full-column rank mixing matrix (M×N) , s is the 
sources vector (N×1)  and n  is a vector (M×1) of 
independent Gaussian noises. By BSS, one will find a 
separation matrix W and noisy source estimatesy~ . 

2.2  Performance Evaluation 

The classical performance evaluation for source separation 
algorithms is based on the transfer matrix G between original 
sources s and estimated ones y~ (G=WA).  

The separability index IS is a distance measure between G 
and a diagonal permuted matrix and is computed by 
performing the following manipulations: the first step is to 
normalize the rows gi of the matrix G by dividing each 
element by the maximum absolute value of the row: 
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From the normalized matrix G’ , the separability index is 
computed as follows: 
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From (5) we can see that for a perfect separation, the IS index 
is zero. 

3. SOURCE SEPARATION ON REFERENCED EEG 
RECORDINGS 

The previously proposed model considers sources s and 
sensors x as measured relatively to an ideal null reference. 
However, in clinical implementation, it is not possible to 
measure relatively to a “zero-potential” electrode. In practice, 
one should consider “the measure” as the electrode pair made 
by the recording electrode and the reference electrode. 
Therefore, it is necessary to consider the way the measures 
are performed, i.e., the recording set-up employed (CRM, 
ARM or BLM). In particular, when a cephalic reference is 
used, the reference electrode is not exempt from the influence 
of the same sources as the other measuring electrodes. 

We propose here to formalize the source separation problem 
in a non zero-potential reference context for cephalic 
reference. The newly derived models will allow a more 
precise definition of the different montages and of their 
influence on the performances of the BSS algorithms.  

3.1  Common Reference Montage (CRM) 

Nowadays, the EEG recordings are obtained from a basic 
CRM, which is used further-on to derive the other montages 
such as ARM and BLM. Consider a simple ideal model with 
N zero-referenced sources si (i=1..N), N zero-referenced 
measuring electrodes xi and one so-called reference electrode 



     

R=xN+1 (zero-referenced itself). The N+1 noisy mixed signals 
are modelled, in a source separation framework, as: 

                                  nAsx +=~                          (6) 

with A a (N+1×N) full-column rank mixing matrix. 

On the other hand, in a realistic noisy set-up, the common-
referenced observations iRx ,

~  (EEG signals) can be 

represented as: 

                   Rxx iiR

~~~
, −= , 1

~~
+= NxR , ],...,2,1[ Ni =             (7) 

where iRx ,
~  is a vector which contains the i-th cephalic-

referenced electrode, ix~  is a hypothetical zero-referenced 

vector containing the noisy records from the i-th recording 

electrode, R
~

 is the reference vector associated to the 
cephalic reference electrode 1

~
+Nx . To separate the informative 

measures and the noise, equation (6) can be rewritten as: 

                  ( ) iRiRNiNiiR nxnnxxx ,,11,
~ +=−+−= ++               (8) 

In a source separation framework, the model for the real 
common reference montage becomes: 

                                      RRR nsAx +⋅=~                               (9) 

with the elements of the AR matrix being 

            ( )jNjiR aaa
ji ,1,, +−=  where, ],...,2,1[, Nji =             (10) 

Starting from iRx ,
~ , the source separation algorithm will 

compute a (N×N) non-singular separation matrix  WR, which 
can be used to obtain the transfer matrix GR=WRAR and to 
compute the IS for the CRM (4) and (5).  

 A. Estimating the Noise in CRM 

As the noise affects the reference electrode as the others, it 
will be present in the common referenced signals iRx ,

~  in (8):  

                                     1, +−= NiiR nnn                                 (11) 

Considering that all noises are independent zero-mean white 
Gaussian of standard deviation σ, we can compute the power 
of iRn ,  as follows 

                                2
1

22
++= Nir σσσ =2σ2                           (12) 

that is, the noise affecting the CRM measures is twice as 
powerful as for the ideal zero-referenced montage. 
Consequently, even if all sources are found by source 
separation, the performance index IS should be worse. 

3.2  Average Reference Montage (ARM) 

As mentioned above, the Average Reference Montage is 
obtained from the previously described CRM. More 
precisely, the mixed signals of the ARM can be derived from 
the CRM as follows: 

      avgiRiAvg Rxx
~~~
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As our goal is to estimate the IS, we must write the newly 
obtained average-referenced measures as a mixture of the 
original sources s. Writing (13) in terms of its hypothetical 
zero-referenced real potentials and noise vectors we obtain: 
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Now, is possible to write new BSS model for the average 
reference montage as follows: 

                                 AvgAvgAvg nsAx +⋅=~                            (15) 

with 
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],...,2,1[ Nji ==  

However, the AAvg matrix (16) is singular, so any BSS 
algorithm fails in finding all the sources. From another point 
of view, the singularity of the mixing matrix enlightens the 
fact that by removing the mean signal we lose some 
information. In order to avoid this lost of information one can 
add the average reference as an extra virtual signal in the 
average reference montage. Consequently, one can obtain an 
augmented ARM having N+1 measures. For purposes of 
following the same logic in the equations we define our last 

measure as avgR
~− , thus we have:  
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In matrix form, the augmented measures vector Avgx′~  can be 

obtained as noisy mixture of the original sources as follows: 

                                AvgAvgAvg nsAx ′+⋅′=′~                             (18) 

with AvgA ′ , a full-column matrix. The elements of rows 1…N 

of AvgA ′ are: 
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and those of the last row N+1: 
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Thus, the obtained mixture is over determined and classical 
BSS algorithms have to be slightly modified to take into 
account this problem. The most currently employed solution 
is to evaluate the number of sources in the mixture (in our 
case N sources for N+1 measures) by using some criterion 
based on the eigen-values of the covariance matrix of the 
measured signals (Akaike Information Criterion AIC, 
Minimum Description Length MDL or Bayesian Information 



     

Criterion BIC, see Cichocki 2002 for details). In this paper, 
the effectiveness of source number evaluation by these 
criteria is not tested, as again, the objective is to evaluate the 
different montages and not source separation methods. 
Therefore, we have imposed the number of sources to N 
(nevertheless, in our simulated set-up, MDL systematically 
gave the same result). Consequently, SOBI-RO returns a 
separation matrix W′Avg (N×N+1) and the complete transfer 
matrix G′Avg=W′AvgA′Avg is square, and therefore the 
separability index can again be computed according to (4) 
and (5).  

A. Estimating the Noise in ARM 

In the same way we did for CRM if we want to perform a 
noise analysis, from (23) we have: 
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From (20), considering that all noise presented in Avgx′  are 

zero-mean white Gaussian independent noises of standard 
deviation σ, we can compute the power of iAvgn ,

′  as follows: 
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where ( )⋅Ε  is the expected value operator. 

3.3  Bipolar Longitudinal Montage (BLM) 

As ARM, bipolar montages can be obtained also from the 
CRM EEG recordings as follows: 

                                  jRiRiLong xxx ,,,
~~~ −=                         (22) 

where ],...3,2[],1,...2,1[ NjNi =−= . Considering the N CRM 

measures, only N-1 BLM independent measures can be 
obtained, so the system will be under-determined and the 
BSS solution will be incomplete. To simplify the notation, 
we consider here the N-1 measures as being obtained from 
(22) with j=i+1 . To avoid the indetermination, a Nth measure 
can be introduced in the model as NRNLong xx ,,

~~ =  i.e. a 

common reference measure (another solution, without any 
physiological signification though, would be to close the loop 
by considering 1,,,

~~~
RNRNLong xxx −= ). Equation (22) can be 

written in terms of its hypothetical zero-referenced potentials 
and noise vectors as follows: 
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Thus, it is possible to write a new BSS model for the BLM as 
follows: 

                                LongLongLong nsAx +⋅=~                           (24) 

with the elements of rows 1…N of LongA are: 

                                ( )jijiLong aaa
ji ,1,, +−=                             (25) 

where, ],...2,1[, Nji = . The system being full-ranked, BSS 

algorithms provide a separation matrix WLong and the 
separability index is calculated from the N×N  transfer 
matrix: 

                                    LongLongLong AWG =                           (26)                       

by equations (6) and (7). 

A. Estimating the Noise in BLM 

According to (23), the noise affecting longitudinal measures 
is: 

                                      1, +−= iiiLong nnn                              (27)  

If we compare (27) with (11) we can see that they are similar, 
thus the noise power in longitudinal montage can be obtained 
by (12). 

4. SIMULATION RESULTS 

To validate the previous discussion, we simulated four 
different noisy montages: an “ideal” zero-referenced montage 
ZRM (3), with a mixing matrix (N+1×N), the “realistic” 
common cephalic reference montage CRM (10) and the 
derived augmented average ARM (18) and bipolar BLM (24) 
montages.  

A. Simulated Sources 

A set of N=6 signals with different frequencies and shapes 
with a duration time of 5 s and a sampling rate of 256 Hz was 
created to be the original zero-referenced source signals 
(brain frequency range signals and eye artefacts). In order to 
obtain the EEG recordings in our simulation the original 
simulated sources were mixed up by using 1000 random 
(N+1×N) mixing matrices. For each mixture, 5 levels of 
Gaussian noise were added (SNR = 0, 5, 10, 15 and 20 dB). 
Then, with the obtained N+1 mixed signals (EEG simulated 
potentials) we proceeded to implement the four different 
montages mentioned before in previous sections (ZRM, 
CRM, ARM, BLM see Fig. 1. and Fig. 2.). 

 
Fig. 1. a) Original Simulated Brain Sources. b) Noisy mixture using a 
N+1×N mixing matrix (ZRM). 

 B. Source Separation 

As mentioned, the robust second order blind information 
algorithm (SOBI-RO) was applied to perform source 
separation on the EEG signals obtained for the 4 simulated 

a) b) 



     

EEG montages. In order to evaluate the performance in the 
obtained separated signals we computed the evaluation 
criterion mentioned in previous sections (Separability Index, 
IS) Table I. presents the average over 1000 different 
simulations for the 5 different SNR values. According to the 
noise evaluation from (12) and (21), the separation results 
should be different. 

Table I. Performance Evaluation IS. 

Noise Interval in Signal to Noise Ratio (SNR, dB) EEG 

Montages 0 5 10 15 20 

ZRM .1022 .0546 .0288 .0170 .0125 

CRM .1390 .0944 .0620 .0404 .0273 

ARM .1183 .0807 .0531 .0346 .0234 

BLM .1387 .0948 .0622 .0404 .0274 

 

Indeed, as expected, the ideal Zero-Reference Montage 
presented the best performances, but this ideal condition 
cannot be obtained in practice and should be seen as an 
asymptotic best possible value.  

Among the possible realistic montages, the ARM obtained 
the best IS indices, as the noise that affects it is smaller than 
for CRM and for BLM. Moreover, as seen in (20), when the 
number of sources N increases, the average montage noise 
tends towards the ZRM noise. The other two classical 
montages (CRM and BLM) are noisier and therefore the 
obtained results are less accurate. Even if this conclusion is 
not visually apparent for the simulated examples presented 
figure 2, real EEG implementations seem to confirm it. As 
seen figure 3, the source separation solutions are different 
(not only in order and amplitude) for the three montages.  

Visually identifiable artefacts are simultaneously present on 
several estimated sources for CRM and BLM based

 

 

 

 

 

 

 

 

 

Fig. 2. a) Simulated noisy (white Gaussian) CRM. b) Simulated noisy ARM. c) Simulated noisy BLM. d) Source Separation for 
CRM, SNR = 10 dB. e) Source Separation for ARM, SNR = 10 dB. f) Source Separation for BLM, SNR = 10 dB. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. a) CRM, EEG real signals. b) ARM, implemented from CRM EEG real signals. c) BLM, from CRM EEG real signals. d) 
Source Separation for CRM. e) Source Separation for ARM. f) Source Separation for BLM. 
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separation (figures 3.d and 3.f), but correctly separated for 
the ARM (figure 3.e). Moreover, the number of estimated 
sources (applying the MDL criterion) is different according 
to the employed montage. Although not investigated here, 
this observation supports the conclusion that source 
separation solutions are highly dependent on the montage. 

Consequently, whenever source separation is needed for EEG 
processing, the role of the montage should be investigated. 
According to our first results, the ARM should be privileged, 
but this conclusion needs a more detailed and precise clinical 
evaluation on real EEG signals. 

6. CONCLUSIONS AND FURTHER WORK 

The main goal of this communication is to analyse the most 
employed EEG montages from a source separation point of 
view. We have shown that, in noisy conditions, the best 
results are obtained by using the Average Referenced 
Montage (ARM), who tends asymptotically to the best 
possible solution (Zero Referenced ZRM). This conclusion, 
although confirmed on real EEG examples, needs a more 
precise and detailed validation on real 10-20 acquired signals, 
as well as on high-density EEGs.  

An interesting point, currently under analysis, is the non-
cephalic reference acquisition system analysis. This approach 
will be presented and compared to the cephalic recording 
system in a future work.   
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