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Abstract

Blind source separation (BSS) is a relatively recent technique, more and

more applied in electroencephalographic (EEG) signal processing. Still, the

classical mixing model of the BSS does not take into account the real record-

ing set-up. In fact, a major problem in electrophysiological recording sys-

tems (e.g. ECG, EEG, EMG) is to find a region in the human body whose

bio-potential activity can be considered as neutral as possible i.e., a quasi-

inactive reference place. Nowadays, it is well known that it is impossible to

find a “zero-potential” site on the human body. In particular, the most com-

mon way of performing EEG recordings is by using as a common reference

an electrode placed somewhere on the head. Starting from this Common

Reference Montage (CRM), several other montages can be constructed to

obtain alternative interpretation or processing solutions. Regardless of the

chosen montage, the reference electrode intervenes in the mixing model of

the BSS. The objective of this work is to analyse the influence of the mon-

tage on the mixing matrix and the quality of the BSS solution. This paper

proposes to formalize the source separation problem in a non zero-potential
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reference context and shows that the Average Reference Montage (ARM),

augmented by a virtual “average measure”, leads to better source separation

results (separability index IS ). This conclusion is supported by simulated

EEGs using the most common montages i.e., Common Reference Montage,

Average Reference Montage and Bipolar-Longitudinal Montage, as well as by

real EEG examples.
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1. Introduction

An important issue for the actual standard systems for bio-potentials

recording (electrophysiological activity measuring systems as Electrocardio-

gram (ECG), Electroencephalogram (EEG), Electromyogram (EMG)) is to

find a region in the human body whose bio-potential activity could be consid-

ered as neutral as possible. That is desirable because the electrical activity

at that place affects measurements at all other active electrode sites, see [1]

and [2].

In EEG, one of the most common recording systems is the 10-20 system

of electrode placement. EEG recordings are performed by using electrodes

placed at standardized locations on the head. These measuring electrodes are

referenced either to cephalic or non-cephalic reference electrodes. This paper

focuses on the most frequently employed cephalic reference. The anatomical

landmarks most frequently used as cephalic references sites are the nasion,

the inion, over the occipital area, the pre-auricular points, etc [3]. All these
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reference sites contribute with some non-desirable effects and perturbations

on the recordings.

The previously described recording set-up is known as Common Reference

Montage (CRM, cephalic) and it is the basis montage in acquisition systems.

Nevertheless, to ease interpretation and processing in the absence of a zero-

potential reference, several multiple combinations of differential measures

have been derived from the CRM by some simple manipulations. The most

common of these montages are the Average Reference Montage (ARM) and

the Bipolar-Longitudinal Montage (BLM), see [4].

Regardless of the employed montage, all measured EEG signals can be

seen as a result of an unknown mixture of several unknown cortical sources,

extra-cortical artefacts and noise. A relatively recent signal processing tech-

nique, the Blind Source Separation (BSS), can be used to separate these

mixed measured signals in “independent” sources, which can be further-on

used, in a pre-processing context, either for artefact elimination or for brain

activity evaluation, [5–9]. The classical BSS model supposes ideally measured

signals, i.e., zero-referenced, while real electrophysiological recordings have a

non-null reference. Most of the EEG literature concerning BSS methods does

not take into account this problem. A solution proposed by [10] consists in

identifying the reference signal by constraining the BSS model to particular

mixing system which implies that the non-zero reference signal is indepen-

dent from all other measures. In the recording set-up used by the authors

(intra-cranial measures), this approach is based on the hypothesis that the

reference electrode placed on the scalp is not influenced by the intracranial

measures.
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If for intra-cranial measures this hypothesis (although not proven) can

be employed, in a cephalic referenced scalp EEG (CRM) context it cannot

hold, as the reference electrode itself records a noisy mixture of cerebral and

extra-cerebral sources. Therefore it is important to evaluate the quality of

the obtained separation function of the measured signals, i.e., from the em-

ployed montage. One could object that all the different montages can be

obtained by linear transformation from the CRM and therefore the source

separation solution should be the same independently of the montage. Still,

the noise affects them differently, and the solutions are not identical, as it

is shown in section 3 and illustrated by simulation and by real examples in

section 4. In particular, it is proven that the ARM, augmented by a “vir-

tual measure” consisting in the actual average of the CRM signals, performs

better than CRM or BLM and that it tends asymptotically towards an ideal

zero-referenced montage (ZRM), and therefore should be used when source

separation algorithms are applied.

In this work we propose the following approach in order to evaluate the

influence of the EEG montage in the BSS and a noisy framework. In the

second section we present an introduction to the BSS problem extended to

the noisy case which is a more realistic model, followed by a brief description

of some BSS algorithms commonly mentioned in the literature and evaluated

in this paper (SOBI-RO, SOBI, and FastICA). The employed performance

criteria are introduced in the last part of the second section, both for simu-

lated and real EEGs. In the third section we propose a model for the EEG

montages presented in this work, emphasising the influence of noise, which

is different for the different montages and thus influences the quality of the
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BSS estimations. In the fourth section we present the results along with a

discussion about the most remarkable interpretations. The paper ends with

the conclusion and perspective section.

2. Source Separation

The final objective of blind source separation is to recover all the inde-

pendent sources from the observed EEG recordings. In general, these ob-

servations are modeled as a linear mixture of independent sources, both the

mixing system and the sources being unknown.

2.1. Classical BSS Model

The classical linear mixing model can be written, at each instant k, as:

x = As. (1)

where x is a vector of M observed signals (EEG channels), A is the unknown

full-column rank mixing matrix (M×N) and s is the vector of N independent

unknown sources (we consider here only the case M ≥ N , that is, we have

more sensors than sources and the separation problem has a solution). In

order to estimate the original sources it is necessary to calculate the following

linear transformation:

y = Wx = WAs. (2)

where y is a vector of N estimated sources and W is the (N × M) linear

transformation that allows separating the mixed signals in their indepen-

dent components. Theoretically, such transformation W should be the (left

pseudo) inverse of the mixing matrix A, when sources are perfectly recov-

ered. When M > N , the obtained mixture is redundant and the number of
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sources really present in the mixture (and thus the dimensions of W) must

be estimated by the separation algorithm. The most currently employed

solution is to evaluate the number of linearly independent measures in the

mixture (which in fact is equal to the number of sources estimated by the

BSS algorithms) by using some criterion based on the eigen-values of the co-

variance matrix of the measured signals (Akaike Information Criterion AIC,

Minimum Description Length MDL or Bayesian Information Criterion BIC,

see [11] for details).

However, obtaining the exact inverse of the mixing matrix A is impossible

to achieve, see for example [11]. Thus, source separation algorithms are

focused in finding a matrix W such as G = WA be a permuted and scaled

diagonal matrix (one non-null value by line and column), which implies that

the sources are recovered, excepting their order and their amplitude.

A more realistic model considers noisy measures and it can be written as

follows:

x̃ = As + n. (3)

where x̃ is the noisy measure vector (M × 1), A is the unknown full-column

rank mixing matrix (M ×N , s is the sources vector (N ×1) and n is a vector

(M × 1) of independent Gaussian noises. By BSS, one will find a separation

matrix W and noisy source estimates ỹ.

2.2. BSS Algorithms

Several Blind Source Separation (BSS) algorithms have been proposed

and analysed during the last decades. Most of them solve the BSS prob-

lem based on different hypothesis about the nature of the sources they are
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separating. Globally, source separation algorithms lay into two categories:

those based on High Order Statistics (HOS) and those based on Second Or-

der statistics (SOS). The HOS algorithms are well known as ICA algorithms,

because the sources are assumed statistically independent. Consequently, the

basic assumption of this family of algorithms is that the measured signals are

a linear combination of unknown statistically independent zero mean sources.

Because these algorithms are based on HOS such as kurtosis, they find the

all the non-Gaussian independent sources. This is a restriction when the real

sources are Gaussian, however if we are interested in extracting a particular

source that we know is not Gaussian, this kind of algorithms are very efficient.

One of the most popular and efficient algorithms from this family is the Fas-

tICA based on the fixed-point algorithm developed by A. Hyvärinen in [12],

which is one of the fastest ICA algorithms. On the other hand, the family

of SOS algorithms makes weaker assumptions about the statistical indepen-

dence of the sources and they are capable of estimating Gaussian sources. In

the SOS framework, the absence of the strong hypothesis of independence

is compensated by other assumptions on the sources: (they must be either

auto-correlated (i.e., , non-white), non-stationary or both)Je change par: .

Two of the most representative algorithms of this family are the Second Or-

der Blind Identification (SOBI) and the Second Order Blind Identification

with Robust Orthogonalization (SOBI-RO). SOBI was first introduced by

A. Belouchrani [13] and it is an approach based on a joint diagonalization of

several time-delayed covariance matrices. SOBI-RO [14] is an improvement

of SOBI; the main differences between SOBI and SOBI-RO are the Robust

Orthogonalization included in the pre-whitening step. The main advantages
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of these algorithms are their hypothesis are a priori verified for real EEG

signals, which are band-limited and noisy.

These algorithms were already successfully applied for EEG separation,

for example by [15] and [16] thus, we have included it into our analysis.

However, it is not the objective of this of this work to explore the effectiveness

of all these different methods, but to evaluate the impact of the employed

montage. More details can be found in the cited references.

2.3. Performance Evaluation for Simulated EEG

The classical performance evaluation for source separation algorithms is

based on the transfer matrix between original sources s and estimated ones

ỹ, (G = WA).

The separability index IS is a distance measure between G and a diago-

nal permuted matrix and is computed by performing the following manipu-

lations: the first step is to normalize the rows gi of the matrix G by dividing

each element by the maximum absolute value of the row:

g
′

i =
|gi|

max |gi|
. (4)

From the normalized matrix G′, the separability index is computed as

follows:

IS =

∑N

j=1(
∑N

i=1(G
′(i, j)) − 1)

N(N − 1)
. (5)

From (5) we can see that for a perfect separation the IS index is zero.

2.4. Performance Evaluation for Real EEG

In a real BSS context, applied on EEG recordings, we don’t know the

mixing matrix and the sources. Thus the classical performance evaluation
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based on the mixing matrix coefficients and presented for the simulated signal

(equation 5) cannot be applied. However, under certain conditions, we can

have information on particular electrophysiological sources like the ECG for

example. If we are certain of the presences of this sources in the mixing

(measured EEG) the BSS algorithm should be capable to find this signal as

a source. Moreover, this source must present a great similarity with the ECG

recorded simultaneously with the EEG. A high degree of similarity, measured

for example using the cross-correlation, will indicate that the separation is

effective, and thus can be used as an alternative performance criterion.

To take into account the ECG propagation time, we introduced a variable

parameter of delay in the cross-correlation evaluation. In this way, the degree

of similarity will be evaluated by taking the correlation between the recorded

model signal (ECG) and the estimated source at the time lag of its maximum

value.

Thus let rsk,ŝk
be our performance criterion based on the correlation co-

efficient between the known source sk and the estimated source ŝk obtained

by a time lag where it achieves the maximum value as follows:

rsk,ŝk
= max

τ

cov(sk(t), ŝk(t + τ))

σsk
σŝk

, − a < τ < a. (6)

where a is a user chosen maximum time lag.

3. EEG montages models

In this section we propose to formalize the linear mixing model used in

BSS in a non zero-potential reference context for cephalic reference. The

newly derived models will allow a more precise definition of the different

montages and of their influence on the performances of the BSS algorithms.
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The previously proposed model (3) considers sensors x̃ as measured rel-

atively to an ideal null reference. However, in clinical implementation, it is

not possible to measure relatively to a “zero-potential” electrode. In prac-

tice, one should consider “the measure” as the electrode pair made by the

recording electrode and the reference electrode. Therefore, it is necessary

to consider the way the measures are performed, i.e., the recording set-up

employed (CRM, ARM or BLM). In particular, when a cephalic reference is

used, the reference electrode is not exempt from the influence of the same

sources as the other measuring electrodes.

As mentioned in the introduction, the real acquisition montage is the

CRM, which is derived from the recorded potentials of the sensors x̃. Any

other EEG montage (ARM, BLM) can be seen as a linear transformation

of the CRM. In other words, the measures from the different montages are

obtained as linear transformations of the recorded potentials x̃, so also a

noisy linear combination of sources s. This suggests that the “montage” has

no influence on the separation. However, as showed next, the noise has a

different effect for the different montages and therefore the separation results

are influenced by the chosen montage.

The following paragraphs propose to formalize the different montages in

a source separation framework.

3.1. Common Reference Montage (CRM)

Consider a simple ideal model with N zero-referenced sources sj, (j =

1...N) and M zero-referenced electrodes noisy x̃i, i = 1...M (eq. 3).

On the other hand, in a realistic noisy set-up, the common-referenced
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observations x̃CRM,i (EEG signals) can be represented as:

x̃CRM,i = x̃i − R̃, with R̃ = x̃M , i = 1...M − 1. (7)

where x̃CRM,i is a vector that contains the i -th cephalic-referenced electrode,

x̃i, is a hypothetical zero-referenced vector containing the noisy potentials

recorded by the i -th sensor, R̃ is the reference vector associated to the

cephalic reference electrode x̃M . To separate the informative measures and

the noise, equation (7) can be rewritten as:

x̃CRM,i = xi − xM + (ni − nM) = xCRM,i + nCRM,i (8)

In a source separation framework, the model for the real common reference

montage becomes:

x̃CRM = ACRMs + nCRM . (9)

with the elements of the ACRM matrix being:

aCRMi,j
= (ai,j − aM,j), i = 1...M − 1, j = 1...N (10)

The equation (9) can be rewritten in terms of the original mixtures as follows:

x̃CRM = TCRM(As + n). (11)

where TCRM ∈ ℜM−1×M , is a linear transformation applied to the real un-

known mixing matrix A. The linear transformation TCRM is given by:

TCRM =

















1 0 . . . 0 −1

0 1 . . . 0 −1
...

... . . .
... −1

0 0 . . . 1 −1

















.
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This transform implies a loss in the number of measures: if one has M

electrodes placed on the head surface, the CRM montage will only have M−1

measures. Therefore, in order to obtain a solution for the BSS problem, one

has to use more sensors than sources (M > N). All the simulation results

presented in the sequel (section 4.1) respect this condition.

Starting from x̃CRM , the source separation algorithm will compute a

(N × M − 1) non-singular separation matrix WCRM , which can be used

to obtain the transfer matrix GCRM = WCRMACRM = WCRMTCRMA and

to compute the IS for the CRM from equations (4) and (5).

Estimating the Noise in CRM. As the noise affects the reference electrode

as the others, it will be present in the common referenced signals x̃CRM,i in

(8):

nCRM,i = ni − nM (12)

Considering that all noises are independent zero-mean white Gaussian of

standard deviation σ, we can compute the power of nCRM,i as follows:

σ2
CRM = σ2

i + σ2
M = 2σ2. (13)

that is, the noise affecting the CRM measures is twice as powerful as for the

ideal zero-referenced montage. Consequently, even if all sources are found by

source separation, the performance index IS should be worse.

3.2. Augmented Average Reference Montage (AARM)

As mentioned above, the Average Reference Montage is obtained from the

previously described CRM. More precisely, the mixed signals of the ARM can
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be derived from the CRM as follows:

x̃ARM,i = x̃CRM,i − R̃avg, with R̃avg =
1

M − 1

M−1
∑

i=1

x̃CRM,i (14)

As our goal is to estimate the IS, we must write the newly obtained average-

referenced measures as a mixture of the original sources s. Writing (14) in

terms of its hypothetical zero-referenced real potentials and noise vectors,

the last zero-referenced potential x̃M disappear and we obtain:

x̃ARM,i = xi −
1

M − 1

M−1
∑

j=1

xj + ni −
1

M − 1

M−1
∑

j=1

nj = xARM,i + nARM,i. (15)

Now, it is possible to write the new BSS model for the average reference

montage as follows:

x̃ARM = AARMs + nARM . (16)

with

aARMi,j
= (ai,j − aM,j) −

1

M − 1

M−1
∑

j=1

(ai,j − aM,j), i = 1...M − 1 (17)

However, the AARM matrix (17) is singular, so any BSS algorithm fails in

finding all the sources. From another point of view, the singularity of the

mixing matrix enlightens the fact that by removing the mean signal we lose

some information. In order to avoid this lost of information one can add

the average reference as an extra virtual signal in the average reference mon-

tage. Consequently, one can obtain an augmented ARM (AARM) having M

measures by adding a last measure to the ARM montage. For purposes of

following the same logic in the equations we obtain this last measure −R̃Avg
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as a linear combination of the ideal zero-referenced potentials:

x̃AARM,M = xM −
1

M − 1

M−1
∑

j=1

xj +nM −
1

M − 1

M−1
∑

j=1

nj = xAARM,M +nAARM,M

(18)

In matrix form, the augmented measures vector x̃AARM can be obtained as

the noisy mixture of the original sources as follows:

x̃AARM = AAARMs + nAARM (19)

with AAARM , a full-column matrix. The elements of the rows 1, 2, . . . M − 1

of AAARM are:

aAARMi,j
= (ai,j − aM,j) −

1

M − 1

M−1
∑

j=1

(ai,j − aM,j). (20)

and those of the last row M :

aAARMM,j
= −

1

M − 1

M−1
∑

j=1

(ai,j − aM,j)

In a compact matrix representation, the equation (20) writes as a linear

transformation applied to ACRM or to A as follows:

x̃AARM = TAARM(ACRMs + nCRM) = TAARMTCRM(As + n) (21)

where TAARM ∈ ℜM×M−1, is the linear transformation applied to AR:

TAARM =























1 − 1
M−1

− 1
M−1

. . . − 1
M−1

− 1
M−1

1 − 1
M−1

. . .
...

...
. . . . . . − 1

M−1

− 1
M−1

. . . − 1
M−1

1 − 1
M−1

− 1
M−1

− 1
M−1

− 1
M−1

− 1
M−1
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Thus, the obtained mixture is redundant (or, equivalently, the AAARM

matrix is singular) and a step estimating the number of sources (AIC, MDL,

BIC – see above) must be included in the BSS algorithms. In this paper,

the effectiveness of source number evaluation by these criteria is not tested,

as again, the objective is to evaluate the different montages and not source

separation methods. Therefore, we have used only the MDL criterion. Con-

sequently (remember that M > M − 1 ≥ N), the BSS algorithms return

a separation matrix WAARM (N × M) and the complete transfer matrix

GAARM = WAARMAAARM = WAARMTAARMTCRMA is square (N × N),

and therefore the separability index can again be computed according to (4)

and (5).

Estimating the Noise in AARM. The noise analysis is performed using the

same approach as for the CRM. From (15) and (18), we have:

nAARM,i = ni −
1

M − 1

M−1
∑

j=1

nj, i = 1...M − 1 (22)

with

nAARM,M = nM −
1

M − 1

M−1
∑

j=1

nj

From (22), considering that all noise vectors in x̃AARM are zero-mean white

Gaussian independent noises of standard deviation σ, we can compute the

power of nAARM,i as follows:

σ2
AARM,i = E[(nAARM,i)

2] = M−2
M−1

σ2, i = 1...M − 1

σ2
AARM,M = E[(nAARM,M)2] = M

M−1
σ2

(23)

where E[·] is the expected value operator.
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3.3. Augmented Bipolar Longitudinal Montage (ABLM)

As ARM, bipolar montages can be obtained also from the CRM EEG

recordings as follows:

x̃BLM,i = x̃CRM,i − x̃CRM,j (24)

with i and j corresponding to two neighboring sensors. Considering the

(M − 1) CRM measures, only (M − 2) BLM independent measures can be

obtained, so the system will be under-determined and the BSS solution will

be incomplete. To simplify the notation and without loss of generality, we

consider here the (M−2) measures as being obtained from (24) with j = i+1.

To avoid the indetermination, a (M − 1)-th measure can be introduced

in the model to form the augmented BLM as

x̃BLM,M−1 = x̃CRM,M−1

i.e., a CRM measure (another solution, without any physiological signi-

fication though, would be to close the loop by considering x̃BLM,M−1 =

x̃CRM,M−1 − x̃CRM,1). Equation (24) can be written in terms of its hypo-

thetical zero-referenced potentials and noise vectors as follows:

x̃ABLM,i = x̃CRM,i − x̃CRM,i+1 = xi − xi+1 + ni − ni+1

x̃ABLM,M−1 = x̃CRM,M−1 = xM−1 − xM + nM−1 − nM

(25)

In matrix form, the ABLM montage writes as follows:

x̃ABLM = AABLMs + nABLM (26)

and the elements of rows i = 1...M − 1 of AABLM are:

aABLMi,j
= (ai,j − ai+1,j) (27)
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We can also rewrite equation (26) in a matrix representation as follows:

x̃ABLM = TABLM(ACRMs + nCRM) = TABLMTCRM(As + n) (28)

where TABLM ∈ ℜ(M−1)×(M−1), is the linear transformation:

TABLM =























1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 1 −1

0 0 . . . 0 1























The system being full-ranked, BSS algorithms provide a separation matrix

WABLM (N×M−1) and the separability index is calculated from the (N×N)

transfer matrix: GABLM = WABLMAABLM = WABLMTABLMTCRMA by

equations (4) and (5).

Estimating the Noise in ABLM. According to (25), the noise affecting lon-

gitudinal measures is:

nABLM,i = ni − ni+1. (29)

If we compare (29) with (12) we can see that they are similar, thus the noise

power in longitudinal montage can be obtained by (13).

4. Results

4.1. Simulated EEG

To validate the previous analysis, we simulated four different noisy mon-

tages: an “ideal” zero-referenced montage ZRM (3), with a mixing matrix

(N + 1 × N), the “realistic” common cephalic reference montage CRM (9)
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Figure 1: Simulated Signals. The ZRM montage is contaminated with Gaus-

sian white noise, SNR=10dB

and the derived augmented average AARM (19) and Augmented Bipolar

ABLM (26) montages. We tested three BSS algorithms (SOBI-RO, SOBI,

FastICA) in order to separate the mixtures from the different montages and

we have taken the IS as the performance evaluation criterion.

A set of N = 6 signals with different frequencies and shapes with a

duration time of 5 s and a sampling rate of 256 Hz was created to be the

original zero-referenced source signals (brain frequency range signals and eye

artefacts). One thousand simulated noisy EEG recordings were obtained by

mixing the sources using random (N + 1 × N) mixing matrices (uniform

distribution between -1 and 1). For each mixture, 5 levels of Gaussian noise

were added (SNR = 0, 5, 10, 15 and 20 dB). Then, with the obtained N + 1

mixed signals (ZRM EEG simulated potentials) we proceeded to implement

the three montages mentioned before (CRM, AARM, ABLM). An example

of sources and simulated EEG is presented in Fig. 1 and Fig. 2).

Table 1 presents the average over 1000 different simulations for the 5

different SNR values for each one of the three BSS algorithms. According
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Figure 2: Simulated noisy (white Gaussian) montages and estimated sources,

SNR = 10dB
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to the noise evaluation from (13) and (23), the separation results should be

different.

As expected, the ideal Zero-Reference Montage presents the best perfor-

mances, but this ideal condition cannot be obtained in practice and should

be seen as an asymptotic best possible value.

Among the possible realistic montages, the AARM has obtained the best

IS indices for all the BSS algorithms used in this test, as the noise that

affects it is smaller than for CRM and for ABLM. Moreover, as seen in

(22), when the number of sensors M increases, the average montage noise

tends towards the ZRM noise. The other two classical montages (CRM

and ABLM) are noisier and therefore the obtained results are less accurate.

Another important observation is that SOBI-RO performs better than the

other algorithms, as remarked also in [9, 17].

4.2. Real EEG Signals

The previous simulation needs to be validated on real signals. Real long-

time EEG signals (≈ 10 minutes) were recorded using 24 measuring elec-

trodes, placed on the scalp according to the international 10-20 system (Fig.

3) with a 25-th electrode, placed near the eyes in FPz, used as cephalic com-

mon reference. The recorded signals were sampled at 256 and notch filtered

at 50 Hz. The ECG was also routinely recorded in the same time. Ten dif-

ferent EEGs recorded using the classical common reference montage CRM

were selected from our data base, all with an ECG artefact visually identi-

fied by the medical experts. For each of the selected EEGs, we considered 10

windows having a duration of 20 seconds each, in order to have a sufficient

number of samples and thus a reliable source separation result. The other
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BSS Signal to Noise Ratio (SNR,dB)

Algorithms 0 5 10 15 20

Zero Reference Montage (ZRM)

SOBI-RO 0.09059 0.0511 0.02762 0.01575 0.01162

SOBI 0.14554 0.10598 0.07216 0.0452 0.02552

FastICA 0.19104 0.11332 0.0748 0.05225 0.03941

Common Reference Montage (CRM)

SOBI-RO 0.13836 0.09701 0.062 0.03693 0.02578

SOBI 0.17445 0.14395 0.11377 0.08633 0.06104

FastICA 0.22403 0.14984 0.1096 0.08085 0.06111

Average Reference Montage (AARM)

SOBI-RO 0.11873 0.08333 0.05308 0.03169 0.02209

SOBI 0.14938 0.12342 0.09754 0.07397 0.05239

FastICA 0.19223 0.12848 0.09329 0.06962 0.05253

Augmented Bipolar Longitudinal Montage (ABLM)

SOBI-RO 0.14066 0.09728 0.03694 0.03694 0.02573

SOBI 0.17438 0.14399 0.11383 0.08639 0.06117

FastICA 0.22715 0.15026 0.10853 0.08118 0.06148

Table 1: Performance Evaluation IS
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(a)

Figure 3: 10-20 System.

two montages (AARM and ABLM) were derived from the CRM by their

respective linear transformations and the three BSS algorithms were applied

to recover the sources.

To objectively evaluate the source separation quality, we have estimated

the correlation coefficient (6) between the measured known model source

sECG and the estimated source ŝECG. The time lag used to find the max-

imum correlation between the known ECG signal and the estimated ECG

source was within an interval of ±0.3906 seconds (±100 samples). The esti-

mated ECG source ŝECG was identified automatically as the source with the

highest correlation coefficient with the measured ECG sECG within the men-

tioned time interval. The identification was confirmed by visual inspection

for all sources. The results presented in Table 2 were taken as the average

correlation coefficient among the 100 EEG epochs of 20 seconds (10 windows
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EEG BSS Algorithms

Montages SOBI-RO SOBI FastICA

CRM 0.482566 0.503498 0.570881

AARM 0.477575 0.50742 0.571828

ABLM 0.477472 0.505469 0.571005

Table 2: Performance Evaluation r(sk,ŝk).

for each of the 10 long-time recordings).

The obtained results generally confirm that the Average Reference Mon-

tage has a positive influence in BSS and it leads to a better separation quality,

although the differences are less important than for the simulated signals.

An important difference between simulations and real EEGs is that, ac-

cording to the proposed criterion, the order of the algorithms changes: Fas-

tICA is globally better than SOBI and SOBI-RO, which gives finally the

worse performances. Moreover, in the SOBI-RO case, the order of the mon-

tages changes and the CRM seems to give the best separation results. This

could be explained, paradoxically, by the robust whitening implemented in

SOBI-RO. Indeed this procedure eliminates the influence of the white noise

on the estimations of the whitening matrix, if the noise is white and inde-

pendent. On the contrary, if the noise does not respect these conditions,

the robust whitening might slightly degrade the estimations of the correla-

tion matrix that intervenes in the whitening. SOBI algorithm, identical to

SOBI-RO except for the whitening, performs in this case better.

Another situation is encountered for FastICA. In fact, FastICA was the

algorithm who obtained the highest correlation coefficient for the estimated
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ECG signal. As we mentioned before the ICA algorithms favor the extraction

of non Gaussian sources. Moreover, FastICA uses a deflation procedure that

extracts first (and with better quality) the sources having the highest kurto-

sis, i.e., the peaky non-stationary signals like the ECG and the eye-blinking

artefacts.

To conclude, SOBI and FastICA algorithms obtain the best performances

using the AARM, while this montage leads to the second performance for

the SOBI-RO.

An example of source separation for the three montages (CRM, AARM

and ABLM) is presented in Fig. 4 (the figured signals are zoomed to a time

interval of 5 seconds for easier interpretation, also the estimated sources for

the three montages were re-arranged in the same order to ease the visual in-

spection). Apparently all estimations looks very similar, however remarkable

differences can be appreciated (in red) in figures 4d) and 4f). Taking into

account the previous results it is possible that real sources looks more like

the sources esimated with the AARM (figure 4e).

5. Conclusion

The main goal of this communication is to analyse the most employed

EEG montages from a source separation point of view. We have shown in

a Monte Carlo Simulation that in noisy conditions, the best results are ob-

tained by using the Average Referenced Montage (ARM), augmented with

the computed average measure (AARM) who tends asymptotically to the

best possible solution (Zero Referenced ZRM). The simulation results are

generally confirmed on real scalp EEGs, both by visual analysis and by a

24



14 15 16 17 18
      

   P9 

  FT9 

   T5 

   T3 

   F7 

   O1 

   P3 

   C3 

   F3 

  FP1 

   Oz 

   Pz 

   Cz 

   Fz 

  P10 

 FT10 

   T6 

   T4 

   F8 

   O2 

   P4 

   C4 

   F4 

  FP2 

  ECG 

Time (s)

(a) CRM.

14 14.5 15 15.5 16 16.5 17 17.5 18

  Avg 

   P9 

  FT9 

   T5 

   T3 

   F7 

   O1 

   P3 

   C3 

   F3 

  FP1 

   Oz 

   Pz 

   Cz 

   Fz 

  P10 

 FT10 

   T6 

   T4 

   F8 

   O2 

   P4 

   C4 

   F4 

  FP2 

  ECG 

Time (s)

(b) AARM.

14 15 16 17 18
         

    P9   

 FT9−P9  

  T5−FT9 

  T3−T5  

  F7−T3  

  O1−F7  

  P3−O1  

  C3−P3  

  F3−C3  

 FP1−F3  

  Oz−FP1 

  Pz−Oz  

  Cz−Pz  

  Fz−Cz  

 P10−Fz  

FT10−P10 

  T6−FT10

  T4−T6  

  F8−T4  

  O2−F8  

  P4−O2  

  C4−P4  

  F4−C4  

 FP2−F4  

   ECG   

Time (s)

(c) ABLM.

14 15 16 17 18

  S24 

  S23 

  S22 

  S21 

  S20 

  S19 

  S18 

  S17 

  S16 

  S15 

  S14 

  S13 

  S12 

  S11 

  S10 

  S9  

  S8  

  S7  

  S6  

  S5  

  S4  

  S3  

  S2  

  S1  

Time (s)

(d) BSS for CRM.

14 15 16 17 18

  S24 

  S23 

  S22 

  S21 

  S20 

  S19 

  S18 

  S17 

  S16 

  S15 

  S14 

  S13 

  S12 

  S11 

  S10 

  S9  

  S8  

  S7  

  S6  

  S5  

  S4  

  S3  

  S2  

  S1  

Time (s)

(e) BSS for AARM.

14 15 16 17 18

  S24 

  S23 

  S22 

  S21 

  S20 

  S19 

  S18 

  S17 

  S16 

  S15 

  S14 

  S13 

  S12 

  S11 

  S10 

  S9  

  S8  

  S7  

  S6  

  S5  

  S4  

  S3  

  S2  

  S1  

Time (s)

(f) BSS for ABLM.

Figure 4: Real EEG montages and estimated sources (FastICA).
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newly introduced performance criterion, based on the similarity between one

of the estimated sources and a simultaneously recorded known signal. In

particular the ECG or, possibly, the ocular artefacts can be measured simul-

taneously by an Electrocardiogram or an Electro-oculogram respectively and

thus they can be used to implement the proposed cross-correlation criterion.

The presented analysis is based on the assumptions we have made on

the noise, considered independent for each electrode including the reference.

The results we obtained confirm indirectly this hypothesis: the predicted best

montage (AARM) leads to better performances, independent of the source

separation algorithm.

Still, the numeric values obtained for the performance criteria depend,

both on simulated and real signals, on the employed source separation al-

gorithm. In particular, as for the real signals we use the ECG signal as a

comparison term, using algorithms that furnish the best estimation for the

ECG source leads to better performances. This is the case of FastICA, the

only tested algorithm based on high order statistics, and known to privi-

lege peaky sources (high kurtosis) like the ECG. In other words, based on

the presented results, one cannot conclude that FastICA better separate real

EEG signals, although it better estimates the ECG artefact. The problem

of performing an evaluation of the quality of sources in real signals remains

open.

An interesting point, currently under analysis, is the non-cephalic ref-

erence acquisition system analysis. This approach will be presented and

compared to the cephalic recording system in a future work.
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