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Abstract— The goal of this paper is to apply and compare
different noise and artefacts removal methods for
electroencephalographic (EEG) signal processing. More
precisely, we present several combinations of wavelet denoising
(WD) and independent components analyses (ICA) algorithms.
These methods are tested on simulated EEG, using different
evaluation criteria.

LINTRODUCTION

One of the most common brain disorders is epilepsy. Most
epilepsies are characterized by repeated seizures, caused by
bursts of excessive electrical activity in the brain. In clinical
practice this electrical activity is measured by the
electroencephalogram (EEG), which records the potential
changes caused by brain activity. In EEG recordings, the
sensors are placed on the scalp according to predefined rules
(10-20 system in our case). Therefore, the sensors record
brain activity transmitted by volume conduction from
different dynamic neocortical processes. An example of a
normal EEG (5 channels in average reference montage
during 8 seconds) is shown in figure 1.
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Fig l Exémple of EEG

EEG channels also record other signals, such as noise or
artefacts, supposed independent from brain processes. These
perturbations overlap with the brain neural activity and may
be present in all sensors, increasing the difficulty of EEG
interpretation. Therefore, a useful tool would be a method
able to remove noise and external artefacts like eye or
muscle activities. A current hypothesis is that these artefacts
are independent from brain activity, either normal or
pathologic. Under this hypothesis a frequently used method
is the blind source separation (BSS) by independent
component analysis (ICA) [1], [2]. Moreover, as EEG’s are
non-stationary signals with low SNR ratios, it seems that
wavelet denoising (WD) can be appropriate to tackle the
noise problem. In this communication, we explore different
ways for combining several ICA and WD methods. These
methods are tested and compared on simulated EEG signals,
using different evaluation criteria.

This communication is organized as follows. In the
second section, we describe the test signals we have used to
simulate EEG recordings, we present the evaluated ICA and
WD algorithms and their interaction and we introduce the
evaluation criteria. The third section presents the obtained
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results and it is followed by a fourth section that concludes
and presents the perspectives of this work.

ILMETHOD

A. Simulated signals

The EEG recordings are the result of mixing independent
neuronal sources, artefacts and noise. All these components,
as well as the mixing system, are unknown. In order to
choose the most appropriate algorithms for our applications,
we decided to generate simulated sources and mixing
matrices. In this way, we can compare the results of ICA and
WD algorithms with known reference signals.

In order to simulate real EEG’s we mixed independent
sources simulating normal or pathologic brain activity with
different types of noise and artefacts sources (eye blinking).
Two groups of sources were used: the first one contains 5
sources: 4 simulated sources having frequencies close to the
real brain signals and one ocular blinking artefact source,
figure 3(a). The second group includes 7 sources: the signals
from the first group plus two more signals simulated using
the time—frequency signal processing technique developed
by Rankine et al [3]: a background EEG signal, and a seizure
signal. The resulting simulated sources are presented figure
4(a).

Using these sources, simulated EEGs were created by two
techniques:

1) The 5 (respectively 7) sources were mixed using 20
different random matrices, in order to obtain the same
number of simulated EEG channels. Next, independent
white noise with different distributions (uniform, Gaussian
and Lapacian) and different signal to noise ratios (SNR= 0,
5, 10, 15, 20 dB) was added. This method is schematised
figure 2. In figures 3(b) and 4(b) are shown the mixed noisy
signals (simulated EEG1 and EEG2). The model of this
instantaneous noise mixture can be written as:

x(k) = As(k) +n(k) (M
where
x is a N-dimensional vector with the mixed signals (sensors),
AORM is the unknown nonsingular mixing matrix,
s is a N-dimensional vector of independent source signals,
n is an additive vector noise,
k being the time index after sampling.
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Fig 2. Diagram of simulated EEG1 and EEG2
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Fig 3. (a) Simulated sources, (b) Simulated EEG1
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Fig 4. (a) Simulated sources, (b) Simulated EEG2

2) Along with the 5 (7) simulated sources, we considered
three sources of noise (one for each type of noise,
normalised to o=1). The random mixing matrices were
generated accordingly, i.e. 8x8 (the 5 sources figure 3(a) and
3 noise sources) respectively 10x10 (the 7 sources figure
4(a) and 3 noise sources). The simulation diagram is
presented figure 5. In figures 6(a) and 7(a) are shown the
considered signal and noise sources. Figures 6(b) and 7(b)
show the resulting mixed noisy signals (simulated EEG3 and
EEG4).
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fig 5. Diagram of simulated EEG3 and EEG4
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Fig 7. (a) Simulated and noise sources (b) simulated EEG4

B. Independent Component Analysis

The goal of blind source separation is to recover
independent sources given only sensor observations. These
sensor observations are modelled as linear mixtures of
independent source signals. The term blind indicates that
both the source signals and the way in which they are mixed
are unknown. Several algorithms for BSS were developed in
the last 15 years. Some of the most important are described
in [2] and implemented in ICALAB [4] toolbox under
MATLAB. ICA is a method for solving the blind source
separation problem by finding a linear transformation of the
signals measured by sensors such as the estimated source
signals are as statistically independent from each other as
possible. The mixing ICA model (without noise) is given by:

c(k) = As(k) @)

The idea of ICA is to find a linear transformation B of the
dependent sensor signals ¢ that makes the outputs as
independent as possible:

$(k) =Be(k) = BAs(k) (3)
where
¢ is the mixed signals,
§ is an estimate of the sources,
B is the separation matrix.

The sources are exactly recovered when B is the inverse
of A. As it was pointed out by different authors ([1],[2]),
obtaining the exact inverse of the A matrix is, in most of the
cases, impossible. Therefore source separation algorithms
search to find a B matrix such as the product BA is a
permuted diagonal and scaled matrix. Consequently, sources
can be recovered up to their order (permutation) and their
amplitude (scale).

Different types of algorithms were proposed. Most of
them are based explicitly or implicitly on high order
statistics (HOS) computation [1],[2]. Another type of
algorithms uses the non stationary structure of the signals
(i.e. their time or frequency structure) to separate them
[9],[10]. These methods use only second order statistics
(SOS). As EEG signals are highly non stationary, this type
of algorithms is the most widely used.

C. Wavelet denoising

Besides ocular or muscular artefacts, real EEG recordings
are contaminated with noise. Nowadays a classical solution
for noise removal from non-stationary signals is WD, which
we considered for improving the separation results.

The basic idea is: decomposing the signal on a wavelet
basis (discrete wavelet transform, DWT), we obtain a
representation of the signal that concentrates most of its
energy in few wavelet coefficients having large absolute
values. On the contrary, noise energy distribution does not
change (for noises modelled as random uncorrelated
processes), which means that its energy will not be retained
by large value coefficients. Therefore, denoising can be
achieved by thresholding the wavelet coefficients.

Consider the i-th noisy mixture observation from (1),

x(k) = As(k) +n(k) = c(k) +n(k) 4)
where ¢ (k) is the noise free mixture.

Being W and W' the forward and inverse DWT
operators, then the WD will be performed, for a given sensor
signal x;, in the following process [5]:

w, =) 5)
W, =T(w,,A) (6)
& =W, (7

where

w is the wavelet coefficients vector

T(}) thresholding operator, A threshold

W is the wavelet coefficients after tresholding
¢ is the denoised signal.

The main problem is to compute the threshold, which
means responding to the question: where to fix the frontier
between small and large wavelet coefficients? Several
algorithms have been proposed in the last years, the most



well known being Donoho’s universal thresholding [6]. This
algorithm computes a threshold which, asymptotically,
ensures that any gaussian noise will be left in the denoised
signal. The first consequence is an apparently noise-free
signal, visually very satisfactory. The main drawback is the
high value of the threshold, which can lead to information
lost by signal distortion.

In EEG case, it is of great importance not to loose
information potentially useful to medical diagnosis.
Moreover, EEG informative signals often have small
amplitudes, and their wavelet coefficients can have rather
low values. Therefore, others algorithms tend to be more
appropriate. We have tested here the SURE thresholding
and the minimal denoising [6],[7].

WD and ICA were implemented in two ways, as shown in
figure 8:

1) WD after ICA, on the estimated noisy sources (y).

2) WD before ICA, on the noisy mixture signals (x).
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Fig 8. Denoising and separation methods

In first method denoising was made after ICA. In this
way, we have obtained ¢ as the denoised mixture. In second
method, we have separated before denoising. In this case to
find € it is necessary to remix the separated denoised
estimated sources (§) using the estimated mixing matrix
(A=B™). Both methods were compared using the evaluation
criteria detailed hereafter.

D. Evaluation criteria

For denoising algorithms evaluation, we have used the
classical criterion of the mean squared error (MSE) between
the original signals and their denoised versions. For the ¢;
component of the vector ¢ (i sensor, i=1...N), we have :

MSE, =13 (e, (k) - &,(0) ®)
R

where M is the length of the signal and & is the denoised

version of the signal. As we are in a multi-channel set-up

(multiple simulated sources mixed to obtain the same

number of recordings), the denoising quality criterion was

the average MSE for the N signals (MSE,,,).

To validate the separation method, we have chosen the
index of separability /S [2]. The index is computed from the
NxN transfer matrix G between the original sources and the
estimated ones after separation:

G =BA )

In order to obtain the IS is necessary to take the absolute
value of elements of G and to normalize the lines g; by
dividing each element by the maximum absolute value of the
line. The lines of the resulting matrix G’ will be:

- gi‘ (10)
max|g;
The separability index is obtained on the new G’ matrix

by :

i

i(i(c'(i,j))—lj

=1

an

i=1

[¥(v-1]]

1S =

For the evaluation of both separability and denoising
methods, we have chosen the correlation (0) between the
simulates sources (s;, i=/...N) and the estimate independent
components (8;). cov(s . )
ERaad Ll 14 (12)

g,0;,

To avoid taking into account small values of correlation
and estimated sources correlated with more than one original
source, we have chosen to discard correlation values smaller

than 0.5: 0, if 0>05

0, if p<0.5
For each original source s; we retain only one estimated
source §;, for which the correlation is maximal.

(13)

Tij

(14

1, = max(r)
J
Finally, we compute our r,,, criterion as:
1
ravg - V Z] i

For perfect source recovering, the three criteria should
have the values r,,,~1, MSE ,,, =0 and 15=0.

(15)

III.LRESULTS

Several test were performed on the simulated signals
shown in figures 3, 4, 5 and 6. All algorithms were
compared using 20 random matrices and three types of noise
having 5 different SNR ratios. The mean results over all
simulations are presented hereafter.

1. The first test aims to choose a source separation
algorithm both in ideal conditions (without noise) and on
noisy signals. Twenty ICA algorithms were tested. The best
4 results (considering the previously defined separation
criteria) are presented table I, see also [8].

SOBI | AMUSE | EVD [SOBIRO
Tay,
Mixed signals 0.9898 0.9960 | 0.9938 | 0.9983
Noisy mixed signals | 0.7480 0.5866 | 0.6379 | 0.7319
ISuve
Mixed signals 0.0700 0.0600 | 0.0700 | 0.0098
Noisy mixed signals | 0.1293 04419 | 04173 | 0.0810

Table I. Comparison of algorithms on simulated signals

From the results of the table I, we decided to use the
SOBI-RO [9], [10] algorithm to remove the ocular artefacts.
This result confirms our bibliographical research, which
indicate that second order statistics ICA algorithms perform
well on non-stationary EEG signals [11],[12],[13].

2. Next, we introduced a WD step. The tresholding of the
wavelet coefficients can be done either before source
separation (on the noisy mixture) or after the separation (on
estimated noisy sources). We present the results of the two
methods. Ten denoising methods were tested on the
simulated EEG1 and EEG2, the results of the three best
algorithms (SURE, wuniversal and iterative minimal
denoising [6],[7]) are shown in table II, III, IV and V and



compared with results obtained without denoising. In figure
9 we show an example of separated denoised signals.

Algorithm | No denoising | Sure | Universal | Minimal
I avg 0.6500 0.7673 | 0.7259 0.7278
MSE . 0.1815 0.0512 | 0.0800 0.0784
IS g 0.1013 0.1285 | 0.1529 0.1588

Table II. Results in EEG1, denoising before ICA.

Algorithm | No denoising | Sure | Universal | Minimal
I avg 0.4754 0.6689 | 0.6252 0.6077
MSE ¢ 1.2869 0.3334 | 0.5206 0.5637
IS avg 0.1598 0.1751] 0.1888 0.2011

Table III. Results in EEG2, denoising before ICA.

Algorithm | No denoising | Sure | Universal | Minimal
I avg 0.7012 0.8384 | 0.8300 0.8455
MSE ., 0.1570 0.0403 | 0.0551 0.0636
IS avg 0.0629 0.0629 | 0.0629 0.0629

Table IV. Results in EEG1, denoising after ICA.

Minimal
0.6656
0.5544
0.1465

Universal
0.6638

Sure
0.7076

Algorithm | No denoising

T avg 0.5104
MSE .vg 0.9596 0.3040 | 0.4535
ISave 0.1465 0.1465 | 0.1465
Table V. Results in EEG2, denoising after ICA.
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Fig 9. Separated denoised signals from simulated EEG1(a) simulated
EEG2(b)
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3. Finally we present the results of denoising after ICA on
the simulated EEG3 and EEG4. In this case we evaluated
using only the correlation criterion computed on the
informative sources, without considering the three noise
sources. The IS was discarded, because in the estimated
mixing matrix the elements corresponding to the noise
sources have no signification. The MSE can not be directly
computed neither, as we do not know the “clean” mixture c.
Results are presented in tables VI and VII. In figure 10 we
show an example of the separated denoised signals.

Algorithm | No denoising | Sure | Universal | Minimal
T avg 0.9240 0.9702 0.9633 0.9676
Table VI. Results in EEG3, denoising after ICA.

Algorithm | No denoising | Sure | Universal | Minimal
T avg 0.9069 0.9479 | 0.9253 0.9391
Table VII Results in EEG4, denoising after ICA.
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Fig 10. Separated denoised signals from simulated EEG3(a) simulated
EEG4(b)

IV. CONCLUSION AND PERSEPECTIVES

We may conclude that the SOBI-RO algorithm works
well in EEG source separation and particularly for
identifying eye artefacts. This conclusion is supported by the
bibliography.

Concerning the denoising step, we concluded that it
improves overall performances comparing with simple ICA.
The results are better if we apply WD after ICA than if the
denoising is performed directly on the noisy mixture.

This conclusion is valid for both kinds of simulated EEG,
as presented in figures 3(b) and 4(b) (informative mixture
plus independent noise) and in figures 6(b) and 7(b)
(independent sources mixed with noise). By comparing
denoising algorithms, we concluded that SURE and minimal
algorithms perform better for our application.

This work has several perspectives. First of all, coloured
noise will be considered. Next separation on wavelet
coefficients directly will be tested. We will also adapt SOBI
algorithm for simultaneous utilisation in both temporal and
wavelet domains. Finally, we will test our methods on real
EEGs and ask for medical validation.
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