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Abstract

This paper proposes an automatic method for artefact removal and noise
elimination from scalp electroencephalogram recordings (EEG). The method
is based on blind source separation (BSS) and supervised classification and
proposes a combination of classical and news features and classes to improve
artefact elimination (ocular, high frequency muscle and ECG artefacts). The
role of a supplementary step of wavelet denoising (WD) is explored and the
interactions between BSS, denoising and classification are analyzed. The re-
sults are validated on simulated signals by quantitative evaluation criteria
and on real EEG by medical expertise. The proposed methodology suc-
cessfully rejected a good percentage of artefacts and noise, while preserving
almost all the cerebral activity. The “denoised artefact-free” EEG presents a
very good improvement compared with recorded raw EEG: 96% of the EEGs
are easier to interpret.
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1. Introduction

The electrical activity produced by the brain is recorded by the electroen-
cephalogram (EEG) using several electrodes placed on the scalp, generally
according to predefined international standards (10-20 for example). Signals
characteristics vary from one state to another, such as wakefulness/ sleep
or normal/ pathological. Classically, five major brain waves can be distin-
guished by their frequency ranges: delta (δ) 0.5 – 4Hz, theta (θ) 4 – 8Hz,
alpha (α) 8 – 13Hz, beta (β) 13 – 30Hz and gamma (γ) 30 – 128Hz [1].

The informative cortically generated signals are contaminated by extra-
cerebral artefact sources: ocular movements, eye blinks, electrocardiogram
(ECG), muscular artefacts. Generally the mixture between brain signals and
artefactual signals is present in all sensors, although not necessarily in the
same proportions (depending on the spatial distribution). Moreover, the
EEG recordings are also affected by other unknown basically random signals
(instrumentation noise, other physiological generators, external electromag-
netic activity, etc) which can be modeled as additive random noise. These
phenomena make difficult the analysis and interpretation of the EEGs, and
a first important processing step would be the elimination of the artefacts
and noise.

Several methods for artefact elimination were proposed in the literature,
a brief review being presented in the next section. Most of them consists in
two main steps: artefact extraction from the multichannel recorded signals,
generally using some signal separation methods, followed by signal classifi-
cation (visual or automatic) and “clean EEG” reconstruction. Our goal is
to contribute to EEG artefact rejection by proposing an original and more
complete automatic methodology consisting in an optimized combination of
several signal processing and data analysis techniques.

This paper is organized as follows: the second section presents a brief
state of the art of the EEG artefact rejection solutions proposed in the liter-
ature, and concludes with the main original contributions of this paper. The
third section is dedicated to our proposed approach. This section consists
in a first part that briefly introduces the methodological steps included in
our approach: BSS, supervised classification and wavelet denoising WD. A
second part discusses their mutual interactions and proposes an optimal com-
bination. The fourth section presents the main results and it is also divided
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Figure 1: International 10-20 system

in two parts: the first one aims to choose an optimal BSS - WD combination
algorithm using a set of semi-simulated realistic EEG signals, while the sec-
ond one is dedicated to a comparative medical validation on large database
of real EEGs. Finally, conclusion and research perspectives are given.

In order to define the framework of this paper, we must specify that
we address here classical scalp EEGs, as recorded in clinical routine. More
precisely, we deal with signals recorded using the 10-20 international system,
with the reference electrode placed at the Fpz position, close to the nasion
(see figure 1).

2. State of the art

The most common artefact rejection method is based on linear regres-
sion and aims to eliminate the most frequent artefact, due to eye movement
or blinking. This method is capable of estimating the influence of the si-
multaneously measured electrooculogram (EOG) signals in the EEG and to
remove them [2]. Still, as the EOG electrodes are frequently placed close to
the EEG electrodes, they contain a certain amount of brain activity. Thus,
removing these signals might cause distortions in the EEG signals. Besides,
this method needs supplementary channels for EOG recording and, of course,
does not deal with other artefacts.

Source separation. More complete methods, based on linear decomposition of
the multichannel EEG recordings, were proposed in the literature. The most
common method is the blind source separation (BSS). The main BSS hy-
pothesis states that the artefact sources are independent from brain sources,
either normal or pathologic; the goal is to recover the original sources (brain
and artefactual), given only sensor observations. Several algorithms for BSS

3



were developed in the last years, either using high order statistics (HOS)
and thus explicitly addressing the ‘independence’ (Independent Component
Analysis - ICA) or second order statistics (SOS) on time delayed or windowed
signals, as well as combined (ICA + SOS) approaches (see for example [3]
for a review).

In the EEG artefact identification setups, there is no consensus for a
best BSS algorithm. Several ICA based algorithms [4, 5, 6, 7, 8] have been
applied. However, some more restrictive (but realistic) assumptions allow the
use SOS only: if the sources have different non-random temporal structures,
these methods proved efficient. Indeed, as it was pointed out by different
authors [9, 10, 11, 12, 13] SOBI [14] is an appropriate algorithm to separate
the EEG signals. This SOS algorithm is based on the ‘joint diagonalization’ of
an arbitrary set of time delayed covariance matrices of the measured signals.
It allows the separation of Gaussian sources. The SOBI-RO algorithm is
adapted for noisy signals by introducing a robust orthogonalization step [15].

Feature extraction and classification. In the artefact elimination framework,
BSS is used to separate cerebral and extra-cerebral sources. After separation,
the identification of the artefact sources can be done by visual inspection
[16, 17], but this approach becomes very impractical when processing many
EEGs.

Recently, several methods for automatic identification of artefact sources
were proposed. During the feature extraction step, the main source charac-
teristics employed in the literature are:

• Statistical characteristics as kurtosis, entropy, trends or extreme
values. The kurtosis is used to detect peaky activity distributions char-
acterizing specific artefacts (i.e. ocular and cardiac). The entropy also
helps to identify the signals concentrated in small temporal intervals,
therefore likely to be artefacts [4, 5].

• Template signals. If available, artefact measured signals are used as
templates (EOG, ECG). A high correlation between a source and the
template will indicate an artefact [7, 18, 8, 6, 19, 20].

• Frequency characteristics. The sources can be characterized by the
energy contained in the different frequency bands [7, 10].

• Spatial characteristics. The features based on the mixing character-
istics are connected to the scalp topography: the projection strength of

4



the signals onto the scalp allows the examination of its biological origin
[10, 6].

Often, these features are used to determine, with the help of human expertise,
specific thresholds for every artefact type. These ‘expert systems’ are further
on used to label specific sources as artefacts. More elaborated methods tend
to automatically determine the frontiers between artefact and informative
brain sources using different classifiers (Bayes rule based linear or quadratic
discriminant analysis [7] or support vector machines [20]).

Similar methods, based on BSS and supervised classification, were equally
proposed for magnetoencephalographic signals (MEG) [11, 21]. In all meth-
ods, after separation and classification, the artefactual sources are removed
and the EEG is reconstructed with the informative brain sources only. As
for all classification problems, the accuracy of the solution depends both on
the features and on the classifier thresholds.

Our approach follows the same general idea: EEG signals are processed by
BSS, a set of features is extracted from the obtained sources, these features
are fed into a classifier and the artefact sources are eliminated from the
reconstruction. The originality of our work consists in several aspects:

• we perform an extended evaluation of several BSS algorithms on phys-
iologically plausible EEGs;

• we propose an original feature set for source classification, containing
physiologically significant features extracted from the estimated mixing
matrix and from time and frequency characteristics of the sources. The
proposed method does not need EOG electrodes, as required by most of
the methods presented in the literature. The electrocardiogram signal,
used as reference signal for the characteristics extraction is routinely
recorded simultaneously with the EEG.

• we introduce a wavelet denoising (WD) step and we analyze its interac-
tions with the two other classical elements of the processing chain (BSS
and classification), proposing an optimal sequencing of these three pro-
cessing steps;

• finally, we perform a throughout validation of the processing chain on a
large database of real EEGs, using both objective criteria (classification
rate) and a systematic medical evaluation.
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3. Proposed EEG artefact rejection methodology

As said in the introduction, this section is divided in two parts: the first
one briefly recalls the individual methodological steps included in our method
(BSS, Bayes classifier, wavelet denoising), while the second one analysis their
interactions and proposes an optimal order of these processing steps.

3.1. Methodological steps

3.1.1. Blind Source Separation – BSS

The goal of the BSS is to recover original sources, given only sensor ob-
servations. The most simple and widely used assumption in EEG processing
is the linear instantaneous mixing: source signals reach the sensors simulta-
neously [1].

The noisy mixture in this case is written as:

X = AS + N (1)

where X is the matrix of the mixed signals (xi corresponds to a row of X,
i.e., a sensor signal), A is the unknown nonsingular mixing matrix, S is the
matrix of independent sources (si corresponds to a source), N is an additive
noise matrix.

The aim of BSS is to find a linear transformation B of the sensor signals
X that makes the outputs as independent as possible:

Y = BX = BAS + BN (2)

where Y is the estimation of the sources S. We assume here that the number
of sources is equal to the number of sensors Q. In this case, A ∈ R

Q×Q and
the ideal separation is obtained when B = A−1 and, consequently, Y is a
(noisy) estimate of S. In practice, BSS algorithms search a B matrix such as
the product BA is a permuted diagonal and scaled matrix. Therefore, orig-
inal sources can be recovered except for their order (permutation) and their
amplitude (scale): the estimated sources Y will be permuted and normalized
to unitary standard deviation.

BSS evaluation. On simulated signals, one can validate the BSS results by
using the separability index SI [3, 22, 17]. This index is computed from the
transfer matrix G = BA between the original sources and the estimated ones.
The SI is computed starting from the absolute values of the G elements. The
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rows gi and the columns gj of this matrix are normalized to obtain gi
′ and

gj
′ respectively:

gi
′ =

|gi|
max |gi|

gj
′ =

|gj|
max |gj|

(3)

The SI1 and the SI2 are obtained from the elements of the resulting Q × Q

matrix G′:

SI1 =

Q∑

i=1

(
Q∑

j=1

(G′(i, j)) − 1

)

Q(Q − 1)
SI2 =

Q∑

j=1

(
Q∑

i=1

(G′(i, j)) − 1

)

Q(Q − 1)

A synthetic separability index SI writes as:

SI =
SI1 + SI2

2
, (4)

its purpose being to measure the degree to which G is close to a permutation
matrix. For perfect source recovering SI = 0.

3.1.2. Wavelet denoising – WD

Nowadays a classical solution for noise removal from non-stationary sig-
nals is WD. The decomposition of a noisy signal on a wavelet basis (discrete
orthogonal wavelet transform, DWT) have the property to “concentrate” the
informative signal in few wavelet coefficients having large absolute values
without modifying the noise random distribution. Therefore, denoising can
be achieved by thresholding the wavelet coefficients.

Consider the model x(k) = c(k) + n(k), where x(k) is the noisy discrete-
time signal (length M), c is the noise-free unknown version of x(k) and n(k)
the noise. For the EEG application, the x signal corresponds to a single EEG
channel (a measurement electrode). As the DWT is a linear transform, the
wavelet coefficient vectors of x, c and n are related by:

wx = wc + wn (5)

Denoising is performed by separating the wavelet coefficients wx by thresh-
olding. Generally, the wavelet coefficients corresponding to low frequencies
(approximation coefficients) remain unchanged. The main problem is to esti-
mate the threshold T between small and large wavelet coefficients (i.e., noise
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ŵn and informative ŵc respectively). Several algorithms have been proposed
in the last years, and an extensive review can be found in [23, 24].

The most widely used is the universal threshold TU = σn

√
2 log N pro-

posed by Donoho and Johnstone in their algorithm VisuShrink [25] (σn is an
estimate of the noise standard deviation). VisuShrink is used to achieve com-
plete asymptotic elimination of the normal Gaussian noise. Consequently, it
might also lead to a less precise reconstruction of the signal of interest.

A different approach is proposed by the SureShrink algorithm [26] (Stein
Unbiased Risk Estimator), that aims to estimate as precisely as possible the
“clean” signal by minimizing an estimate of the mean squared error (MSE )
between the denoised signal and the original one. The obtained threshold
TS (or thresholds, as the method is usually implemented by scale) are lower
than the TU .

In the EEG case, not loosing information potentially useful to medical
diagnosis is of great importance. Moreover, as in EEG the signal to noise
ratio is weak, the wavelet coefficients of neuronal signals can have small
values, comparable to noise. Therefore, algorithms with a low thresholding
as Sure are the most appropriate for our application: theoretically, it insures
the closest possible reconstruction (in a mean squared error sense) of the
informative signal.

3.1.3. Feature extraction

Several sets of features listed in the literature (see section 2) were in-
vestigated and a combination of spatial, frequency and template correlation
characteristics was selected. The retained features cover the spectral content
of the sources, their spatial projections and their correlation to a template
routinely recorded signal (ECG).

Frequency characteristics. Spectral analysis was performed for all estimated
sources. The power spectral density for the 5 frequency bands of each source
yj was calculated. After normalization using the total energy (frequency
range 1 – 128Hz), the 5 features are no longer independent, so only 4 are
considered in the sequel: Eδj

, Eαj
, Eβj

and Eγj
. For each source, the main

frequency fmj
(estimated from the maximum value of the power spectral

density) was also calculated. An example for a real EEG recording is depicted
in figure 2.

Spatial characteristics. In practice, an EEG signal is the measure of the po-
tential difference between the measure and reference electrodes, which plays
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Figure 2: Example of raw EEG and estimated sources by SOBI-RO. Vertical lines in (c)
delimit physiological frequency bands
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an important role in the mixing matrix coefficients. In this work, the refer-
ence is placed near the eyes at Fpz (figures 1 and 3(b)), so it records the eye
activity also. Consequently, there is a strong presence of ocular artefacts in
all measured signals. After BSS, the sources are normalized and the strong
presence of a source in a measured signal is reflected by an important abso-
lute value of the corresponding mixing matrix coefficient. In particular, the
elements of the column corresponding to the ocular artefact source should
have significantly higher and more constant values than the other columns
(figures 3(a) and 3(b)). After BSS estimation of the mixing matrix A, it is
possible to evaluate the strength of an source yj by computing the average
aj of the coefficient absolute values of column âj.

aj =
1

Q

Q∑

i=1

|âij | j = 1, 2, . . . , Q (6)

The normalized standard deviation σj of each column âj indicates the
spreading:

σj =
σj

aj

(7)
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Figure 3: Topographic characteristics

As mentioned above, these spatial features are influenced by the reference
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electrode: if the reference electrode is different to FPz (and thus the eye
artefacts do not highly contaminate it), the EEG must be re-referenced.

Template correlation characteristic. The ECG is usually recorded simulta-
neously with the EEG, therefore it can be used as a template signal. The
correlations between the template and the separated sources yj write:

ρecg,j =
cov(ecg, yj)

σecgσyj

(8)

Finally, each estimated source is characterized by 8 features: 5 spectral
features (Eδj

, Eαj
, Eβj

, Eγj
and fmj

), 2 spatial features (the normalized
standard deviation σj and the average projection on the electrodes aj) and
one template correlation feature (ρecg,j).

3.1.4. Classification

The extracted features aim to code and quantify medical expertise. A
common solution would be a rule based expert system: according to the
feature extraction paragraph, one can expect a rather good identification
of the ocular artefact AO and of the ECG artefact AECG using only the
spatial and template correlation characteristics respectively. Nevertheless,
parameterizing this system is not trivial and not all the source types are
addressed (high frequency muscle and noise artefacts HFA, brain B)1. We
have therefore implemented in this paper two classification methods based
on the classical the Bayes classifier, as described next.

After feature extraction, the sources y are viewed as a vector sf of dimen-
sion d (number of features). These vectors are fed to the classifier. A classical
approach is the discriminant analysis, derived from the general Bayes rule.
For a vector sf, the probability of belonging to the class Cj is written:

p(Cj|sf) =
p(sf|Cj)p(Cj)

p(sf)
, with

p(sf) =
k∑

j=1

p(sf|Cj)p(Cj), (9)

1Such a rule based classifier was implemented in [27], but the results were less convincing
than the ones presented in this paper.
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where p(sf|Cj) is the conditional probability of sf given Cj . Considering
Gaussian classes and after some manipulation, one decides if a vector sf

belongs to the class Cj by minimizing:

dB(sf, Cj) =
1

2
(sf − µj)

TΣj
−1(sf − µj) +

1

2
ln |Σj| − ln p(Cj), (10)

The mean µj, the covariance matrix Σj and the a priori probability p(Cj) are
estimated from the training classes defined by the experts. This training

set was consensually constructed by two neurologists, which identified the
4 types of sources. Although not usually performing source visual analysis,
they were able to identify artefact sources by comparing their time courses
with the recorded EEGs (bipolar and referential montages). To preserve all
information potentially useful to medical diagnosis, only the obvious artefact
sources were selected.

A simplified version of (10) is the Mahalanobis distance:

d(sf, Cj) =
1

2
(sf− µj)

TΣj
−1(sf− µj) (11)

Source classification evaluation. Classification methods are classically eval-
uated using the number of the true positive (TP), true negative (TN ), false
negative (FN ) and false positive (FP) detections. The values are used to
compute the sensitivity (Sen), the specificity (Spe) and the false positive
rate (FPR) of the classifier (eq. 12). Alternatively, one can compute the
positive predictive value (PPV) and the negative predictive value (NPV),
who give a complementary view on the results (eq. 13).

Sen =
TP

TP + FN
Spe =

TN

TN + FP
FPR = 1 − Spe (12)

PPV =
TP

TP + FP
NPV =

TN

TN + FN
(13)

3.2. Interactions and optimal ordering

This subsection analyses the interaction between the three processing
steps previously described (BSS, classification and WD) and proposes an
optimized implementation, both in terms of chosen algorithms and in terms
of ordering.
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3.2.1. BSS and WD

Clearly, the first processing step must be chosen between BSS (to iden-
tify artefact sources) and denoising (to eliminate additive noise). Naturally,
source separation algorithms perform better in no noise situations (even if
specific algorithms as SOBI-RO were designed to deal with the noise), there-
fore a first approach would be to denoise the raw EEG signals before BSS.
On the other hand, the WD step might lead to a loss of information by
eliminating also a part of the informative signal, possibly useful for the BSS
and/or for the classification steps.

Our first aim is thus to study the interaction between BSS and WD.
Rather few references combine them, either for ECG [28] or for EEG prepro-
cessing [29, 30, 31, 32]. However, the only detailed study on the interaction
is presented in [33].

First, observe that both techniques are linear, and thus the mixing equa-
tion can be combined to the wavelet transform to obtain the mixture of
wavelet coefficients:

W x = AW s + W n, (14)

with W x, W s and W n being the wavelet coefficients matrices of the mea-
sured signals, sources and noise respectively.

In particular, the vector of the wavelet coefficients of the ith measured
signal wx,i (row i of wx ) can be written as a noisy linear combination of the
wavelet coefficients of the sources ws,j:

wx,i = [wx,i(1), wx,i(2), . . . wx,i(M)] = ai





ws,1

ws,2

...
ws,N




+ wn,i

(15)

with ai the corresponding row of the mixing matrix A.
Denoising this signal implies thresholding of the wavelet coefficients vector

wx,i using a threshold T to obtain the wavelets coefficients of the denoised
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estimate ŵc,i. In a matrix form, thresholding can be written as:

ŵc,i = wx,iF T,xi
= wx,i





f(wx,i(1)) 0 0 . . . 0
0 f(wx,i(2)) 0 . . . 0
0 0 f(wx,i(3)) . . . 0
...

...
...

. . .
...

0 0 0 . . . f(wx,i(M))





(16)
with f(wx) being the thresholding (shrinkage) function implementing the
chosen threshold (see for example [23] for details).

Considering the mixing equation (14), one obtains:

ŵc,i = wx,iF T,xi
= ai





ws,1

ws,2

...
ws,P




F T,xi

+ wn,iF T,xi
(17)

In other words, thresholding the wavelet coefficients of xi implies applying
the same threshold to all the sources contributing to it. Which means that
the individual sources risk to be distorted by the threshold, adapted to the
mixture but not to the sources characteristics.

For example, a source that has a small contribution to the measured
signal (i.e., a small mixing coefficient) risks to be lost or highly distorted
after thresholding. According to this analysis, if there is a distortion risk
(depending on the value of the threshold), it seems better to insert the WD
step after the BSS. In order to confirm the presented analysis, we performed
several simulations, the results being presented in the next section.

3.2.2. Classifier position

A last issue is the position of the classifier in the processing chain. In
our opinion, there is no general answer: as for the BSS case, denoising might
distort the signals and mislead both the experts and the automatic classifi-
cation. Indeed, to avoid possible interpretation errors2, clinical experts need
all the available information to do a correct source identification. Conse-
quently, we propose to place the classification step immediately after the

2According to our tests on real EEGs, this problem mainly occurs for muscle artefacts
containing high frequency components, often distorted by denoising.
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BSS. It is noteworthy that, in order to preserve the coherence of the method,
the training set was also constructed from non denoised sources.

4. Results

This section consists on two parts: the first one presents simulated signals
and leads to the final design of the processing chain. The second one focuses
on real EEGs and on medical validation.

4.1. Simulation

The goal of this simulation step is to validate the analysis presented in
section 3.2.1: which is the optimal BSS–WD combination?

Nine (Q=9) semi-simulated sources were used (figure 4(a)):

• 6 brain sources (S1, S2, S3, S4, S5 and S6) extracted from an intracere-
bral (depth) encephalogram (SEEG) recording. As the SEEG signals
are recorded by electrodes placed inside the brain, we can safely assume
that these signals are artefacts free. In order to insure maximum inde-
pendence, these 6 sources were extracted from different brain locations
and different time windows.

• 3 artefacts sources (one ocular artefact source (S7), an ECG artefact
source (S8) and a high frequency artefact source (S9)) were also used
as semi-simulated sources. These sources were extracted from scalp
EEG recordings (different patients) by source separation. They were
identified by the clinicians as artefacts.

The semi-simulated sources (figure 4(a)) were mixed using a random ma-
trix (uniform distribution in [-1, 1]) (see example in figure 4(b)). Several BSS
algorithms (ICAlab and EEGlab toolbox [34, 35]) were tested on ideal and
on noisy simulated mixtures, with 4 SNR values (5dB, 10dB, 15dB, 20dB).
Both white and colored noises were used, with similar results. The noises
were independently generated for the 9 measures (spatially white noise). The
results for the best 14 algorithms are presented in table 1 (average values over
1000 simulations).

Analyzing this table, we can see that the combined algorithm (ICA +
SOS) COMBI is the most performant for the noise free signals (SI = 0.0428).
For low noise level (SNR=20dB), it is the EEGLab’s RUNICA (Extended
Infomax) algorithm that presents the best results (SI = 0.1065), however,
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this result is close to the result of the SOBI-RO algorithm (SI = 0.1118). On
the other hand, SOBI-RO has the best performance for higher noise levels
(15dB → SI= 0.1247, 10dB → SI=0.1452 and 5dB → SI=0.1757). From
these results we can conclude that the COMBI algorithm is the best adapted
for the noise free signals, while SOBI-RO is the most performant for noisy
EEG signals.

Table 1: Comparison of BSS algorithms on semi-simulated EEG (no noise and noisy)

Algorithme SAS no noise 20dB 15dB 10dB 5dB

AMUSE [36] 0.0565 0.2410 0.2726 0.2946 0.3098
SOBI-RO [15] 0.0941 0.1118 0.1247 0.1452 0.1757

EVD [37] 0.0600 0.2219 0.2553 0.2803 0.2968
SOBI [38, 14] 0.0882 0.1407 0.1673 0.1989 0.2322
SOBI-BPF[39] 0.0753 0.1124 0.1346 0.1663 0.2085
WASOBI [40] 0.0654 0.1874 0.2119 0.2348 0.2507
EWASOBI [41] 0.0614 0.1563 0.1881 0.2246 0.2555
SEONS2[42] 0.0962 0.1398 0.1502 0.1652 0.1877
RUNICA[43] 0.0744 0.1065 0.1280 0.1634 0.2191

JADE[44] 0.1533 0.1798 0.1947 0.2131 0.2370
JADE-TD [45] 0.1857 0.2160 0.2300 0.2465 0.2664

EFICA[46] 0.0815 0.1162 0.1351 0.1622 0.2032
COMBI[41] 0.0428 0.1266 0.1509 0.1777 0.2029

MULTICOMBI[47] 0.1219 0.1553 0.1817 0.2091 0.2300

The BSS algorithms were next tested in combination with the WD. De-
noising was implemented before and after BSS. As for the BSS only, the
combination BSS-WD was evaluated using the SI (eq. 4) averaged over 1000
simulations (mixing matrices). Mean SI values are presented in table 2. For
conciseness, only the two best algorithms are presented, the best for the no
noise situation (COMBI) and the best for the noisy signals (SOBI-RO)
(see example figure 4). Also, only the results for the Sure algorithm [26],
known to minimally distort the informative signals (see section 3.1.2) are
presented here. More detailed results can be found in [48, 27].

From these results we can conclude that:

• For the COMBI algorithm, the denoising insertion distorts the informa-
tive sources (even with a low threshold algorithm), so the SI increases.
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Figure 4: Simulation example

• Inserting the denoising before BSS damages the SI obtained without
denoising by SOBI-RO also, and for all noise levels, confirming the
previous analysis (probable source distortion).

• Without denoising, the results obtained with SOBI-RO are higher than
those obtained with COMBI, both for denoised and noisy signals.
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Table 2: Comparison of BSS algorithms on simulated EEG, before and after denoising

COMBI SOBI-RO

no noise 0.0428 0.0941
SNR Noisy Denoised Noisy Denoised
20dB 0.1266 0.1861 0.1118 0.1309
15dB 0.1509 0.2173 0.1247 0.1424
10dB 0.1777 0.2616 0.1452 0.1608
5dB 0.2029 0.3126 0.1757 0.1867

Therefore, our proposed method is based on the SOBI-RO (for this algorithm
100 time delays were considered) separation and the Sure denoising, with BSS
applied on the raw signals (before denoising).

Considering the discussion section 3.2.2, the final order of the three pro-
cessing steps is BSS → Classification → Denoising.

4.2. Real EEG validation

This subsection is dedicated to the evaluation of the presented method
on a database of real signals. As said previously, two types of validation are
possible: the first one aims to quantitatively evaluate the source classification
performances, while the second is clinically oriented (blind medical validation
of the “clean” reconstructed EEGs).

Data base. Thirty-eight scalp EEGs from 19 epileptic adults (aged 16 to
51), were recorded using a Micromed system at CHU-Nancy (2 by patient,
24 electrodes, 10-20 system, common reference at Fpz, notch filter at 50
Hz). Sampling frequency was 256 Hz. The data-base contains one sleep
recording. Since the very low frequency artefacts (baseline shifts, slow ocular
movements) perturb the source classification, a high-pass filter with a cut-off
frequency of 1 Hz was applied.

The proposed method was applied on 20 seconds EEG sequences, in order
to have a sufficient number of samples and thus a reliable BSS result. All
recordings were seizure and inter-ictal spikes free.

By clinical inspection, the experts identified and labeled artefact and
brain informative sources for the 38 electroencephalograms. Half of them
were included in the training set, the other half being used to evaluate the
performances of the classification.
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4.2.1. Quantitative evaluation: source classification performances

The classifiers were evaluated using the sensitivity (Sen) and the false
positive rate (FPR) (eq. 12), both on training and on testing subsets. Ta-
bles 3(a) and 3(b) show the global performances, all classes included, and the
detailed performances by class ((a) Malahanobis distance, (b) Bayes classi-
fier).

Table 3: Classifier performances (Sen/FPR) (a) Distance de Mahalanobis classifier (b)
Bayes classifier

(a)

Training Testing

Sen FPR Sen FPR

global 85.3% 4.9% 82.2% 5.9%
AO 95.4% 2.5% 85.2% 4.4%
HFA 77.6% 10% 68.1% 7.7%

AECG 100% 0% 100% 0%
B 87.4% 14.9% 89.0% 21.8%

(b)

Training Testing

Sen FPR Sen FPR

global 80.2% 6.6% 78.3% 7.6%
AO 100% 6.4% 88.9% 7.9%
HFA 80.8% 13.6% 71.5% 11.9%

AECG 100% 0.2% 100% 0%
B 78.1% 10.4% 80.5% 16.1%

As it can be seen in tables 3(a) and 3(b), the two methods are quite
performant (and thus implicitly validate our features choice). The global
performances slightly better for the classifier based on Mahalanobis distance,
who shows both the best Sen and the best FPR. This observation is valid
both for testing and for training data, although the performances are slightly
different.

For a more precise analysis of the two automatic methods, a detailed
analysis by class is presented in tables 3(a) and 3(b). This analysis shows
for the AO that the two classification methods make a good identification
of the artefactual sources however, the Bayes classifier method increases the
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good artefactual source identification but the false detections also (highest
Sen and highest FPR). These observations are valid both for testing and
training data, with of course better performances on the training subset.

The two automatic methods were also analyzed for the high frequency
artefact source identification. However, in this case, the 2 methods have very
similar sensitivity results. The Mahalanobis distance method presents the
smallest FPR (less false detections), whereas the Bayes method presents the
higher Sen (better artefactual source identification). Some of the sources
identified by the experts as HFA are classified in other classes. In particular,
there is an important FPR for the brain class: this result indicates that the
two classes (HFA and B) are close in the feature space. This drawback should
be nuanced, as the main objective is to have a minimal loss of brain infor-
mation (although some of the EEGs reconstructed from the sources classified
as brain might still be noisy).

For the ECG artefact identification the two methods in both subsets,
testing and training groups, have an excellent performance with a good Sen
rate. The FPR is equal to 0 for all the cases for the ECG artefact source
identification. It must be noted here that very few ECG sources were iden-
tified by the experts, so this “perfect” classification should be validated on a
larger data-base.

Finally, for the brain sources identification, the Bayes method has the
smallest FPR (as well as the smallest Sen), that is this method identifies just
a few false brain sources. On the opposite, the Mahalanobis distance method
identifies correctly more brain sources than the Bayes method (highest Sen)
but has a FPR slightly higher than the Bayes classifier. Interestingly, for
the (only) EEG recording without artefacts (sleep), the classifier identified
all sources as brain (no loss of information) 3.

As the classes are rather unbalanced (very few ECG artefact sources, mid-
sized ocular and high-frequency artefact classes and a big brain class), one
might use the PPV and the NPV (eq. 13) values to have a complementary
view.

The PPV and NPV values presented in tables 4(a) and 4(b) confirm
the previous Sen/FPR analysis and offer a complement of information. The
most interesting case is the ocular artefact class (AO). According to the PPV

3The sources for this EEG (represented by the 8 dimensional feature vector sf) are in
the middle of the B class.
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Table 4: Classifier performances (PPV/NPV ) (a) Distance de Mahalanobis classifier (b)
Bayes classifier

(a)

Training Testing

PPV NPV PPV NPV

global 85.3% 95.1% 82.2% 94.1%
AO 65.6% 99.8% 54.8% 99.0%
HFA 74.6% 91.4% 80.3% 86.2%

AECG 100% 100% 100% 100%
B 92.0% 77.5% 86.8% 81.4%

(b)

Training Testing

PPV NPV PPV NPV

global 80.2% 93.4% 78.3% 92.8%
AO 44.0% 100% 41.4% 99.2%
HFA 69.2% 92.3% 73.6% 81.0%

AECG 87.5% 100% 100% 100%
B 93.6% 67.6% 89.0% 72.6%
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values, the number of false positives (FP) in the AO class is bigger for the
Bayes classifier than for the Mahalanobis distance (as said previously). But
one can notice that, quantitatively, there are more FP (false positives) than
TP (true positives) in this class when using Bayes (this is not the case for
the Mahalanobis classifier)! Considering the values for the other classes, one
can conclude that a certain amount of brain labeled signals were classified as
AO. The problem might be important, as it might lead to some information
loss (i.e. brain sources elimination). Still, in practice, this phenomenon has
very little influence on the final results (see also next subsection): first of all,
as classes are unbalanced, rather few brain labeled sources are misclassified
(high Sen for the brain class); second, this analysis deals with sources labeled
by the neurologists and, as explained before, they avoided to label as artefacts
sources that were not obviously artefacts. In other words, both automatic
classifiers classed as AO sources having rather ambiguous characteristics,
some of them maybe real ocular artefacts not selected by the neurologists.

Regardless of the classifier and of the employed criteria, global perfor-
mances reflect mostly the brain source classification. This is quite expected,
as the brain sources largely outnumber the artefact sources, so their good or
bad classification rate highly influence the global classification.

A detailed comparison of the the two discriminant analysis classifiers
(Bayes and Mahalanobis) reveals that for all 3 artefact classes, the Bayes clas-
sifier has a higher Sen but a highest FPR also (more artefacts are detected,
but more brain sources are also labeled as artefacts). For brain sources, the
situation is inverted (as expected). Generally, we can conclude that Bayes
classifier should be used when ‘brain only’ sources are needed in the recon-
struction (i.e. all artefacts must be eliminated). When this procedure is
too rough (i.e. when all information should be preserved), the Mahalanobis
based classifier is the best choice. Therefore, for the medical validation step
(final validation of the processing chain), we used the reconstructed EEG
after the Mahalanobis distance classifier.

4.2.2. Qualitative evaluation: medical validation of the reconstructed EEG

This last subsection presents the medical validation results in terms of
visual interpretation of the reconstructed denoised artefact-free EEGs. A
last issue is then the reconstruction method. The EEG reconstruction was
made using the estimated matrix A (Â) and the estimates sources Y that
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is:
EEGrec =

∑

i∈R

âiŷi (18)

where R represent the indices of the sources classified as brain sources. For
consciousness, denoising was implemented either on the selected sources ŷ

or on the reconstructed EEG signals. Both versions were visually analyzed
by the neurologists, who found them completely equivalent (we remind that
the this validation was made consensually by two neurologists).

Three versions of cleaned EEGs were reconstructed and compared to the
raw EEG: after BSS and visual identification of the artefact sources by the
experts (clinical inspection), after BSS and Mahalanobis classifier (BSSC)
and after BSS, Mahalanobis classifier and wavelet denoising (BSSCD). All

processing steps were developed using MATLAB r 7.9.0. The processing
time for each EEG (20 seconds long) was 2 seconds using an Intel CORETM

2 duo processor.
The clinical validation was made by blindly comparing the improvement

between the raw EEG and each cleaned EEG (clinicians had no information
on the noise and artefact removal method). The improvement was measured
in two ways: the artefact removal quality and the physiological interpretation
improvement. Clearly, they have a strong relation: an artefact free EEG
allows a better interpretation.

As expected, the artefact sources having a good sensitivity (AO et ECG)
were more easily eliminated. Still, the clinically validated results offer a com-
plement of information, as they globally classify 24 channels reconstructed
EEGs and not individual sources. For example, if all misclassified artefact
sources belong to a single EEG, it would indicate that this particular EEG
had a recording or separation problem. On the contrary, if the misclassi-
fied artefact sources are equally distributed over the whole EEG data-set, all
reconstructions would be affected and none would be easier to interpret.

Consequently, clinicians noted the reconstructed EEGs, from an artefact
elimination point of view, with: 1 no elimination, 2 partial elimination, 3

complete elimination, and, from an interpretation point of view, with: 1

much harder to interpret (loss of information), 2 harder (partially removed
artefacts confusing the interpretation), 3 equal, 4 easier and 5 much easier.
The raw EEG was always noted 3.

The percentage of EEGs by category is presented in the following table
(5). The AECG artefact elimination validation is not presented, as all these
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sources were completely eliminated (Sen=1, tables 3(a) and 3(b), to compare
with the results from [20], where the ECG was reduced in 98.4% of the EEGs).

Table 5: Artefact elimination and facility of interpretation performances

Identification methods

category Clinical inspection BSSC BSSCD

AO elimination

3 42% (16) 50% (19) 50% (19)
2 50% (19) 48% (18) 48% (18)
1 8% (3) 2% (1) 2% (1)

HFA elimination

3 13% (5) 21% (8) 63% (24)
2 66% (25) 63% (24) 35% (13)
1 21% (8) 16% (6) 2% (1)

Facility of interpretation

5 32% (12) 24% (9) 48% (18)
4 39% (15) 63% (24) 48% (18)
3 18% (7) 8% (3) 2% (1)
2 11% (4) 5% (2) 2% (1)
1 0% 0% 0%

A first conclusion appears from table 5: the denoising doesn’t contribute
to the AO elimination (98% completely or partially eliminated both by
BSSC and BSSCD). Similar results were obtained by [20] (96.8%), but with
the help of an electrooculogram. On the contrary, the HFA was the most
difficult to identify (as it was for the experts also). The results obtained by
clinical inspection and BSSC are very similar (79% and 84% respectively),
with a slightly better performance for the latter. On the contrary, the de-
noising step improves considerably the HFA elimination. As it can be seen,
the percentage of EEG showing a total elimination of the HFA (noted 3)
increases from 21% to 63% and the percentage of the overall improvement
(categories 2 and 3) increases from 84% to 98%.

Concerning the facility of interpretation, BSSC seems to offer better per-
formances than the clinical inspection method (87% compared to 71%). This
rather surprising result is coherent with the artefact elimination results from
the same table 5: some of the artefact sources were not visually identified
by the experts during the labelling step, but the automatic method correctly
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classified them. This can be explained, as said previously, by the fact that
clinical experts have only chosen the evident artefact sources to avoid poten-
tial loss of information (see also quantitative results of Sen, FPR, PPV and
NPV in the previous subsection). As for HFA elimination, further denoising
(BSSCD) increases the percentage of EEGs noted 5 from 24% to 48% and
the overall improvement percentage (categories 4 and 5) increases from 87%
to 96%.

An example of EEG processing is shown in figure 5.

5. Conclusion and future research

In this paper, we propose a method for eliminating several types of arte-
facts and noise based on blind source separation (SOBI-RO), wavelet denois-
ing (SureShrink) and supervised classification (Mahalanobis). The analysis
of the interaction between the three methods yielded an optimal preprocess-
ing chain, validated on simulated and real signals. In particular, we show
that BSS must be performed on the noisy raw signals, i.e. before wavelet
denoising. Concerning the choice of the BSS algorithm, our simulations (on
highly realistic signals) led to the conclusion that in normal clinical setups
(noisy environment) second order statistics algorithms perform better than
HOS algorithms. This conclusion is supported by extensive simulation results
(see also recent studies by [13, 22]).

The obtained preprocessing chain was applied on inter-ictal EEG and was
compared with a semi-automatic approach based on BSS and visual classifica-
tion. The results show a significant improvement of both artefact elimination
and EEG interpretation. According to the clinicians, high frequency arte-
fact sources (muscles and noise) are difficult to identify (visually, thus also
by supervised classification). Moreover, it is also possible that BSS fails to
separate these sources from the brain activity. The WD step introduction
addresses this problem, with very good results from an interpretation point
of view (with only 2% of the EEGs showing a loss of information, compared
to 11% for clinical inspection).

The proposed method can be applied on any EEG window, seizure in-
cluded. First results of “clean” ictal EEG, obtained using the same feature
space and training set as for the inter-ictal case, are very encouraging. More-
over, the method can be adapted further, in order to take into account the
specificities of the seizure signals (i.e., new classes or new features dedicated
to seizure sources).
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Figure 5: Raw and clean reconstructed EEGs
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