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Abstract

This paper introduces a complete methodology for abdominalsounds analysis, from signal acquisition

to statistical data analysis. The goal is to evaluate if and how phonoenterograms can be used to detect

different functioning modes of the normal gastrointestinal tract, both in terms of localization and of

time evolution during the digestion. After the descriptionof the acquisition protocol and the employed

instrumentation, several signal processing steps are presented: wavelet denoising and segmentation,

artifact suppression and source localization. Next, several physiological features are extracted from the

processed signals issued from a data-base of 14 healthy volunteers, recorded during 3 hours after a

standardized meal. Data analysis is performed using a multi-factorial statistical method. Based on the

introduced approach, we show that the abdominal regions of healthy volunteers present statistically

significant phonoenterographic characteristics, which evolve differently during the normal digestion.

The most significant feature allowing to distinguish regions and time differences is the number of

recorded sounds, but important information is also carriedby sound amplitudes, frequencies and durations.

Depending on the considered feature, the sounds produced bydifferent abdominal regions (especially

stomach, ileo-caecal and lower abdomen regions) present a specific distribution over space and time. This

information, statistically validated, is usable in further studies as a comparison term with other normal

or pathological conditions.

I. INTRODUCTION

One of the oldest means of physiological investigation, still currently used in clinical routine, is the

auscultation. The instrumentation is simple (stethoscope) and its utility is largely recognized especially for
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cardiac and pulmonary sounds. Relatively little studied for abdominal sounds, although the first papers

appeared a century ago [1], the phonoenterography presentssignificant potentialities [1–8]. Different

applications can be imagined, from the study of the normal physiology (classifying digestion phases or

abdominal regions) to clinical routine (functional diseases diagnostic aid, post-surgical monitoring) or

pharmacological research (medication effect on the gastro-intestinal activity).

Two types of approaches for phonoenterogram interpretation are proposed in the literature: the first

one focuses on the analysis of individual sounds, classifiedfor example in first, second and third degree

sounds [9], clicks, multiclicks and complexes [3], intestinal bursts and regularly sustained sounds [10]. The

second approach, adopted here, is more widely used and triesto analyze sequences of phonoenterograms

using different, so called, “activity indices” like mean sound duration, silence between sounds duration,

signal energy, and so on. The underlying hypothesis is that abdominal sounds,recorded upon long periods

of timeand in several abdominal locations, are representative of the physiological activity, eithernormal

or pathological. Under this hypothesis, changes in the patient status are reflected in the activity indices,

which can be used to assess and quantify differences among normal or pathological physiological states

[2, 5, 6, 11–13]. However, phonoenterogram interpretationis particularly difficult: there is no consensus

on a method for processing and analyzing abdominal sounds over long durations and in simultaneous

locations (see the comparative studies [14] or [15]).

The first goal of this paper is to propose a complete (althoughnot unique) signal acquisition, process-

ing and analysis methodology, able to extract significant activity indices from long-term multi-channel

phonoenterograms. The second and more important goal is to use these indices to analyze the influence

of the physiological factors, such as the patient, the abdominal region and the digestion phase, on the

phonoenterograms. A detailed statistical analysis is performed to check if phonoenterograms, characterized

by simple physiological activity indices, can be used to make statistically valid affirmations about the

digestion: which regions can be distinguished, when, how much time one has to record (listen) and which

are the indices that can be used to make this difference.

We focus here only on the digestion healthy volunteers, in order to obtain a phonoenterographic point

of view description of the normal functioning of the digestive tract, in the given controlled recording

conditions. The obtained spatial-temporal (regions–digestion phases) distribution of the abdominal activity

is statistically validated through a non-parametric factorial data analysis (ANOVA type) and can constitute

a comparison term for other normal or pathological phonoenterogram data, recorded and extracted in

similar conditions.

After this introduction, the second section describes the signal acquisition and processing methods.

February 11, 2010 DRAFT



3

The main addressed issues are the protocol used to ensure therepeatability of the measures and the

novelties introduced in the denoising procedure. The next section presents the experimental design and

the statistical analysis methods. The fourth section details and discusses the results and is followed by a

conclusion and by possible future research directions.

II. SIGNAL ACQUISITION AND PROCESSING

The current paper uses similar acquisition protocol and instrumentation as our previous works [12,

13, 16–18], so we focus on the test protocol used to ensure therepeatability of the measures. Moreover,

as most of the employed signal processing methods were already introduced and validated in the cited

papers, only a brief reminder is presented here.

A. Rationale

Regardless of the data analysis methodology, the obtained results are influenced by the elements of

the acquisition and signal processing chain. To reduce the possible variations of the activity indices due

to the acquisition1, we place ourselves in a controlled environment (identicalinstrumentation, recording

conditions and signal processing for all recording channels and all patients). These conditions must of

course deal with phonoenterogram difficulties:

• Long-term recordings have a high variability, either in time (digestion phases), in location (abdominal

region) or among patients. For a valid interpretation, it isnecessary to record on several patients,

in different abdominal locations and using similar recording conditions (standardized protocol and

instrumentation).

• Individual abdominal sounds have a highly irregular character and random appearance (although

quasi-periodic bursts have already been detected by [1] a century ago), and they are contaminated

by noise and artifacts (movements, heart beats, ...). It is then necessary to detect, segment and denoise

them, as well as to characterize them in order to eliminate the artifacts.

B. Data Acquisition

Experimental Protocol.Our data-base consists of 14 healthy volunteers of medium build, partially based

upon the data-set used in [13]2. All phonoenterograms were recorded in similar conditionsand, to avoid

1Real clinical auscultation conditions can be highly variable and they could influence the results of the analysis.

2Compared to [13], some patients were eliminated and others were added to obtain an homogeneous data-base.
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Fig. 1. Stethoscope placement and abdominal regions:ℓ stands for the distance between the navel and the lateral side

perturbing the normal digestion of the volunteers, the choice of the meal was adapted to their alimentary

habits: a standardized breakfast was taken at about 8:30 a.m. and consisted in a cup of tea/coffee, 2

bread rolls, 200 ml of orange juice and 1 yoghurt. The end of the recording, almost 3 hours later (168

minutes), is very close to the main meal of the day, taken at about 12:00, so we consider that we can

follow the digestion (post-prandial period) and have the “hungry” period (pre-prandial) for each volunteer.

A completely lied-down position (which could be more appropriate for good recording conditions) was

difficult to accept and maintain for the whole recording duration, so the volunteers’ position was halfway

between lying and sitting so they could watch television (using a headset to avoid phonoenterogram

contamination by the TV sound). In order to minimize movement artifacts, they were instructed not to

change their position during the recording.

Acquisition Sites.To obtain local information for different abdominal regions, six recording channels

(1,2, . . . 6) were used (see Fig. 1). In order to respect inter-patient variability, channels 1, 2, 4 and 6

were positioned at equal distances from the navel. This distance was taken at 2/3 from the total distance

between the navel and the lateral side of the abdomen. Channels 3 and 5 were aligned to channels 2, 4

and 6. These positions aim to record sounds over significant abdominal structures and to cover the whole

abdominal surface (1 on duodenum; 2 on the ascending colon; 3on the ileo-caecal valve; 4 on the small

bowel; 5 and 6 on the descending colon).

Acquisition Instrumentation.Most of the literature reports classic microphones for acquiring abdominal

sounds (as for example in [1, 2, 4, 5, 19]). Commercial electronic stethoscopes were used by Craineet

al. [6, 7]. We have followed the approach of Garner and Ehrenreich [3], who adapted electret microphones

to classic stethoscope heads. The six sensors were fixed on the abdomen wall with an elastic band.

Obviously, to these sensors we associated conventional analog electronics containing adjustable voltage

amplifiers and band-pass anti-aliasing filters, calibratedto the bandwidth of the AD converter (Nicoletr
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Vision 8 channels digital acquisition system, 16 bits resolution). According to the frequency characteristics

of the signal (band-limited between 100 and 500 Hz, see next paragraph), the chosen sampling frequency

was 5000 Hz.

The advantage of this instrumentation choice is that it allows a perfect control of the acquisition

parameters: the six channels were calibrated in the same manner, and this calibration was verified before

each recording.

The developed acquisition system has its pitfalls: first, the frequency response due to the stethoscope

head is not flat. Still, commercial electronic stethoscopesalso present selective frequency responses, which

vary considerably from one to another [20]. Second and more important, the six channels might have

different responses among regions and among volunteers, because of the variations in the fixation system.

With this ideas in mind, we tried to evaluate, for one hand, the frequency response in the frequency band

of interest and, on the other hand, the influence of the pressure applied by the stethoscope head against

the patient’s abdominal wall.

The frequency responses of the sensor were evaluated for different pressures, situated in a large enough

interval (≈400 Pa to≈3500 Pa) to cover the actual pressures of the stethoscope head on the abdominal

wall during the phonoenterogram recording. Measures were done in an anechoidal chamber by pressing

the stethoscope head against an abdomen phantom using different force values and a calibrated white

noise source between 100 and 1000 Hz. As expected, the frequency response of the stethoscope head

is not flat, unlike the frequency response of the microphone alone (compared to those recorded using

only the microphone, all sounds acquired through a stethoscope head are amplified from 5 to 30 dB over

the band of interest [100-500] Hz, see Fig. 2). The curves presented in Fig. 2 correspond to different

pressures and, as it can be seen, they are rather slightly influenced by the pressure in the frequency band

100-500 Hz, although more important variations appear for higher frequencies (around 800 Hz).

Finally, a last evaluation of the acquisition system was performed by medical expertise. Several minutes

of the recorded phonoenterograms were listened and annotated by a clinician, who confirmed the good

quality of the recordings from the medical interpretation point of view.

We conclude therefore that the frequency response of the instrumentation does not distort the physio-

logical information carried by the abdominal sounds. Moreover, it does not significantly vary because of

the fixation system, and thus neither among different recordings (in time or across the different regions or

different patients). Therefore, no acquisition bias affects the signal analysis and presented in the sequel,

and comparisons among regions and patients make sense, as the recordings were performed in similar

conditions.
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Fig. 2. Superimposed frequency responses for different sensor pressures varying from 390 to 3510 Pa (with a step of 390 Pa),

corresponding to masses between 0.05 and 0.4 kg (0.05 kg step) placed on the stethoscope head

Signal.Healthy phonoenterograms are characterized by a succession of isolated short events. The signal

consists of a sparse succession of non-stationary impulsive sounds (Fig. 3a). They can appear in periodic

bursts of activity (3 to 12 per minute, according to the placeand time of their generation) [1, 2]. The

parts of the signal which separate the sounds, called in the bibliography “periods of silence”, are not

actually completely quiet. Noise due to acoustic effects ofthe stethoscope and to other low frequency

physiological sounds (breathing, blood flow) is superimposed to the informative signal and must be taken

into account in any further processing.

The frequency content of the phonoenterogram is relativelypoor. The literature indicates maximum

frequencies of the abdominal sounds lower than 1000-1500 Hz[4, 5, 7, 21], even if other values are

mentioned (5000 Hz for example in [3]). The principal frequency of the abdominal sounds is generally

higher than the frequencies of the cardiac and pulmonary sounds and sometimes a high-pass filtering at

80 Hz is used to eliminate the influence of the latter [5]. The frequency content of the noise is almost

identical to that of the signal and it cannot be eliminated bysimple filtering.

The literature description of the abdominal sounds is confirmed by our observations. Their frequency

content is band-limited: only approximately 0.5% of the signal energy is located beyond 1000 Hz and

only approximately 2% beyond 500 Hz. In fact, almost all of the phonoenterogram energy is situated

between 100 and 500 Hz (Fig. 3b).

C. Denoising and Segmentation:HystD Algorithm

Considering the signal characteristics (sparse transients), non-stationary denoising algorithms seem

to be the most appropriate. This hypothesis was validated byour previous work and by several other

authors, who developed wavelet-based algorithms for abdominal sounds denoising [13, 22–26]. Automatic

segmentation procedures are proposed in [13, 19, 24].

The first wavelet-denoising algorithm applied on bowel-sounds was the iterativeWTST -NST pro-
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Fig. 3. Typical phonoenterogram recording

posed by [23] and derived from the “peeling algorithm” of [27]. In [16, 18], we have shown thatWTST -

NST may be seen as a fixed-point algorithm and we have analyzed anddetermined its convergence

conditions by introducing generalized Gaussian (GG) modelling of the wavelet coefficients. This approach

leads to a “minimal denoising” algorithmMinD, completely parameter-free and ensuring a maximum

information extraction from the measured signal. The main drawback of these methods is the fact that

they tend either to over-estimate the number of individual abdominal sounds (WTST -NST andMinD)

or to distort the detected ones (especiallyWTST -NST with a different parametrizationFa > 3, see

[26]).

Several improvements were proposed in the last years. Fractal dimension estimation in the wavelet

domain was used by [25, 28] to diminish the distortion of the detected events. Wiener filtering (in the

wavelet domain also) was proposed by [26] to avoid over-detection and minimize distortion. In [13] we

proposed a different approach, called “hysteresis denoising”, which achieves denoising and segmentation

in the same time, ensuring also a limited distortion of the segmented events. A slightly modified version of

this algorithm (5) is briefly reminded here. Comparison withother recent signal processing developments,

such as those introduced by [10, 19, 25, 26, 28], is beyond thepurpose of this paper.

We consider the modelz = x + n, wherez is the noisy discrete-time signal of lengthN , x is the

noise-free unknown version ofz andn the noise. Synthetically, the orthogonal discrete wavelettransform

(DWT) of z writes:

z =
∑

p,j

wj,p
z ψj,p +

∑

p

wM,p
z φM,p, (1)
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Fig. 4. (a) Example of 6.5 seconds of phonoenterogram, (b) its denoised version usingWTST -NST (Fa = 3) and (c) novel

HystD thresholding. Expert identified events are indicated by arrows

wherej = [1 . . . M ] is the scale,p = [1 . . . 2−MN ] the position,ψ the wavelet,φ the scaling function

andM the analysis depth [29]. The denoising threshold is computed using the fixed-point iteration:

Tj,k+1 = Fa

√

1

N

∑

p

(

w
j,p
z max

(

0, sign(|wj,p
z | − Tj,k)

))2

, (2)

with Tj,k the threshold at scalej, iteration k and Fa a multiplicative constant. This constant is user

chosen forWTST -NST or function of the estimated Generalized Gaussian (GG) probability law of

shapeu followed by the wavelet coefficients forMinD (see [18] for the proof):

Fam =

√

3Γ( 1

u
)

u
(ue)

1

u , (3)

with Γ(t) =
∫

∞

0
e−xxt−1dx. ThisFam constant (subscriptm stands for minimal) insures the convergence

of the algorithm to a non-null threshold having a low value and thus leading to a maximal information

extraction from the measured signal (minimal distortion).

For the implementation, the shape parameteru was estimated using the absolute empirical moments

m1 andm2, (with mr = E[|z|r], see [30, 31]).

By slightly modifying the proposition made in [13] we introduce a correction term forFam, leading

to a new constant:

Fao = max(Fam,KcFam), with (4)

Kc =

√

4 log N

3
√

2πe
. (5)
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It is easily verified that foru = 2 (Gaussian law),Fao =
√

2 log N , which is the well known universal

threshold proposed by [32].

The rationale behind this modification is the following: theuniversal threshold is constructed to

asymptotically eliminate all the (Gaussian) noise from themeasured signal. To adapt it to our iterative

framework and to the GG case, we propose to modify theFam constant, the goal being to achieve

comparable performances of noise elimination. Therefore,an iterative algorithm (2) using theFao constant

(4) will lead to a high threshold value and thus a quasi-complete noise cancelling. Moreover, applying

this threshold on the approximation scale of the wavelet decomposition (low frequency), an approximate

segmentation of the signal or, more precisely, a detection of the impulsive abdominal sounds, is also

obtained. The price to pay for this high threshold is the distortion of the detected sounds (Figs. 4 and 5).

It is then natural to combine the two iterative algorithms inone hysteresis denoising algorithmHystD:

a high threshold (obtained withFao) to detect the greatest coefficients of each scale, and a low threshold

(obtained withFam) to select the “big enough” coefficients located in the neighborhood of those selected

by Fao.

A similar method was successfully applied in [13], so we onlygive some illustrative examples in

Fig. 4 and 5. As it can be seen in Fig. 4, theHystD algorithm detects almost all of the individual

abdominal sounds (the sixth one, undetected, was hardly hearable by the expert, but it was confirmed

after several listenings). Classic iterativeWTST -NST detected it, but it also detected many parasite

sounds which, on one hand, confused the expert and, on the other hand, made the segmentation almost

impossible (and thus also the artifact elimination and the multi-channel processing, which are partly

based on the characteristics of the segmented sounds). Nevertheless eliminating some of the sounds (as

long as it remains marginal and similar for all recordings),does not influence the relative comparisons

among regions and time sequences, although it might shift the absolute values.

Another situation can be observed for the first detected sound, which visually seems distorted. A close

examination of its time course and spectral content revealsthat the denoising/segmentation procedure

eliminated the low frequency components (below 30 Hz in fact), which are quite energetic. The auditive

impression confirms this analysis: almost no difference canbe heard among the three denoised versions

and the original sound, except for the background noise (original signal) or a succession of parasite clicks

(WTST -NST ).

Although not presented in Fig. 4, the iterative thresholding usingFao (4), as well as the universal

thresholding, furnished denoised estimated signals visually similar to the one obtained byHystD (easy

to segment and thus facilitating the number of sounds counting). Still, a detailed examination of the result
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(see Fig. 5 for a zoom on the third detected abdominal sound inthe example) shows that physiological

characteristics of the sounds (amplitude, frequency, duration) might be distorted by a too high threshold.

Therefore, having in mind that our goal is to extract activity indices from long-time recordings, a good

compromise was offered by theHystD algorithm.

(a) (b) (c) (d)

Fig. 5. Distortion comparison: (a) Example of an abdominal sound, (b) its denoised version usingWTST -NST (Fa = 3),

(c) usingHystD and (d) using an iterative fixed-point algorithm (2) withFao (4)

D. Artifact Elimination and Multi-channel Processing

Artifact elimination.Before proceeding to the multi-channel processing, we havedecided to heuris-

tically eliminate remaining artifacts. Although less sensitive than WTST -NST , HystD (as certainly

no denoising method) cannot ensure complete elimination ofundesirable perturbations. In fact, noise

cancelling methods deal with stationary noise, but non-informative (from a phonoenterographic point

of view) signals are not treated. Indeed, heart beats, patient movements, cough, can be considered

as informative events by the wavelet denoising/segmentation algorithm, and this kind of events are

unfortunately unavoidable in long time measurements. We have introduced thereforea priori knowledge

at this stage of our abdominal sound processing method. For each segmented event, we have computed the

most popular physical features: the duration, the energy and the frequency spectrum, as in [4–7]. To avoid

windowing effects, these characteristics were computed from the wavelet decomposition: duration as the

union of the wavelet supports, the energy as the squared sum of the wavelet coefficients and the frequency

spectrum as the sum of the wavelet spectra. The events which did not fit the literature description of

an abdominal sound were eliminated: sounds shorter than 20 ms (like hair and skin friction on the

stethoscope membrane), longer than 5 seconds (movements) or having more than half of their energy

below 80 Hz (like heart beats and respiration). On real signals, several tests showed that this approach

was more effective than high pass filtering or even adaptive filtering (with a reference stethoscope placed

on the chest, for heart, cough or movement detection).

Multi-channel processing.There are two steps of multi-channel processing (see Fig. 1 for stethoscope

placement). The first one concerns artifact elimination by cross-validation. In fact, we assumed that
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real abdominal sounds propagate inside the abdomen. Therefore, we have eliminated all sounds that are

not quasi-simultaneously acquired by at least two stethoscopes (that is, their time supports are strictly

disjoint).

The second step is the localization technique. We have discussed different methods in [17]. In fact, very

few publications present a multi-channel approach, and most of those who do it (like [5] for example)

treat the recordings in a completely independent and parallel manner: they quantify abdominal sounds

independently for each abdominal region and no propagationis taken into account. Two approaches were

proposed by Craineet al. [7], who perform source localization by triangulation, andby Dimoulaset

al. [19], who use a more elaborated decision tree adapted to their hierarchical segmentation technique.

The first one is inaccurate, because of the high anisotropy ofthe propagation environment while the second

one is inapplicable in our detection and segmentation framework. In fact, the technique we proposed in

[17] reduces to what Dimoulaset al. call CPA (Closest Point of Approach [19]): indeed, the simplest

hypothesis and, in the actual state of knowledge, the most accurate, is that the recorded sounds are louder

when the stethoscope is placed closer to their origin. Therefore, we have proposed a 6-region partition

of the abdomen, as indicated in Fig. 1. For each sound, we check its maximum amplitude (acoustic

intensity) on each of the stethoscopes that acquired it, andits origin is placed inside the region indicated

by the greatest value.

III. D ATA ANALYSIS METHOD

Our first proposals for long-term monitoring, based on a set of activity indices, were made in [12, 13].

This paper proposes a different phonoenterogram characterization, directly based on the most significant

physiological indices instead of principal components. Therefore, the findings are directly exploitable by

clinicians: median values for several physiological indices are given for different abdominal regions and

for different post-prandial time intervals.

A. Feature Extraction

Several empirical activity indices are proposed in the literature: number of sounds by time interval [1,

5, 7, 11, 33–35], the sounds duration, energy, power or amplitude integrated over a period of auscultation

[2, 3, 5, 6, 33–35], sounds main frequency [5, 34], silence between sounds duration (integrated or averaged

over time) [6, 7, 33, 35]. The most commonly considered time interval is the minute, which corresponds

to the range of clinical auscultation duration by region. Summarizing, we have considered in our study

nine activity indices, evaluated for each channel and for each minute of recording: the number of sounds
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(Nm), the total energy (Em), the total duration of sounds (Dm), the median energy of sounds (Eµ), their

median duration (Dµ), their median power (Pµ), their median main frequency (fµ), their median acoustic

intensity (amplitude) (Iµ) and the median duration of silence periods between sounds (Ds,µ).

Each minute of recording can then be represented as a point inthe nine-dimensional space obtained

from the nine activity indices. Considering our data-base,we have 14112 such points, representing 168

minutes for each of the 6 regions of the 14 patients. Interpreting all this information reveals to be

difficult because of the high dimension of the representation space and, furthermore, because of the

probable redundancy of the nine features3. To diminish the variable redundancy and thus the dimension

of the representation space, we propose a guided feature selection step based on a correlation/ PCA

analysis: after PCA, the first four principal componentsc1 to c4 were retained, as they describe more

than 80% of the variance. Next, instead of projecting the data onto the reduced principal component

space, the original features which are the most correlated with these first 4 principal components were

retained:Iµ, Nm, fµ andDµ (correlated respectively toc1 to c4 at least 0.7). We discarded redundant

variables asDm, highly correlated withNm (0.88),Eµ andPµ, highly correlated between them (0.80)

and withIµ (0.67, respectively 0.68),Em andDs,µ, uncorrelated with any of the principal components.

The first three retained features are almost orthogonal (themaximum correlation coefficient among them

is smaller than 0.2), while the last one (Dµ) is a little more correlated (0.4 withIµ)4. This approach

permits an easier comparison with the literature and, aboveall, a natural physiologic interpretation.

B. Statistical Data Analysis

The basic hypothesis is that all recordings are acquired in similar conditions, i.e., after a standardized

meal and from a normal population, without particular digestion types (diseases, nutritional habits). The

obtained analysis data-base consists of14× 6× 168 = 14112 points (minutes of phonoenterogram) in a

four-dimensional feature space (Iµ, Nm, fµ andDµ).

We recall that the aim of this paper is to determine if the processed phonoenterograms can be used to

evaluate differences among different physiologic conditions (digestion evolution) and/or recording sites

(abdominal organs). A first visual analysis can be done by plotting the median values of the 4 retained

variables (over the 14 patients), computed for every minuteand every region (Fig. 6): the displayed

3In [12, 13] we have proposed principal component analysis (PCA) to reduce the number of retained features and to decorrelate

them.

4All the p− values for the correlation coefficients presented here are highly significant≈ 0. This is consistent with the very

high amount of data, as for every variable we have more than 14000 measures.
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graphs seem to indicate differences among regions and time evolution during the digestion, but these

differences are more easily seen and quantified for certain variables and/or among certain regions and/or

during certain time intervals. Thus, this visual impression must be detailed and confirmed by statistical

analysis: are the regions or the minutes significantly different? Are these regional differences significant

all along the recording? If we consider a particular recording site, is the time evolution significant? These

questions will be addressed for all retained variables.

21 42 63 84 105 126 147 168

5

10

15

20

25

30

35

40

45

N
m

Minutes
21 42 63 84 105 126 147 168

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D
µ

Minutes

21 42 63 84 105 126 147 168

120

140

160

180

200

220

240

260

280

f µ

Minutes
21 42 63 84 105 126 147 168

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I µ

Minutes

 r1  r2  r3  r4  r5  r6

Fig. 6. Evolution of the four selected variables (Nm, Dµ, fµ, Iµ) during 168 minutes for the 6 regions (median values over

the 14 volunteers)

A very critical issue, which can lead to erroneous interpretations, is the experimental design, which

must take into account the nature of the analyzed data.

First of all, as the variables (activity indices) are not Gaussian, non-parametric statistical tests must

be used. Different ANOVA-like non-parametric tests have been developed and compared in the literature

[36–40], and it is generally accepted that rank transforming the data (i.e., taking ranks instead of actual

values) can provide robust solutions. This rank transformation can be done in different ways: either (1)

globally on the whole data, (2) after aligning the data to eliminate the influence of one of the factors

(i.e., subtraction of lines means before testing for columndifferences, for example), or (3) after ranking

separately by factors (i.e., ranking the values on each lineseparately, instead of ranking the whole data

matrix). Intuitively, rank alignment (2) applied on the third factor (patients) will normalize the volunteers

by considering equal means, while the separate ranking (3),known as Friedman test, provides almost the
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same effect, but normalizes both the means and the variancesof the patients.

Second, the previous questions have to be translated into a statistical methodology, applied separately

and successively for each variable (Iµ, Nm, fµ andDµ):

A. Gross analysis.Perform separate one-way Kruskal-Wallis tests (equivalent to ANOVA on not aligned

ranks [36]) to assess differences among regions considering as replicates all values for a given region,

regardless of the patient and minute (respectively among minutes, considering as replicates all values for

a given minute, regardless of the region and patient).

B. Global analysis.The previous simple approach eludes the possible influence of the recording site

on the time evolution and of the recording moment on the regional activity. In fact, a more complex

design should take into account the three variable factors of the data-set: the regions, the minutes and

the patients. Still, the three factors do not have the same nature: we are interested in differences among

regions and among minutes, but not among patients, as our starting hypothesis was that they are all

issued form the same healthy population. Nevertheless, we should take into account the inter-patient

variability when testing for differences among regions and/or minutes. In this design, the third factor is

what is called a random factor, and a three-way test with two fixed factors (6 regions and 168 minutes)

and a random factor (14 patients) should be performed. Perform then a 3-ways ANOVA on ranks (not-

aligned), with 2 fixed factors and one random, to test for differences among regions, among minutes,

and for possibleinteractionsbetween them. This last term is very critical, because if interaction exists,

one should consider separate sets of data by region (respectively by minute) and make a “fine analysis”

as described next.

C. Fine analysis.If interactions ar high, Zar [36] recommends to test only fordifferences between

individual cells. This approach would be fastidious and useless: even if the difference is significant,

what information could we extract by knowing that a particular minute recorded in a particular region is

different from another minute recorded elsewhere? A mid-point solution is to group cells by “families”

and test for differences among them: are the regions different, tested minute by minute? Are the minutes

different within a particular region (i.e., is there a significant time evolution of the considered activity

index for a given region)? This approach implies separate two-way ANOVA on ranks: we only consider

data issued from one of the levels of a given fixed main factor and perform the test according to the

other fixed main factor and the random one. For example, we could consider all regions recorded during

a given minute and perform a two way analysis with one fixed factor (regions) and one random factor

(patients). The previously defined 3D matrix will then splitin several 2D matrices. For each of the 168

minutes, matrices having 6 lines (regions) and 14 columns (patients) will be obtained (a similar approach

February 11, 2010 DRAFT



15

leads to168 × 14 matrices for each of the 6 regions).

A more robust alternative is possible: separate ranking by factors (leading to Friedman test, implemented

here using the statistic given by [36] for repeated measures), leads to a reduction of the interaction, and

therefore should be used if the first solution (ANOVA on ranks) reveals a high degree of interaction.

Again, this analysis is made for each of the 168 minutes to test for differences among regions; a similar

approach is implemented after considering separate sets ofdata for each region, to test for differences

among minutes.

One final issue before presenting the results. The describedtests allow to check for differences among

severalgroups, but not betweentwo particular groups: they provide the information that at least two

groups are different, without indicating which. Multiple comparisons procedures [36, 37] must be used

to verify this point. Some authors [36] recommend to use themonly if global ANOVA-type tests indicate

significant differences, while others [41] have the completely opposite opinion. Among these tests, the

current approach on ranked data (after Kruskal-Wallis or Friedman) is the Nemenyi non-parametric multi-

comparison [36], which we used when these tests were applied. The results of multiple comparisons are

presented as suggested by [36], by underlining together similar groups (not significantly different). For

example,X1X2X3X4 signifies thatX1 is different fromX3 andX4 but is similar toX2, which is similar

to X3 also, and so on. As seen in this example, a current problem when using multiple comparisons is

their transitivity. We decided to include it in our interpretation of the results: ifX1 is similar toX2 and

X2 is similar toX3, thenX1 is similar to X3. In our example, everything is similar, so we will rather

note this asX1X2X3X4 and we will say thatX1,X2,X3 and X4 are found similar after a transitive

multiple comparison. Unless explicitly stated, all multiple comparison results in this paper are transitive.

This choice might seem to restrictive, but, having in mind the actual state of knowledge on the abdominal

sounds, we have decided to favor statistical validity of ourfindings with the risk of loosing more subtle

and detailed interpretations5.

IV. EXPERIMENTAL RESULTS

Figure 6 presents the time evolution for the retained variables and for each region. Median values

computed over the 14 volunteers are displayed. As one can see, the third region seems richer in sounds

than the others, and especially than the first one (see Fig. 1 for positioning). This difference is present

for the first part of the recording, but it attenuates at the end. Moreover, as the dispersion of the patients

5For example, groupsX1X2 andX3X4 could be considered different
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Fig. 7. Box-plots of the 4 variables (Iµ, Nm, fµ and Dµ) for the 6 regions (all minutes included). The medians for each

region are represented with their confidence intervals (notches) to facilitate multiple comparisons. Box limits are at25 and 75

percentiles (i.e., 50% of the minutes are “inside” the box),while ’+’ signs represent outliers (minutes situated outside the limits

defined by extending the box, in both directions, by 1.5 its size)

around median values is not displayed, we cannot visually appreciate if this difference is significant or

if it is masked by a high patient inter-variability. This is the role of the statistic test, and their results are

presented hereafter.

A. Gross Analysis

A possible quantification of the differences among the main factors (regions and minutes), completely

ignoring any possible interactions, can be done by Kruskal-Wallis tests. As expected, minutes cannot be

separated, allp values are superior to 0.05. On the contrary, the regions aresignificantly different for all

of the four considered variables.

Still, the outputs of the KW tests indicate that a differenceexists, without specifying which precise

regions are different. Multiple comparisons using the Nemenyi test were then performed and the results

can synthetically be presented using the underlining notation introduced in the previous section. According

to the four activity indices, the regions show the followingdifferences: for the sound intensityIµ:

r3r2r5 r6r4r1, for the number of soundsNm: r3r5r1r2r6r4, for the median frequencyfµ: r3r6r5r2 r4r1

and for the median sound durationDµ: r4r3r1r2r5r6.

Synthetically, the third region emits more sounds than the others, with higher frequencies and intensities,

while the fourth region has longer sounds, but very few. The sound intensity can not be used to distinguish
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between the second and fifth regions, nor the number of soundsbetween the first, second and sixth.

Different other interpretations are left to the reader, butwe remind that no interaction is taken into

account here, so only very global and approximate statements can be made concerning the differences

among regions and the absence of difference among sequences(see Fig. 7).

The previous multiple comparisons results confirm the visual analysis suggested by Fig. 6: if the

auscultation is performed during a long enough period, the different abdominal regions have statistically

distinguishable activity. All of the selected features canbe used, and the regions can generally be sorted

according to these features (although the second region, for example, cannot be individually separated

from the others).

B. Global Analysis

A more complete approach is a 3-way ANOVA with two fixed factors (regions and minutes) and one

random factor (patients), performed after rank transformation on each of the 4 variables. This step permits

to evaluate the interactions: if they are not present, the differences revealed by this method would be

sufficient for the phonoenterogram analysis.

For fµ, the obtainedp-values indicate very high levels of interaction among all factors, so no analysis

on main factors can be performed. ForIµ and Dµ, very high interactions exist between regions and

patients and between minutes and patients, but no significant value appears for regions-minutes interaction

(p = 0.26 andp = 0.36 respectively). Still, both main factors have a high interaction with the patients,

so interpreting main factors might be misleading for these variables also. ForNm, the results are similar,

with high interactions between regions and minutes and between minutes and patients. Ignoring the

interactions, it seems that all variables permit to detect significant differences among regions (p = 0.005,

p = 0.002, p = 0.0005 and p = 0.0007 for Iµ, Nm, fµ and Dµ respectively) but not among minutes

(p = 0.97, p = 0.99, p = 0.65 andp = 0.73).

C. Fine Analysis

As described in the previous section, in case of interactiondata are considered separately. A first option

is to test for differences among regions for each minute to confirm and detail the results presented for

the gross analysis (subsection IV-A). The second option is complementary: consider regions separately

and test for differences among minutes.

1) Regional activity distribution during digestion:This subsection aims to find if the regions can be

considered statistically different after a one minute auscultation, and if so, which minute after the meal is
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the most appropriate. Unfortunately, testing for differences among regions for a given minute (Friedman

test) does not give any significant result: one minute of auscultation is not sufficient to distinguish between

abdominal regions, regardless of the activity index. This result seems to contradict the information from

Fig. 6: it seems quite clear that, forNm for example, the third region is higher than the others for the

first part of the recording. The same observation can be made for fµ (regionsr1 and r4 lower thanr6

around minute 120) or forDµ (regionr4 higher thanr6 around minute 70). On the other hand, the curves

from Fig. 6 show certain natural trends, which seem to indicate that successive minutes belong to similar

physiologic conditions. Therefore, we have decided to concatenate several minutes to form sequences

and to test further on for differences among regions by sequence (instead of by minute). Two solutions

are possible: either recompute the activity indices for thenew time interval, or consider the minutes

belonging to a sequence as statistical replicates (i.e., representative measures for the given sequence). We

adopted the second solution: on one hand, it preserves the physiological activity indices defined in the

literature and used for the previous results and, on the other hand, it improves the statistic tests reliability.

Different lengths for the tested sequences (analysis windows) have been considered, from 2 minutes

to 42 minutes. As a first approach and to ease the interpretation, we did not consider sliding windows,

but contiguous and disjoint (i.e., 84 to 4 different sequences). It is clear that, for long sequences, the

time position (when to analyze) is less precise, as the analysis comes close to the gross Kruskal-Wallis

tests. Moreover, as the activity indices are non-stationary (Fig. 6), long sequences might mask regional

differences that are more important during certain digestion phases. Therefore, in our opinion, the optimal

length of a sequence should be a compromise: long enough to obtain statistical significance, but as short

as possible, to have a good time resolution and stationary signals. Still, as noa priori knowledge exists

and having these considerations in mind, we present here thedifferent obtained results, with a particular

focus on sequences having 21 minutes length, considered optimal.

For sequences having a two-minute length, the results startto confirm the gross Kruskal-Wallis

observations. For example, for theNm variable, the Friedman test has a significantp-value for almost all

sequences (i.e., there are differences among regions) and Nemenyi multiple comparisons indicate that the

third regionr3 produces more sounds than the others. In particular, a two-minute auscultation during the

first 10 minutes after the meal, as well as between minutes 60 to 80, should permit to order the regions:

r3 is the richest (and significantly different), followed byr5.

The number of sounds by minuteNm is not the only variable permitting to distinguish among regions:

Dµ indicates that the fourth regionr4 produces significantly longer sounds around minutes 60 and 120.

Three- and five-minute sequences confirm these findings. For example, for five-minute sequences,Iµ
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indicates thatr3 is significantly louder than the others during the first 10 minutes and between minutes

90 to 110. The sound durationDµ is generally longer forr4, and this is constantly and significantly

evident two hours after the meal (minutes 115 to 125).

Longer sequences reinforce the presented results. A particularly interesting case is obtained for 21

minutes length sequences, which split the recording into eight equal parts: the differences given by the

statistical tests have a degree of significance similar to those obtained for the whole length. For all the

sequences, the loudest region (Iµ) is r3 (corresponding to the ileocecal valve, i.e., gut-colon junction)

and the most quiet isr1 (stomach or upper colon). Transitive multiple comparisonsusing Nemenyi tests

allow individual separation ofr3 from all other regions for all sequences. Regionr1 (the most quiet) can

also be separated according to these tests during the first hour (sequences 1 to 3). Globally,the third

region is significantly louder and the first region is significantly quieter than the others at the beginning

of the digestion, and the third region remains so during all the recording period. Again, this conclusion

gives a statistic confirmation to the visual impression fromFig. 6, where these differences among regions

are more or less visible during the recording.

Almost similar conclusions can be obtained for the second variable (Nm). It is still r3 which is the

richest in sounds while the poorest isr4 (lower central abdomen), except for the first sequence, when

r1 has the lowest number of sounds. Multiple comparisons are more significant at the beginningand at

the middle of the digestion than at the end (pre-prandial period): r3 is significantly different from all the

others from the first sequence until almost 2:30 hours after the meal (first 7 sequences), but it cannot

be distinguished fromr1 (stomach) for the last 21 minutes (when most of the volunteers were hungry,

with their stomach gurgling). During the last four sequences, the fourth regionr4 was also significantly

poorer.

From a frequencyfµ point of view, the regions are significantly different during all sequences.The

third and the sixth region are the highest in frequency (r3 during the first hour andr6 during the last

hour), whiler4 and r1 are the lowest (r1 during sequences 1, 2, 4-6 andr4 during sequences 3, 7 and

8). Nevertheless, according to Nemenyi tests,r3 is significantly higher than all the others only during the

first 21 minutes (r3r5r6 r2r4r1) andr6 is significantly higher only during sequence 7 (r6r3r5r2 r1r4).

The analysis performed onDµ shows that regions are significantly different according toboth Friedman

and ANOVA on ranks tests all along the recording, except for the last 21 minutes, when ANOVA output

becomes insignificant.The fourth region (gut) has the longest sounds during all thedigestion, and it is

significantly different from all others (Nemenyi test) for the first approximately 2:30 hours after the meal

(sequences 1 to 7).The shortest sounds are generated in regions 5 and 6, but they are significantly different
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TABLE I

REGION ORDERING AND MULTIPLE COMPARISONS BY SEQUENCE(21 MINUTES LENGTH) AND BY ACTIVITY INDEX

Seq. Iµ Nm fµ Dµ

s1 r3r5r6r4r2r1 r3r5r6r2r4r1 r3r5r6 r2r4r1 r4r3r1r5r2r6

s2 r3r5r2r6r4r1 r3r5r6r2r1r4 r3r6r5r2r4r1 r4r3r1r2r6r5

s3 r3r2r4r5r6r1 r3r5r2r6r1r4 r3r6 r5r2r1r4 r4r3r2r1 r6r5

s4 r3r5r2r4r6r1 r3r5r2r6r1r4 r6r3r5r2r4r1 r4r2r1r3r5r6

s5 r3r5r2r4r6r1 r3r5r2r1r6r4 r3r6r2r5r4r1 r4r3r1r2r5r6

s6 r3r5r6r2r4r1 r3r5r6r2r1r4 r6r3r5r2r4r1 r4r3r1r2r5r6

s7 r3r2r6r5r4r1 r3r1r5r2r6r4 r6r3r5r2 r1r4 r4r1r3r2r5r6

s8 r3r2r6r5r4r1 r3r1 r5r2r6r4 r6r3r5r2r1r4 r4r3r2r1r5r6

only at the middle of the digestion (seq. 3:r4r3r2r1 r6r5, seq 4:r4r2r1r3r5r6, seq 5:r4r3r2r1r5r6).

In order to enforce the statistical validity of the results an to ease the lecture, all the previous multiple

comparisons weretransitive. The results of the non-transitive multiple comparisons are not detailed here,

but a synthetic view is shown in table I, which completely presents the inter-region differences for a

sequence length of 21 minutes. All multiple comparisons (for the 4 variables and the 8 sequences) are

represented by underlining similar regions.

2) Activity time evolution by region:Following the same approach, we present here a detailed analysis

by region, the goal being to separate among minutes (or sequences) inside each region. In other words,

we attempt to propose a phonoenterogram segmentation basedon statistical characteristics.

As in the previous subsection (IV-C1), a first approach considers equal length sequences and varies this

length in order to find the necessary (minimal) value for a reliable statistical analysis. Keeping this duration

small allows to preserve a good time resolution for a possible segmentation of the phonoenterograms

in digestion phases: indeed, for each variable,consecutive similartime sequences could be associated,

according to the results of the statistical tests, to define physiological digestion phases, while the frontiers

between two phases would be placed between twoconsecutive differentsequences6. It is clear that, as the

(constant) length of the sequence increases, the resultingsegmentation becomes sub-optimal, both because

of the phonoenterogram “sub-sampling” and of its non-stationarity. Nevertheless, these segmentation

results lead to a first approximation of the abdominal activity by piecewise constant functions: curves

from Fig. 6 could be approximated by constant fixed length segments. Similar level segments (i.e., not

6Moreover, the shorter the necessary duration for a reliablestatistical analysis, the easier the clinical implementation. Even

if for the moment is speculative and further tests are needed, this approach should permit to suggest clinical guidelines for the

abdominal auscultation.
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significantly different according to the tests) can then be concatenated to define a longer phase, the

obtained result being a first segmentation of the phonoenterogram in statistically different digestive phases.

Clearly, different other approaches can be adopted. For example, variable length sequences could be

segmented directly on the curves from Fig. 6, based on some consistency criteria (trend changes, piecewise

linear regression), and the resulting digestive phases could be compared among them by statistical tests to

assess the validity of the proposed segmentation. A third method could propose physiologically defined

phases, according to the actual medical knowledge on the digestion (phases of the migrating motor

complex for example), with again ana posteriori statistical validation. Both these last two approaches

might possibly offer a more precise segmentation of the digestion, but on the other hand, they need a

consecutive statistical validation which risks to concatenate them if the necessary level of significance

is not reached. In our opinion, implementing statistical tests to check for significant differences among

trends (or slopes of piecewise linear regressions) exceedsthe aim of this paper and the actual state of

knowledge on the abdominal sound activity. Therefore, in this paper, the first described method (constant

piecewise segments) is only implemented: although less precise, it offers directly the needed statistical

significance.

As expected, sequences of one minute length cannot be significantly distinguished regardless of the

region or of the activity index. We adopted the same approach, concatenating the minutes into longer equal

size contiguous sequences and testing for differences among them. As argued in the previous paragraph,

this leads to an approximate segmentation of the phonoenterogram (by variable, for each region).

The shortest sequences that can be differentiated last 15 minutes (11 sequences for the first 165

minutes), but this is only possible for one variable (Nm) and one region (r1). More precisely, Friedman

test gives ap < 0.01 and multiple comparisons yield the following order:s11s10s9 s7s8s6s3s2s1s5s4,

which means that during the last 45 minutes (i.e., starting two hours after the meal), the regionr1 is

significantly richer in sounds than during the first 2 hours.

Increasing the sequence duration improves the results of the tests. For 21 minutes sequences (8 se-

quences), several regions display significant time evolution, mainly concerning the number of soundsNm.

Multiple comparisons with Nemenyi test permit to individually distinguish digestion phases for two re-

gions: forr1, the last sequence (seq. 8) is the richest in sounds, followed by sequence 7 (s8s7s6s5s1s2s4s3);

for r3, the evolution of the number of sounds follows an inverse path: the richest is the first sequence,

immediately after the meal, and the poorest is the eighth, when the digestion is probably finished and

the volunteers are right before their next meal (s1s2s3s4s5 s6s7s8). It is quite remarkable that these

evolutions show constant natural trends: the stomach makesmore sounds when empty (i.e., when the
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TABLE II

REGION ORDERING AND MULTIPLE COMPARISONS BY SEQUENCE(21 MINUTES LENGTH) AND BY ACTIVITY INDEX

Reg. Iµ Nm fµ Dµ

r1 s8s4s6s7s5s3s2s1 s8s7s6s5s1s2s4s3 s3s4s1s8s2s5s7s6 s7s8s6s5s4s3s2s1

r2 s8s3s7s2s4s5s6s1 s4s6s3s5s7s8s2s1 s8s2s5s4s3s6s7s1 s8s7s4s3s2s6s5s1

r3 s1s5s3s2s8s6s4s7 s1s2s3s4s5s6s7s8 s1s4s3s5s7s6s2s8 s8s7s4s3s2s6s5s1

r4 s3s4s1s2s5s6s8s7 s4s3s1s2s5s7s8s6 s1s4s3s2s5s8s7s6 s2s6s3s4s5s1s7s8

r5 s2s1s4s7s6s8s5s3 s5s4s1s2s3s6s7s8 s1s4s3s2s5s8s7s6 s1s2s6s5s4s7s8s3

r6 s8s7s3s6s1s2s5s4 s6s3s7s2s4s8s5s1 s7s4s6s8s3s5s1s2 s2s8s7s3s6s1s5s4

person is hungry), while the lower-right abdomen (end of thegut, ileocecal valve) is very active at the

beginning of the digestion at its activity decreases constantly until the end.

Finally, splitting the recording in only 4 sequences having42 minutes length each, all variables become

significant, depending on the region. Forr1, the last 42 minutes are the richer in sounds and the loudest

(for Nm we haves4s3s1s2 while for Iµ s4s3s2s1), although the sound intensity is not significantly higher

according to Nemenyi test, except compared withs1 (first 42 minutes). The number of sounds permits

to establish significant time evolutions also for regions 2,3, 4 and 5 (r2 : s2s3s4s1, r3 : s1s2s3s4,

r4 : s2s1s3s4, r5 : s3s1s2s4). Frequency evolution can be observed forr1 : s2s1s4s3, r4 : s2s1s3s4

andr6 : s4s2s3s1 and median sound duration forr1 : s4s3s2s1 and r4 : s3s2s1s4. Although not always

obvious, some natural trends can be detected using these long-duration sequences. The number of sounds

Nm seems a valid indicator of the normal digestion evolution for almost all regions: it constantly increases

for the stomach (r1), it constantly decreases for the ileocecal region (r3) and it has a similar evolution for

the preceding segment (lower abdomenr4). The frequency is higher during the first half of the digestion

both for r1 and for r4. This last observation is confirmed also by a gross analysis:Kruskal-Wallis and

Nemenyi tests for sequence differences, regardless of the region and of the patient, indicate thats2 (second

quarter of the recording) has significantly higher frequencies than the other periods:s2s1s4s3.

Interestingly enough, the segmentations resulting from different sequence lengths confirm each other

in most of the cases, or at least they are complementary: for example, taking the first regionr1 and

variableNm, all considered sequences (15, 21 or 42 minutes) lead to the conclusion that the last part

of the phonoenterogram (40 to 45 minutes) is statistically different from the previous sequences, with

complementary information given by the last two analysis (21 and 42 minutes).

A synthetic presentation of the inter-sequence differences, including all the multiple comparisons results

is presented table II for 21 minute-length sequences.
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V. CONCLUSION AND FUTURE RESEARCH

This article addresses two main issues: the abdominal sounds processing methodology and their detailed

statistical analysis.

Several methodological signal processing steps were proposed and/or improved and the resulting chain

was employed to extract physiologically meaningful data from the long-term multi-channel phonoen-

terograms. The proposed solution is effective, although aninteresting perspective research could be

the comparison of the different other signal processing methods developed in the recent literature for

abdominal sound analysis. However, the processing steps proposed in this paper proved to be reliable

enough to furnish statistically consistent information, analyzed in the second part of this work.

Two types of analysis were performed, aiming to check if and under which conditions abdominal

auscultation can furnish statistically reliable data on the normal digestion, both in terms of localization

and in terms of time evolution.

According to our results, abdominal activity in different regions can be distinguished using abdominal

auscultation. It seems that, to differentiate between regions, rather short-term auscultation (3 to 5 minutes)

can be sufficient, especially (but not only) when this auscultation is performed immediately after the meal.

For example, for normal digestion, the third considered region r3 (lower right abdomen, ileocecal valve)

should be louder, should emit more sounds and have higher frequencies. Approximately two hours after

the meal (digestion final phases), the sounds emitted in the lower central abdomenr4 are significantly

longer than those from the other regions. Of course, future validation on healthy and pathologic cases

is needed, but present results indicate that these findings consistently describe normal functioning of

the abdominal tract. A comparative view of all results suggests some interesting information for clinical

auscultation: it seems that the most informative regions, at least for analyzing normal digestion, arer1,

r3 andr4 (stomach, ileocecal region and gut region); the most effective activity index is the number of

soundsNm, although complementary information is carried by the other indices; finally, better results

can be obtained by an immediately post-prandial auscultation, although later phases are also informative,

especially if the auscultation is longer.

A more difficult issue is the analysis of the digestion evolution over time using the selected physiological

activity indices. Although some trends can be detected and thus individual minutes or short sequences

of auscultation seem different at the beginning and at the end of the digestion process (especially when

counting the sounds emitted by the stomach and by the lower right abdomen), we were not able to prove

statistically this difference. Even if digestion evolution cannot be clearly evaluated by realistic (short-
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time) clinical auscultation, long-time phonoenterogramscan do it. Indeed, considering longer auscultation

sequences (unrealistic in clinical environment but possible using an automatic system), these trends can

be detected from the recorded data and they become significant, not only considering the number of

emitted sounds but also in duration, frequency and intensity. This point also needs further validation, and

we are confident that a more extensive data-base can improve the statistical reliability of our results.

An important point not completely addressed in the current work is the length of the auscultation

sequence needed to distinguish among regions or among sequences themselves. Our current proposal

was to consider equal length sequences, which is a coherent approach from a statistical point of view:

estimation made over populations having similar sizes havesimilar properties (confidence intervals), and

further comparisons are facilitated. Nevertheless, a physiologically justified approach would consist in a

previous segmentation of the time evolution of the activityindices, in order to detect possible natural

digestion phases, which can be further on tested for statistical differences using a more elaborate test

methodology. Hopefully, this approach should permit to propose and confirm a finer segmentation of the

digestion phases and will be addressed in a future work.

An important future research direction is the validation ofthe proposed signal processing and data

analysis methodology on a more extensive data-base and on pathological cases, leading to a possible

increase of the statistical validity. Still, the results presented in this paper convey statistical evidence

that the regional abdominal activity of healthy patients shows a certain structure. More precisely, a time-

evolving activity pattern can be established for healthy patients, and one can speculate that changes in

this pattern reflect a modified patient state (health, digestion phase, digestion habits).

For the moment, no pathological case was recorded using the standardized protocol, but a short

phonoenterogram of a patient with gastritis was easily distinguished from the others (higher sound

intensity and number, especially inr1). As our method allows a precise analysis of the normal abdominal

functioning, we are confident that pathologic recordings can also be characterized. An important problem

is the creation of a standard healthy phonoenterogram data-base, necessary for any further comparative

study.

In our opinion, the main conclusion of this work is that normal (and possibly pathologic) gastrointestinal

activity might be analyzed using abdominal auscultation, but this should be done with great care: if the

region differences can be assessed by rather short-time auscultation, and thus in a clinical environment,

digestion evolution evaluation needs longer recording periods and thus an automatic tool.
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