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Abstract— The goal of this communication is to shed

new light on a wavelet–based denoising method developed

by Hadjileontiadis et al. [1], [2], which is derived from

an iterative denoising algorithm by Coifman and Wick-

erhauser [3], [4]. The underlying algorithm is revisited

and interpreted as a fixed point algorithm. This allows to

derive a new version of the algorithm largely increasing

computational efficiency.

I. I NTRODUCTION

The general framework of this communication is

wavelet–based denoising of discrete–time signals. We

deal with a method proposed by Coifman and Wick-

erhauser [3], [4], which has been further developed

and applied by Hadjileontiadiset al. [1], [2] to lung

and bowel–sound denoising, segmentation and analysis

(see also [5])1. The denoised signal is estimated with

the help of an iterative scheme, yielding successive

refinements of this signal. This may be seen as “peeling

off successive layers” of the signal, in Coifman and

Wickerhauser’s own terms: at a given iteration, the noise

1See for example [6] and the references therein for a broader point

of view on wavelet–based denoising methods.

residual is decomposed on a wavelet basis and the largest

coefficients of each scale are used to reconstruct a signal

which is added to the current estimate of the denoised

signal. This denoising procedure may be interwoven with

a best basis search at each iteration [4].

The goal of this paper is to show that, under certain

conditions, these successive refinements may be inter-

preted as fixed–point algorithm searches for determining

independent thresholds for each scale. If no best basis

procedure is considered, we show moreover that succes-

sive wavelet–decompositions, –reconstructions (WDRs)

are useless, thus allowing an important reduction of the

computational burden.

This communication is organized as follows. In the

second section, we detail the method originally proposed

by Coifman and Wickerhauser, and used by Hadjileon-

tiadis et al. in a biomedical framework. In the third sec-

tion, we detail the proposed fixed–point interpretation.

Conclusion is given, with particular focus on the CPU

time stakes.
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II. I TERATIVE WAVELET–BASED DENOISING

METHODS

We consider the model� � � � �, where � is

the given discrete–time signal to be denoised,� is the

denoised unknown version of� and� the noise. Coif-

man and Wickerhauser proposed an iterative denoising

scheme as� � �� ���, where� is the iteration step.

The current noise estimation��, which is initialized for� � � as �� � �, is decomposed on an orthogonal

wavelet basis as:

�� �	
�� 
��
��� ���
 � 	
 
��
��� ���
 �
We use the following notations:� is the scale,� the

position (translation index),� the wavelet,� the scaling

function and� the decomposition depth [7]. As we

consider finite duration signals and compactly supported

wavelets, the dimension of the transformed vector is

finite. Let����� be the vector containing the noise coef-

ficients at scale�, 
��
��� and���� the complete noise co-

efficients vector. By thresholding����, one obtains the

current “peeled off layer”�������. The noise coefficient

vector������, derived from�������������� � ����,
is used to reconstruct����. The iterations end when the

stop criterion:

������ � �����  ������� ! "# (1)

is validated, for a user chosen
"
.

The threshold selection rule in the algorithm of Coif-

man and Wickerhauser [3], [4] is different from the one

in the algorithm of Hadjileontiadiset al. [1], [2]. The

latter, which we develop in this communication, writes:

1) compute$�� as %$��&� � '( )))�
���� )))

�
;

2) compute the threshold
����� as

����� � * +$��,. The

particular case considered here is:
����� � -�. $��,

where-�. is as user–defined constant2, which can

depend on the scale�;
3) compute ������� and �������� by hard–

thresholding3 ����� using the threshold
�����;

4) compute���� and/���� as wavelet reconstruc-

tions of������ and������� respectively, and set���� � �� �/����;
5) loop to the top if the stop criterion (1) is not

reached.

The general idea of the algorithm is to consider,

at each iteration step, the empirical distribution of the

wavelet coefficients of the current noise estimation for

each scale. The large coefficients, whose values exceed

the current threshold defined as-�. times the current

empirical standard deviation, are supposed to belong to

the denoised signal and are excluded from the noise

estimate. This procedure thus iteratively calculates final

different thresholds for each scale. This enables an

adaptation of the threshold to the coefficient distribution

of a given scale, hence to a colored noise.

III. A FIXED–POINT INTERPRETATION OF THE

ALGORITHM

The goal of this section is to show that the afore-

mentioned iterative determination of the final thresholds

may be interpreted as finding fixed points of functions

whose expressions will be given. Moreover, we show that

successiveWDRs are useless, thus saving much precious

computational time, providing that no best basis search

is considered.

2Hadjileontiadiset al. considered an unique01 2 3, on a medical

expertise of denoised signals basis.

3See [8] for the distinction between hard– and soft–thresholding
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A. Preliminaries

Let us notice that the orthogonality of the wavelet

transform allows us to rewrite the stop criterion (1) as:������ � ����� ������� � ������� ��������� �
(2)

Moreover, for
" � �, iterations are stopped when���� �������, i.e., when no wavelet coefficient is thresholded

and so������� � �.

Furthermore, because of the linearity property of the

wavelet decomposition, we have:

�� � ���� � �	��� ����� � ���� �����# � �� (3)

B. Consequences

The consequences are straightforward:� because of the orthogonality of the wavelet trans-

form we can use the modified stop criterion (2) in

the ���
step of the previously described algorithm.

This makes the reconstruction of the estimated noise�� � WR+����, useless;� because of the linearity of the wavelet transform,

we don’t have to compute any/�� � WR+�����,
(the goal of this computation is to yield� as� � 	
��� /�� � 	
���WR+�����,. Instead,

the final denoised–signal estimate is computed as� � WR+��, � WR+	
��� �����,, where � is

the number of iterations till convergence.

The 
��
step of Hadjileontiadiset al.’s algorithm can

then be completely eliminated.

C. Thresholding

The thresholding will then be implemented as follows:

for all �, ��� � -�.$���� thresholds the coefficients of������� in order to obtain����� and������. If we have

at least one index� such as������+�, �� �, we can write

�������+�,� � ��� . Moreover,
��� � ������ +�,�#� �. We

also have�������+�,� � ��� � ���������+�,� � ����� � � � � #
(4)

since�������� is obtained by thresholding�����. As a

consequence, every non vanishing coefficient of����� �	���� ������ is greater or equal, in modulus, than
��� ,

which is greater than the modulus of any coefficient of�����. The thresholds sequence is initialized as
��� ��,

yielding �� � �, which leads to a decreasing sequence��� (see also eq. (4)), with
��� � ��� � � � � � ��
�� ���
, where

��
 is the final threshold (reached when�����
 +�, � � for all �).

Thus,
��� splits the coefficients��� � ����� ������ in

two disjoint vectors, which means that thresholding�����
by
����� amounts to thresholding directly���. Hence,

successive thresholdings of��� are useless and the final

thresholds
��
 can be computed in a previous step of the

algorithm4.

D. Fixed point algorithm

Provided that we choose
" � � (see eq. (1)), the

algorithm writes as: for each scale� and
��� being given:

1) compute $�� as %$��&� �
'( 	
 %
��
� �+������ �����,&�, where

������� � !"# '# if
��� !�#

�# if
��� � � $

2) compute
����� as

����� � -�. $��,
and loop till convergence. This boils down to the fol-

lowing iterative scheme:����� � -�. % '( 	
 %
��
� �+������ �����,&��
4In this paper, the same basis is considered during successive

iterations. This is the case, as in [1], [2], if no best basis selection

procedure is included in every iteration.
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Considering function* defined as

* +�, � -�. % '( 	
 %
��
� �+������ ���,&�# (5)

the final threshold is computed by the fixed-point descent

algorithm
����� � * +��� , (see figure 1(b)).
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Fig. 1. For a given empirical distribution of����� and a given�
: (a) functions � 2 ��	
 (for 0�1 2 3) and � 2 	, showing

the fixed point interpretation and the final value	� 2 ��
 of the

algorithm; (b) histogram of the absolute values of����� . The dashed

lines represent the threshold, which separates the noise (small values)

from the informative signal.

We have to verify that the function defined in (5) has

at least one fixed point. Indeed, it is straightforward that* (see figure 1(a)) is a piecewise constant monotonic

(increasing) positive function, defined for all� � ��
and taking values in a finite set of real numbers, since

the dimension of��� is finite (for compactly supported

wavelets). The values of the function* depend on the

multiplicative user constant-�. , so certains conditions

must be fulfilled by this constant in order to assure the

existence of a fixed point:� given � so that there exists
��
� such that� !�
��
� � ! �, one can find a finite constant-�. which

assures* +�, � �;

� for the given-�. , one can find� � � large enough

to have* +�, ! �.

As a consequence of these observations, there exists

at least a fixed-point�� for *: * +�� , � �� #�� �
�� . One can prove that the iteration

����� � * +��� ,
yields successive decreasing values of the thresholds (see

figure 1(a)) and converge towards the first encountered

fixed point, i.e., the greatest (see Appendix). This fixed-

point satisfies the stop criterion (2) for
" � �, so it is

the final researched threshold
��
.

To conclude this discussion, let us mention that the

number of the fixed-points of the function* may vary,

depending on the value of the constant-�. and the shape

of the histogram of the
��
� s. Thus, the fixed point

interpretation enlightens the role of the constant in the

iterative thresholding: the user must choose an-�. big

enough to ensure the convergence of the algorithm to a

strictly positive value. On the other hand, the thresholds

values increase with the value of-�. , so an excessive

value of-�. will lead to an early stop of the algorithm

(i.e., no or little signal is extracted from noise). In fact,

in practical implementations, the value of-�. must be

bounded: if-�. � ���+���� �,$�� , one can easily see that

the convergence point is reached after the first iteration

and no thresholding is performed.

We also have to note that, as the function* may

have several fixed points, the final value of the threshold

depends on the initializing value of the
��� sequence:

an initialization
��� �� � can lead to an increasing

sequence of thresholds and/or a convergence point that is

not necessarily the largest fixed-point of the function*.

In fact, the user must respect the following restrictions

in the choice of the parameters:� the algorithm must be initialized with�� � �
(
��� � �);

DRAFT



5

� the multiplicative constant-�. must be big enough

to assure the convergence to a non-vanishing point,

but not superior to
���+���� �,$�� , in order to separate

informative signal from noise.

IV. CONCLUSION

In this communication, an iterative wavelet–based

denoising method by Hadjileontiadiset al. [1], [2] is

interpreted as a fixed–point algorithm and intermediate

WDR steps are suppressed, which is possible providing

that no best basis selection is done.

Besides shedding light on the initial algorithm, this

enables to save much computational time. The amount of

saved time depends of course on the number of iterations

of the initial algorithm: the larger the number of itera-

tions, the larger the gain of CPU time. Implementation

on bowel sound denoising and segmentation has shown

a factor
 reduction of CPU time [5].

V. A PPENDIX

The goal of this appendix is to show that the fixed

point iterations don’t miss the largest fixed point. In the

following, we drop the scale index� for the sake of

simplicity. Let us note� the finite set of values taken

by the function* (5), and���� the set of the iteratively

computed thresholds (� �� �). Obviously, as the sequence

of thresholds is computed as* +�,, �� � �
#� � �� �.

Let us suppose that the largest fixed point of the

function * is missed by the iterative algorithm. That

means that there exists� � * +�, such as� � � and� ����#� �. This can be further rewritten as: there exists�
such as

���� ! �
! ��. But

���� � * +��,, so the first

inequality writes* +��, ! �. On the other hand,* is

monotonic increasing, so the second inequality implies* +�, � * +��,, which implies (because� is a fixed-point)

� � * +��,, which contradicts the first inequality. So the

hypothesis made at the beginning of the paragraph is

false: the largest fixed point is not missed by the iterative

algorithm.
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