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Abstract

This work aims to analyze the reference (montage) problem inelectroencephalographic (EEG) recordings. It is well accepted
that EEG signals are a mixture of cerebral and extra-cerebral sources, and the solution to the reference problem dependson the
hypothesized mixing model. We focus here on an acquisition model using a distant reference electrode and propose a method
for determining and eliminating the reference signal whichdevelops and improves Huet al. work from [1]. The obtained
solution, based on a constrained blind source separation (BSS) algorithm, outperforms the cited method on simulated noisy
EEG signals for all noise levels.

I. I NTRODUCTION

An important issue for all for bio-potentials recording devices (EEG in particular) is to find a reference region in the human
body with an electrical activity as neutral as possible. Indeed, the electrical activity at the reference affects measurements
at all other active electrode sites [2], [3], [1]. As pointedout by all cited authors, it is impossible to find such a zero-
potential reference, and all recording devices use the so-called Common Reference (CR) montage:measuring electrodes are
referenced to a particular chosenreference electrode. Nevertheless, to ease the interpretation and to permit theuse of some
signal processing techniques like synchronicity measures(coherence and derived methods), several multiple combinations of
these CR measures have been derived by some simple manipulations. The most common of these montages are the Average
Reference (AR) and the Bipolar-Longitudinal (BL) montages. The AR montage is obtained in two steps: (a) compute an
average signal from all measuring electrodes recorded signals and (b) subtract it from all these channels, while the BL
montage is obtained by making the difference between two neighboring measuring electrodes (placed longitudinally on the
skull according to some pre-defined system, 10-20 being the most well known).

Regardless of the employed montage, all measured EEG signals can be seen as a result of an unknown mixture of several
unknown cortical sources, extra-cortical artefacts and noise. Blind Source Separation (BSS) can be used to separate these
mixed measured signals in “independent” sources, which canbe further-on used either for artefact elimination or for normal
or pathological brain activity evaluation [4], [5], [6], [7]. Another application of BSS was proposed by Hu, Stead and
Worrel [1], which introduce two methods for reference identification and removal based on blind source separation of the
BL montage. Their methods are based on a strong hypothesis onthe electrical activity propagation, which allow to write
a constrained model for the EEG recordings. We briefly present in the second section of this paper the hypothesis and the
methods introduced in the cited paper [1].

The main contribution of this letter is presented in the third section. Hypothesizing a mixture model similar to the one
proposed by [1], we develop a more accurate BSS based method of reference identification and removal, which can be applied
(with slight modifications) regardless of the employed montage (CR, AR of BL). The fourth section presents comparative
results on simulated and real signals and discusses the limits of all BSS based approaches (ours included) and their possible
further applications.

II. REFERENCE IDENTIFICATION BYBSS

The classical instantaneous linear mixing model writes:

x(k) = As(k) (1)

wherex is a vector ofM observed signals (EEG measuring electrodes),A is the unknown full-column rank mixing matrix
(M ×N ) ands is the vector ofN independent unknown sources (in the classical approachM = N , that is, we have the
same number of sensors and sources).

In order to estimate the original sources, a reverse linear transformationB must be obtained such as:

y = Bx (2)

with y a vector ofN estimated sources andB the N × M linear transformation that allows separating the mixed signals
in their independent components. Theoretically, such transformationB should be the (left-) inverse of the mixing matrix
A. However, obtaining the exact inverse of the mixing matrixA is impossible (column permutation or multiplication by a
constant is equivalent to source permutation or multiplication) [8]. Thus, source separation algorithms try to find a matrix
B such asG = BA be a permuted and scaled diagonal matrix (one non-null valueby line and column), which implies
that the sources are recovered, except for their order and their amplitude.
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This classical BSS model supposes ideally measured signals, i.e., zero-referenced. As real electrophysiological recordings
have a non-null common reference, Huet al. [1] proposed a modified mixing model including the common reference signal,
which can be written as:
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with r being the common reference signal andQ the new mixing matrixM × N + 1. Implicitly, although not clearly
stated nor proven, this approach is based on the hypothesis that the non-zero reference signal is independent from all other
sources and thus from ideally zero-referencedx. In the recording setup from [1], the signals are acquired from intracranial
electrodes (depth or subdural grids) referenced to a metallic plot placed on the head surface (vertex). The authors suppose
that the intracranial electrical activity is independent from the one on the surface (that is, the signalr can be considered as
an independent source)1.

From equation (3) it can be easily seen that the common referenced measures can be written as:

xc = x− r[1 . . . 1]T (4)

In [1], the CR and the BL montages are used to develop two methods for reference signal identification. The bipolar
montage BL can be obtained by making differences between pairs of signals fromxc, respectively by subtracting the
corresponding lines of the matrixA. This subtraction obviously eliminates the influence of thereference signalr from the
BL montage.

We briefly present here the second more elaborated method. The basic idea is that by separating the reference-free BL
montage, one will obtain theyb sources as a linear mixture of all subjacent independent zero-referenced sourcess, although
not well separated. Therefore, ideal zero-referenced signals x can be obtained by mixingyb and thus the CR measuresxc

also:
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with A and Q the mixing matrices allowing to obtain the measured signalsfrom the sourcesyb estimated from the BL
montage separation (themselves a linear combination of thereal sourcess) and the referencer. After some manipulations
(see [1] for details) one can find the elements of theA matrix:

ab(i, j) =
E[xc,iyb,j]
E[y2

b,j ]
, i = 1 . . .N, j = 1 . . . P

with xc,i being theith signal of the CR montage,yb,j the jth estimated source obtained after separating the BL montage
andE[.] the mathematical expectation. Next,N estimated versions of the reference signalr̂2 are obtained as:

r̂2,i = xc,i −
P∑

l=1

E[xc,iyb,l]
E[y2

b,l]
yb,l, i = 1 . . .N (6)

or, in matrix form,r2 = xc −As. The final estimated reference as an averaged version of (6):

r̂2 =
1
N

N∑

i=1

r̂2,i (7)

III. PROPOSED ALGORITHM FOR REFERENCE IDENTIFICATION

The previously described approach leads to convincing results, but it has two main drawbacks: it needs averaging of the
different obtained references and, mainly, it depends on the employed BSS algorithm. We propose in this section a novel
approach that addresses both problems.

1A different model, based on the assumption that the reference electrode itself records a mixture of sources, which couldbe more realistic for cephalic
references in both intracranial and scalp recordings, is proposed in [9].



A. Unscaled reference estimation

Assume the mixing model (3) with a full rank mixing matrixQ. Classical BSS algorithms consist in two successive linear
transforms: (1) a second order whitening and (2) an orthogonal transform (see for example [8] for details).

The first step of our algorithm also consists in whitening. The measured signals are multiplied by a matrixW (M ×M )
obtained from the eigen-factorization of the covariance matrix Rc = V DV T of xc:

W = D−1/2V T (8)

to obtain a set of decorrelated signals of unit variancez:

z = Wxc = WQ[s r]T = T [s r]T (9)

In theory, source estimates could be found by invertingT , but this is impossible, as it depends on the unknownQ. In
classical BSS,M = N + 1 so T is unitary, and the next step consists in finding source estimatesy = Uz by multiplying
the whitened signalsz by another unitary matrixU (M ×M ), computed to optimize some independence criterion.

When M < N + 1, the separation problem is underdetermined. Still, in theory, the minimum squared error solution
would be given by the pseudo-inverse ofT , again impossible to compute because it depends onQ. But asT = W Q is
orthogonal (M × N + 1, orthogonal rows), its pseudo-inverse is its transposeT T . Let U = T T . Minimum squared error
source estimates could be found as:

[ŝ r̂]T = Uz (10)

As said previously,U cannot be found by transposing the unknownT , but only the last row ofU (noteduN+1) is needed
to find an estimate ofr. But uT

N+1 is the last column ofT :
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Consequently, the last ofU can be obtained by summing the columns of the whitening matrix W :

uN+1 = [−1 · · · − 1]W T (12)

so the reference estimation̂r can be found as:

r̂∗n = uN+1Wxc = [−1 · · · − 1]R−1
c xc (13)

B. Reference scaling

The previous development starts from the hypothesis that the sourcess, referencer included, and the whitened signals
z have equal unit variance. In general setups this is not necessarily the case, so the amplitude of the referencer̂∗n (13) is
not well estimated. A last step is then necessary to find the scaled referencêrn = αr̂∗n and thus the right amplitudeα. The
solution is given by the minimization of the mean squared error: min

α
E[(αr̂∗n − r)2].

As the ideally zero-referenced mixturex does not depend onα, the expression to be minimized can be rewritten as a
function of any signalxc,i, (i = 1 . . .M) from the CR montage:
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Noise powerσ2
n

0.5σ2
r σ2

r 2σ2
r

SNRr̂2 7.19dB 5.42dB 3.06dB
SNRr̂n 7.72dB 5.92dB 3.39dB

TABLE I: Mean signal to error ratios for the two estimated references and three noise powers, averaged over 2500 simulations
(50 mixing matrices× 50 noise sequences)

The minimization of (14) with respect toαi leads for eachxc,i to:
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independent of the channel numberi.
To summarize, under the initial hypothesis that the reference r is independent from all other sourcess constituting the

measured CR mixturexc (eq. 3), an estimate of the reference can be found by the following procedure:

1) Whiten the measured CR montagexc

2) ComputeuN+1 according to (12)
3) Compute the unscaled referencer̂∗n from (13)
4) Scaler̂∗n by (15) to find the final reference estimater̂n = αr̂∗n

IV. RESULTS AND DISCUSSION

This section presents some simulation results comparing the newly proposed method to the second method from [1]
(comparisons with the first method from [1] are not presentedhere, as the second method performs better, according to the
authors). The sourcess were created to simulate frequencies in real EEGs (physiological brain rhythms) and an eye-blinking
artefact, the simulated referencer being an ECG type signal (as for a scalp EEG recorded with a neck reference for example)
(figure 1a). The ideal zero-reference mixturex was obtained using a random matrix (uniform distribution in[-1 1]). Starting
from x andr, we obtained the common reference montagexc. Both x andxc are presented figures 1b and 1c. As it can
be seen, the mixture is underdetermined (7 sources, reference included, and 6 measures).

In order to test the robustness of our method to noisy inputs,we added zero-mean Gaussian to the CR mixturexc.
Different noise variances were used:σ2

n = 0.5σ2
r , σ2

r , 2σ2
r (with σ2

r being the reference variance).
To have a reliable simulation, 50 random mixing matrices were used to obtainx andxc, and for each of them we generated

50 noise simulations for each noise power. According to our simulations, the noise power influences both estimated references
r̂2 (7) andr̂n (13), but for all cases, the newly introducedr̂n is closer to the real referencer than r̂2. Mean signal to error
ratios (averages over 50 mixing matrices× 50 noise sequences) were computed according to:

SNRr̂ = E[r2]/E[(r − r̂)2]

both for r̂2 and r̂n, the results being given table I2.
The main application of the estimated reference is the construction of a corrected montage, obtained asx̂ = xc +

r̂n[1 . . . 1]T . An example without noise, to ease the comparison, is shown figure 1d. This reconstruction can be used further
on either for clinical interpretation or for automatic procedures based on synchrony measures among EEG channels (coherence
and similar). Indeed, the presence of a common reference in the measures will increase this synchrony and may lead to
erroneous conclusions [10], [11] (see figure 2 for an example).

It must be noted here that the above procedure (as the one described in [1]) starts from the hypothesis that the reference
signal is independent from the other sources (i.e., the reference electrode records only one source). This is generally the case
for depth EEG recordings (first applications, nor presentedhere, are promising), but not for head referenced surface EEG,

2Moreover, other simulations performed with highly underdetermined mixtures (M ≪ N , not shown here) indicate that our method significantly improves
the reference estimation, compared tor̂2.
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Fig. 1: Simulation example
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Fig. 2: Coherence between signals 1 and 5 for the ideal zero-referenced mixturex (left), CR montagexc (center) and
corrected montagêx (right).

when the reference is itself a mixture of sources (see [9] fordetails on this model). Applying these reference elimination
methods when the initial hypothesis is not respected might lead to false results: if the real mixing matrix doesn’t have a
known column the estimated reference will be meaningless.

A first sight appealing application would be the improvementof cerebral source estimation by BSS: constraining the
mixing matrix as in (1) leads to the estimation of one of the sources, namelyr. Using r̂n to correct the montage means
the elimination of one of the sources from the mixture, so an easier separation. Unfortunately, this reasoning is false:the
referencer is itself estimated as a linear combination of the CR measures xc (13) and, as long as the estimation is not
perfect, the corrected montagêx will still be a linear mixture of all sources,r included.

V. CONCLUSION

Reference estimation and elimination in EEG recordings remains a challenging and useful problem because of the potential
benefits in interpretation and automatic processing. The method introduced in this paper, derived from a BSS model
(independent reference) improves previously proposed approaches by approximately 10% of SNR (in dB). The method
is robust to noise and to mixing matrix characteristics.

Potential uses of the proposed reference elimination algorithm are mainly in synchrony analysis, but it can also be routinely
employed to derive a new EEG montage, alternative to classical average reference or bipolar montages.

An interesting perspective is to estimate the error betweenthe estimated reference and the real one. First results, not
shown here, indicate that it depends (non-linearly) on the mixing characteristics (number of electrodes, mixing coefficients).
A detailed analysis should indicate in which conditions theestimate is reliable and should be used.
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