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Reference estimation in EEG recordings
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This version contains a slight improvement of the paper presented at EMBC’ 10, concerning the computing of the
scaling factor (equation 15 in this version) Abstract
ra

This work aims to analyze the reference (montage) probleateictroencephalographic (EEG) recordings. It is well pte
that EEG signals are a mixture of cerebral and extra-cdrebraces, and the solution to the reference problem depamdse
hypothesized mixing model. We focus here on an acquisitiodehusing a distant reference electrode and propose a thetho
for determining and eliminating the reference signal whilevelops and improves Het al. work from [1]. The obtained
solution, based on a constrained blind source separati®&s)Blgorithm, outperforms the cited method on simulateidyno
EEG signals for all noise levels.

. INTRODUCTION

An important issue for all for bio-potentials recording dms (EEG in particular) is to find a reference region in thenhn
body with an electrical activity as neutral as possible.ekd] the electrical activity at the reference affects messants
at all other active electrode sites [2], [3], [1]. As pointedt by all cited authors, it is impossible to find such a zero-
potential reference, and all recording devices use thealeecCommon Reference (CR) montag®asuring electrodes are
referenced to a particular chosesierence electrode. Nevertheless, to ease the interpretation and to permitisbeof some
signal processing techniques like synchronicity meas{a@serence and derived methods), several multiple cortibirsaof
these CR measures have been derived by some simple mamipslathe most common of these montages are the Average
Reference (AR) and the Bipolar-Longitudinal (BL) montagéee AR montage is obtained in two steps: (a) compute an
average signal from all measuring electrodes recordedalsigand (b) subtract it from all these channels, while the BL
montage is obtained by making the difference between twghheiring measuring electrodes (placed longitudinally fos t
skull according to some pre-defined system, 10-20 being thst mell known).

Regardless of the employed montage, all measured EEG sigaalbe seen as a result of an unknown mixture of several
unknown cortical sources, extra-cortical artefacts andendlind Source Separation (BSS) can be used to sepaesde th
mixed measured signals in “independent” sources, whichbeafurther-on used either for artefact elimination or formal
or pathological brain activity evaluation [4], [5], [6], 7Another application of BSS was proposed by Hu, Stead and
Worrel [1], which introduce two methods for reference idfcdtion and removal based on blind source separation of the
BL montage. Their methods are based on a strong hypothediseoelectrical activity propagation, which allow to write
a constrained model for the EEG recordings. We briefly preisethe second section of this paper the hypothesis and the
methods introduced in the cited paper [1].

The main contribution of this letter is presented in thedtsection. Hypothesizing a mixture model similar to the one
proposed by [1], we develop a more accurate BSS based metheigence identification and removal, which can be applied
(with slight modifications) regardless of the employed naget (CR, AR of BL). The fourth section presents comparative
results on simulated and real signals and discusses this lirhall BSS based approaches (ours included) and theiitpess
further applications.

Il. REFERENCE IDENTIFICATION BYBSS
The classical instantaneous linear mixing model writes:

x(k) = As(k) 1)

wherex is a vector ofM observed signals (EEG measuring electrodds)s the unknown full-column rank mixing matrix
(M x N) ands is the vector of N independent unknown sources (in the classical apprddéck N, that is, we have the
same number of sensors and sources).

In order to estimate the original sources, a reverse lineaistormationB must be obtained such as:

y = Bz (2)

with y a vector of NV estimated sources ard the N x M linear transformation that allows separating the mixechaisg

in their independent components. Theoretically, suchsfamation B should be the (left-) inverse of the mixing matrix
A. However, obtaining the exact inverse of the mixing matdixs impossible (column permutation or multiplication by a
constant is equivalent to source permutation or multigiieg [8]. Thus, source separation algorithms try to find arira
B such asG = BA be a permuted and scaled diagonal matrix (one non-null vayuine and column), which implies
that the sources are recovered, except for their order aidamplitude.



This classical BSS model supposes ideally measured sjgrealzero-referenced. As real electrophysiological recayglin
have a non-null common reference, Hual. [1] proposed a modified mixing model including the commorerefice signal,
which can be written as:
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with r being the common reference signal ag@dthe new mixing matrixA/ x N + 1. Implicitly, although not clearly
stated nor proven, this approach is based on the hypotliegishie non-zero reference signal is independent from h#rot
sources and thus from ideally zero-referenaedn the recording setup from [1], the signals are acquiredhfintracranial
electrodes (depth or subdural grids) referenced to a rieefdtit placed on the head surface (vertex). The authorsasep
that the intracranial electrical activity is independewinfi the one on the surface (that is, the signabn be considered as
an independent source)

From equation (3) it can be easily seen that the common refecemeasures can be written as:

x.=x—r[1... 17 (4)

In [1], the CR and the BL montages are used to develop two ndettiar reference signal identification. The bipolar
montage BL can be obtained by making differences betweers disignals fromz., respectively by subtracting the
corresponding lines of the matriA. This subtraction obviously eliminates the influence of teference signat from the
BL montage.

We briefly present here the second more elaborated methadbasic idea is that by separating the reference-free BL
montage, one will obtain thg, sources as a linear mixture of all subjacent independentiaderenced sources although
not well separated. Therefore, ideal zero-referencedaigin can be obtained by mixing, and thus the CR measures
also:

I Y | _7| Y
Te = A . |:,’.:|_Q|:,,,:|a (5)
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with A and Q the mixing matrices allowing to obtain the measured sigfi@m the sourcegy, estimated from the BL

montage separation (themselves a linear combination ofethlesources) and the reference. After some manipulations
(see [1] for details) one can find the elements of thenatrix:

Elzc,iyp,]
E[ylij} ’

with z.; being theit" signal of the CR montagey, ; the j'* estimated source obtained after separating the BL montage
andE[.] the mathematical expectation. NeX, estimated versions of the reference signabre obtained as:

(i, j) = i=1...N,j=1...P

~ - Elzc,iyp,1] .
T2 =$c,i—;myb,l,lz 1...N (6)
or, in matrix form,r, = . — As. The final estimated reference as an averaged version of (6):
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[1l. PROPOSED ALGORITHM FOR REFERENCE IDENTIFICATION
The previously described approach leads to convincingteedaut it has two main drawbacks: it needs averaging of the

different obtained references and, mainly, it depends enetnployed BSS algorithm. We propose in this section a novel
approach that addresses both problems.

1A different model, based on the assumption that the referefectrode itself records a mixture of sources, which coeldnore realistic for cephalic
references in both intracranial and scalp recordings, apgsed in [9].



A. Unscaled reference estimation

Assume the mixing model (3) with a full rank mixing matiGx. Classical BSS algorithms consist in two successive linear
transforms: (1) a second order whitening and (2) an orthagtwansform (see for example [8] for details).

The first step of our algorithm also consists in whiteninge Theasured signals are multiplied by a ma#k (M x M)
obtained from the eigen-factorization of the covariancérimak?. = VDV of x.:

W =D '?vT 8)
to obtain a set of decorrelated signals of unit variaace
z2=Wzx,=WQ[s r|" =T[s r|" 9)

In theory, source estimates could be found by invertingbut this is impossible, as it depends on the unknddnin
classical BSSM = N + 1 so T is unitary, and the next step consists in finding source estisy = Uz by multiplying
the whitened signals by another unitary matriXJ (M x M), computed to optimize some independence criterion.

When M < N + 1, the separation problem is underdetermined. Still, in mpethe minimum squared error solution
would be given by the pseudo-inverseBf again impossible to compute because it depend®oBut asT = WQ is
orthogonal (4 x N + 1, orthogonal rows), its pseudo-inverse is its transpgbse Let U = T"". Minimum squared error
source estimates could be found as:

5 AT =U=z (10)

As said previouslylU cannot be found by transposing the unkndnbut only the last row oV (notedwu 1) is needed
to find an estimate of. But u},, , is the last column off:

-1
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Consequently, the last d can be obtained by summing the columns of the whitening s
uyi = [-1---—1 W7 (12)
so the reference estimatiancan be found as:
M =un We,=[-1---— 1|R 'z, (13)

B. Reference scaling

The previous development starts from the hypothesis tfestlurcess, referencer included, and the whitened signals
z have equal unit variance. In general setups this is not sadgsthe case, so the amplitude of the referergd13) is
not well estimated. A last step is then necessary to find takedaeference,, = o) and thus the right amplitude. The
solution is given by the minimization of the mean squaredretnin E[(af — 7)2].

As the ideally zero-referenced mixtuse does not depend onc,Y the expression to be minimized can be rewritten as a
function of any signak.;, (i =1...M) from the CR montage:

El(aiiy, —1)*] = Bl(zi —r + )] = Bl(2e, + i)’
Ela? ] + ofB[7?] + 205 Bz, (14)



Noise powerc2
0.50% o? 2072
SNR;, 7.19dB 5.42dB  3.06dB
SNR; | 7.72dB  5.92dB  3.39dB|

TABLE |: Mean signal to error ratios for the two estimatedereinces and three noise powers, averaged over 2500 siomglati
(50 mixing matricesx 50 noise sequences)

The minimization of (14) with respect ta; leads for each. ; to:
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independent of the channel number
To summarize, under the initial hypothesis that the refegenis independent from all other sourcesconstituting the
measured CR mixture. (eq. 3), an estimate of the reference can be found by thewimitpprocedure:

1) Whiten the measured CR montage

2) Computeuy 1 according to (12)

3) Compute the unscaled referentefrom (13)

4) Scaler; by (15) to find the final reference estimatg = a7

IV. RESULTS AND DISCUSSION

This section presents some simulation results compariagndwly proposed method to the second method from [1]
(comparisons with the first method from [1] are not preseteik, as the second method performs better, according to the
authors). The sourceswere created to simulate frequencies in real EEGs (phygitdbbrain rhythms) and an eye-blinking
artefact, the simulated referencéeing an ECG type signal (as for a scalp EEG recorded with la reference for example)
(figure 1a). The ideal zero-reference mixturevas obtained using a random matrix (uniform distributioff-In1]). Starting
from z andr, we obtained the common reference montageBoth « andx. are presented figures 1b and 1c. As it can
be seen, the mixture is underdetermined (7 sources, refianluded, and 6 measures).

In order to test the robustness of our method to noisy inpués,added zero-mean Gaussian to the CR mixteye
Different noise variances were usetf, = 0.502, 02,202 (with o2 being the reference variance).

To have a reliable simulation, 50 random mixing matricesanesed to obtaix andx., and for each of them we generated
50 noise simulations for each noise power. According to ouukations, the noise power influences both estimated eafars
7o (7) andr, (13), but for all cases, the newly introducegl is closer to the real refereneethan,. Mean signal to error
ratios (averages over 50 mixing matrices50 noise sequences) were computed according to:

SNR;: = E[r?|/E[(r — )]

both for 7, and#,, the results being given tablé.|

The main application of the estimated reference is the cactsbn of a corrected montage, obtained &as= x. +
7, [1...1]T. An example without noise, to ease the comparison, is shayunefild. This reconstruction can be used further
on either for clinical interpretation or for automatic peatres based on synchrony measures among EEG channele(omhe
and similar). Indeed, the presence of a common referenckeimteasures will increase this synchrony and may lead to
erroneous conclusions [10], [11] (see figure 2 for an example

It must be noted here that the above procedure (as the onglabm [1]) starts from the hypothesis that the reference
signal is independent from the other sourdes, (the reference electrode records only one source). Thierisrglly the case
for depth EEG recordings (first applications, nor presefige:, are promising), but not for head referenced surfad®,EE

2Moreover, other simulations performed with highly undéedmined mixtures{/ < N, not shown here) indicate that our method significantly ioeps
the reference estimation, comparedrto
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Fig. 2: Coherence between signals 1 and 5 for the ideal zfsvemced mixturec (left), CR montager. (center) and
corrected montage (right).

when the reference is itself a mixture of sources (see [9dftrils on this model). Applying these reference elimorati
methods when the initial hypothesis is not respected migdd lto false results: if the real mixing matrix doesn’t have a
known column the estimated reference will be meaningless.

A first sight appealing application would be the improvemehterebral source estimation by BSS: constraining the
mixing matrix as in (1) leads to the estimation of one of tharses, namely-. Using 7, to correct the montage means
the elimination of one of the sources from the mixture, so asiex separation. Unfortunately, this reasoning is fatise:
referencer is itself estimated as a linear combination of the CR measure(13) and, as long as the estimation is not
perfect, the corrected montage will still be a linear mixture of all sources; included.

V. CONCLUSION

Reference estimation and elimination in EEG recordingsaiesa challenging and useful problem because of the patenti
benefits in interpretation and automatic processing. Théhodeintroduced in this paper, derived from a BSS model
(independent reference) improves previously proposedoaghes by approximately 10% of SNR (in dB). The method
is robust to noise and to mixing matrix characteristics.

Potential uses of the proposed reference elimination gfgorare mainly in synchrony analysis, but it can also beinaly
employed to derive a new EEG montage, alternative to clalsaieerage reference or bipolar montages.

An interesting perspective is to estimate the error betwbenestimated reference and the real one. First results, not
shown here, indicate that it depends (non-linearly) on tiréng characteristics (number of electrodes, mixing caoddfits).

A detailed analysis should indicate in which conditions dstimate is reliable and should be used.
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