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Abstract— The information processing in the brain is gov- method is then applied on these features to identify the
erned by large neural ensembles organized in networks. The different neurons (cluster) from which the spikes originat
firing of the neuronal cells in each neural population bring  cyystering approach such as K-means or Superparamagnetic
insight on the role of this structure for a given task or on lusteri SPC) h b idered. The SPC h
its involvement in a pathology. Such investigations require the clustering ( ) have ee-n CONSIGEred. (? approac
detection and sorting of neuronal spikes from the recordings. has the advantage to consider non-parametric cluster shape
This is known as a challenging task due to the high level (in particular the gaussianity of the spike features is not
of surrounding local field potential (LFP) and to the strong assumed) and satisfactory performance are reported with
similarities between the patterns to classify. In this article we this approach [2]. However it requires user parameter ginin
present a new method for spike classification leaning on the sep- h th t ft ¢ t iteri
aration between the spike waveform and the background LFP. (such as the pa_rame erp emperfa ure or stop criteriod), an
The approach is rooted in a Bayesian framework integrating manual expert Intervention are St|” necessary at the end Of
prior on the LFP spectral density and considering mixture of the clustering process for achieving satisfactory clasgifin
Gaussian for the classification. The algorithm provides both the performance [2], [1]. Few parametric and non-parametric
posterior mean of the spike waveforms for each cluster as well Bayesian inference methods have also been developed for

as the posterior mean of each singular spike waveforms. spike sorting purposes [3], [4]. Unlike common approaches
Index Terms— Spike/LFP Separation, Neural Spike Classifi- Which produce hard label for each identified spikes, Bayesia

cation, Bayesian Approach, Variational Approach approaches provide (posterior) probabilities for the liaigp
of each individual spike, which can be considered in subse-
I. INTRODUCTION guent analyses. Also, such probabilistic framework ndfura

: . : . take into account the inherent uncertainties in the reogrdi
Extra-cellular micro-recordings give the opportunity to ) . -
. - Most of the methods previously cited are considering only
study the brain activity at the level of the neuronal cells . : L
e L , : ... the high frequency part of the signal, however some signifi-
Identifying the cells at the origin of each spike gives ilfig ant features of the spikes may lie in the low frequency range
on their involvement in the processing of a specific tasEor this reason it is preferablzzl to separate roq erl i/he L?:P
or stimulus. Due to different characteristics of the reeard o > P : b properiy
and the spiking activity while proceeding to the classifaat

neurons (types of neurons, morphologies, relative pasitio : : . : .
. . o of the spikes. In this paper we propose an iterative Bayesian

with respect to the micro-electrode), the spiking wavefrm o
approach to properly separate the LFP from the spiking

of two different neurons will be seen in the signal with diffe _— s . .
.activities as well as classifying the spikes simultanepusl

ent shapes and amplitudes. It is then possible to distihgui imilarly as in [5], we use a prior on the power spectral
them. The task is nonetheless challenging because the Io%al y ' P P P

field potential (LFP) generally masks most of the Splkm%e_nsny of the LFP to pr_oceed_to Its separatlon from the
o A L .. Spikes. We rely a a classical spike detection step (300-6000
activities, making it harder to distinguish between simila

spike waveforms originating from different cells. Hz band thresholding) to identify the spike support of the

Classical approaches first consider a pass-band filter (gesrij-lkes’ and we then proceed to the separation and to the

cay i the band 3006000 ) e sty belart= 1oL AN o he wide band ot The enk,
is assumed to stand mainly for the LFRRe( the activity of Maximum A Posteriori (MAP) decision stratg < o ' lied
the neural tissue surrounding the electrode), while thadrig gy bp

frequency activities are considered to hold the main part £9r the classification. We demonstrate that separating the
q y P spikes from the LFP indeed enhance the classification of the

the spiking activities. The time instants of the spikes arepikes The advantage of separating the spiking waveforms
identified by applying a threshold to the high frequency P&l om the LFP is evaluated on a realistic set of simulated data

of the signal. After rejection of false detection (artefct . .
discriminant features are then extracted from the detecté‘(yaulabIe online [6].
spike shapes, considering aboutto 3ms time window
around the maximum peak of the spike shape. Most efficient
approaches have been reported to use wavelet decomposiln this section we present the general Bayesian formaliza-
tion and to select a given number of wavelet coefficiention of the problem. We consider that each recorded channel
with distributions most differing from a normal distribati ¥ of length7" can be decomposed as the addition of the LFP

(e.g., based on a Kolmogorov-Smirnov test) [1]. A clusteringv and the spiking signab, up to e modelling the additive
noise:
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Il. THE GENERATIVE MODEL



The spiking signalS can be written as a sum aV  here because it is not possible to find a closed-form for
spike waveforms with a time support of few millisecondsthe joint posterior density of the latent variables, S, 7).
or alternatively as a sum oN = Ek . N, waveforms The VB approach consists in introducing the probability

originating from K different units (neurons): density ¢(w, S, Z) = q(w )Hf:[:l q(sn)q(zn), assuming the
K N posterior independence of the latent variables. This tiensi
S — Z S, k0, = Z Z sk x gk @) is optimized so that it approximates the true posterior itigns

p(w, S, Z|y). The update of these densities (E-step) are

. ) ) ) obtained as follows:
5, (or 6%) being a dirac centered at the time location of

the spike with waveforns,, (or s*), andx is the convolution

k=1n=1

product.6* = S 5% is the k™" neuron spike train. These log(q(w)) = (log(p(y,w, S, 2))s.z @)
waveforms can overlap in time, except for two waveforms log(q(sn)) = (log(p(y,w, S, 2))w,zs..,  (8)
originating from the same neuron, due to the assumption log(q(zn)) = (log(p(y,w,S,Z))w,s 2., 9)

of refractory intervals. The waveformg are supposed to
follow a gaussian distribution over a mean waveformp
with uniform variances? (accounting for the uncertainties
in the data, small variations of the spike waveform, drifts o
the electrodes...). The spike waveforigxtracted from the

We do not to deal with overlapping spikes, thus we can
consider the independence of the densities oveNh&pike
S and label Z. The update ofg(z,) and ¢(s,) can be

signal y are then supposed to be a mixture of Gauss:'anlmpllflecj to:

Let introduce the hidden variablg, taking its values in

the set{\y, ..., Ak }, A, being the class of spike waveforms log(q(sn)) = (log(p(y,w, S, Z))w,z, (10)

originating from the K* neuron: log(q(zn)) = (log(p(y,w,S,Z))w,s, (11)
N

p(S|Z) = H (8nlzn) (3) The densitieg(w) andq(s,,) can be identified as multivariate
n=1 Gaussian distributions with mean and s,, and covariance
p(snlzn =) = N(uw,oIz,) (4) X, andé, respectively:
with T, the length of the spike waveforriy, the T, x T R N

identity matrix. The posterior probabilitieg(z,|s,) are = Y5 (Y2 + 0¢Tr)” ZS * 0 — pe) (12)

estimated providing a soft labelling of each spike. If a n=t

hard decision is needed, a Maximum A Posteriori (MAP) 3, = 62y, (v25! 4 0217) ! (13)

strategy can be used for the classification decision. Such
as in [5], w follows a gaussian distributioth/(0,vX,,),
where ¥, is computed from the PSD of the signaland 8, =62((072(y — 0 — pe) * 6_p )17,
v is a_scalipg parameter. Finally, the nois@ollows a i.i:d +ZkK L q(zn = A)oy 2uk) (14)
gaussian distribution with meap. and variances?. This
PSD being roughly learned from the data, we will let the K
method adjust between (accounting for the signal space) 6, =02+ Z q(zn = /\k)gk—z (15)
ando? (accounting for the noise space). The likelihood of the k=1
observation given the parameters of the model then writes:
1 ) with II7, is the indicator functionli_r ;o 7,/9, (v *

p(ylw, S) oc exp ﬁ”y —w— 5[ (5) d_n )7, is the segment of the signalon the time support of
- o thent” spike. We suppose that the matk, is circulant [5],
and the full probability law of the model is given by: then the computation of the posterior covariance matrix of

_ w (requiring inversion of large matrix) can be efficiently

Py, w, 5, 2) = plyhw, S)p(w)p(S|12)p(2) © computed with Fast Fourier Transform (see section I11-B.2)
p(Z) being the prior probability over the coefficient of theThe approximate discrete posterior probabilitigs,,) are
gaussian mixture. The optimization of the model is carriediven by:
out through a variational Bayesian procedure detailed én th 5113

N . —T, T n l%”z""TU )

next section. q(zn = \g) X TRpoy, " ° €xp (16)

[1l. BAYESIAN SEPARATION/CLASSIFICATION . )
o o up to a normalization constant summing these probabilities
A. Variational optimization to 1. The M-step provides an update of the parameters of
A variational Bayesian (VB) approach is used to maxithe modeld = {v,uc,02, u1.x,>1.x}, by deriving the
mize the log-likelihood of the model, providing an iterativ log likelihood of the full model under mean field approx-
two step optimization scheme very similar to Expectationimation (.e., taking its expectation over the latent variables:
maximization. Note that an EM procedure is not eligible{log(p(y, w, S, Z;6°'4)))., s.z) with respect to each param-



eter and equating to: due to the spiking activities. Given an estimate of the PSD

) N g, equations (12), (13), (18) and (19) can be efficiently
N S A computed using the Fast Fourier Transform.
He = T(y w nZl Sp x0p) a7 p g

3) Estimation of the number of clusters (single units) and

1 . N R cluster parameters initialization: The numberK of spiking
ol = Zlly == 8 %6 — pcll3 : i i
€ T n=on ell2 neurons (SU) has to be pre-determined. Using a Gaussian
n=t N Mixture Model (GMM) and Expectation Minimization (EM)
& .2 with the high-passed filtered spike waveforms as an input,
Ftrace(Xw) + TS;U" (18) we determine the number of SU based on the MDL crite-

rion [10]. The true number of units are rather well estimated

1 o _
Y= thace((wtw +2)8,") (19)  for lower values (up to about ten SU), and tend to provide
ZN (20 = M) & a sub-estimation when higher number of neurons are to be
pe = == PEn = 2k) on (20) identified. This approach do not benefit from the LFP/spike
2 on=19(zn = Ai) separation provided by our algorithm. Starting from théb{su
. 1 ij:l q(zn = M) 1180 — 1|3 01 _)estimate given by the GMM-EM algorithm, we iteratively
% = T SN 4 = M) (21) increase the number of clusteisand we compute the MDL
s n=1 n =

. _ criterion after convergence of our algorithm by considgrin
with @' the outer product of the line vectai. the marginal joint log-likelihood of3,,, Z):

B. Initialization N K

1) Filtering and Spike detection: Following [7], [1], [2], ~ MPLvs(K) =~ leog(kzp(sn'zn = Ak)m)
the detection of the spikes is carried out by thresholdirg th n= =
high frequency part of the signal in the rarg# —6000H . 05 (Kx L= 1) xlog(N+T5) - (23)
The filter is a two pole butterworth band-pass filter with cutwith L = K(1 + T, + T,(Ts — 1)/2) — 1 the number of
off frequency set t800H z and 6000H z. The threshold is continuously valued real numbers required to specify the
computed as a multiple of the backround noise standarguster parameter§ny, i, 02 }. We stop the iteration when
deviationo,, within this high frequency band. The estimationA\/ DLy 5 (K + 1) > M DLy p(K).
of this parameter must be as robust as possible to artifact amihe spike shapes are initialized based on a naive approach:
to the spiking activity, and the Donoho-Johnstone universghe peak values of each spike waveformsin are ordered

thresholding method is used [8], [2]: and divided inK slices with even number of spike, /K.
Within each of thesd( bins aboutl0 spike shapes are ran-
) |z| domly selected, and their average are computed and affected
on = median(g-= =) (22) 16 the initial mean of the clusters. The initial variance foé t
and the threshold is set dsx o,, [2]. cluster are taken equal as the tenth of the standard deviatio

_ . . o of the original spike waveforms,.
2) LFP covariance matrix and circulant approximation:

The prior over the LFP signal is a gaussian distribution with IV. RESULTS

zero mean and covariancg®,,. The matrix ¥, is fixed We evaluate our algorithm on the data set from Ca-
while the scaling factory is estimated by the algorithm munas et al. [6], which provide realistic simulation of
and balance the respective contributions of the LFP and timeicro recordings containing units (SU) as well as multi-
background noise to the observed sigpal5]. Given the units (MU) originating from the surrounding neuronal pop-
huge size o&,, (T'x T, with T' the number of samples of the ulation. In these simulations, the presence2otip to 20
signal of the order of several thousands), we shall avoid itsits are simulated, and for each number of unit 5 signals
manipulation (matrix product, inversion, trace calculw)d of 10 minutes length (24Khz sampling rate) are available
we follow [5] by constraining®,, to be circulant, benefiting (https://www135.lamp.le.ac.uk/hgr3/). This providesame

of interesting properties of Toeplitz matrices [9]. Undemon ground-truth oB5 signals for comparing various spike
circulant approximation, inversion and product involvingsorting approaches [7], [11]. After the detection procedur
Toeplitz matrices can be carried out efficiently using th& FFthe number of false positives (artifacts) ranges frog to

of the sequence that defines the circulant. This FFT is knowh4% of the total number of detected spikes (respectively
to be the expected Power Spectral Density (PSD) of the LFfPom 5 to 123 false detections). On average over the
denotedg, and has to be estimated from the observed dasignals, only75.7% of all spikes (MU+SU) are detected
y. There are different possibilities for the estimationgofn  (std: 7.4%), while 96.5% of the SU spikes are detected (std:
this paper, an autoregressive power spectral density &sim1.9%).

(Yule-Walker method) is used, with a relatively low ord8r ( The performance of our algorithm is compared with these
in this paper). This way, we preserve the main charactesistiof the GMM-EM algorithm applied on band-passed time
of the LFP spectrum (the LFP being the main contributor tsamples (used to initialize the proposed approach, see sub-
y) while cutting out the contribution of the higher frequesgi section 11I-B.3). Both for GMM and for the proposed ap-



proach, we consider a time window dfns around the
maximum peak of the detected spikes5(ns before and
after). Our method can be seen as a combination of
GMM clustering algorithm with a signal separation betwee
the LFP and the spike waveforms, thus comparing it wit
GMM alone evaluate the contribution of separating the spiki
from the LFP and of considering low frequency feature
for classification purpose. We also provide comparison wi
Combinato [7], which proves to be more accurate than ti
approach presented in [11], [2].

The method is evaluated using the criteria from [7], [11
A cluster is counted as a hit if it contains more than 50¢
of a given simulated SU, and if at least 50% of the spike
originating from this unit are classified in this cluster.df
cluster does not match any unit and is not formed of at le¢
50% of MU spikes, it is counted as a false positive. W
provide p-value of a Wilcoxon signed-rank test to evaluat_
the significance of our results.

Our method significantly outperforms both the GMM ap
proach and Combinato, providingg.1% (std: 10.7%) hits,
while GMM provides70.6% (std: 8.2%) hits (p=0.0009) and
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Combinato achievesl.5% (std: 13.8%, p=0.001). Note that version of the signal is provided by the method through the
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1. Average of hits (solid lines) and FP (dashed lineshusber of

“simulated units.

Combinato performs slighly better than GMM, however novariable w. It might then provide a refined version of the
significantly (p=0.97). Considering only the data with highSTA as proposed by Zanas al. [5] for further spike/LFP

number of units (above 8), our approach achiex®s% (std:
9.2%) hits, GMM reache66.2% (std: 5.5%) hits (p=0.0034),
and 64.5% (std: 8.2%) for Combinato (p=0.0007). The
difference between GMM and Combinato is again not sig-1l
nificant (p=0.53). Figure 1, the average number of hits for
each number of simulated units in the signal is given. Our]
approach proves to be consistently better than Combinato or
GMM, the difference in performance being increased With[3]
the number of simulated spikes. We also evaluate the method
in term of false positives (dashed lines, not provided for
Combinato). The average number of false positives vary i|44]
the same ranges (from 0 to 3) and, as expected, tends to
increase with the number of simulated units. No significant’®]
difference are observed between GMM and the proposed
approach (p=0.87). Note that the presence of MU generatgs]
1.67 (std: 0.76) additional clusters on average.( clusters

with at least 50% of MU spikes). For these MU clusters 7]
as well as for the false positives, additional criteria sash
those described in [12] should be used to discard them.

V. CONCLUSION (8]

We propose a method for both extracting and classify{®]
ing spiking waveforms originating from several units. We
demonstrate that the proper extraction of low frequencjo]
features brings more accuracy to the classification task. Th
gain in performance is abo8t on average over all number L1
of simulated units. The method also proves to be competitive
with well-established methods of the literature. The \@rsi [12]
of the approach presented in this paper considers temporal
features for the classification step, while it remains theg t [13]
more discriminant features could be extracted). using
principal component analysis or wavelet transform. Anpthe
perspective not considered in this paper is that a despiked

relationship analysis [13].
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