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Abstract— The information processing in the brain is gov-
erned by large neural ensembles organized in networks. The
firing of the neuronal cells in each neural population bring
insight on the role of this structure for a given task or on
its involvement in a pathology. Such investigations require the
detection and sorting of neuronal spikes from the recordings.
This is known as a challenging task due to the high level
of surrounding local field potential (LFP) and to the strong
similarities between the patterns to classify. In this article we
present a new method for spike classification leaning on the sep-
aration between the spike waveform and the background LFP.
The approach is rooted in a Bayesian framework integrating
prior on the LFP spectral density and considering mixture of
Gaussian for the classification. The algorithm provides both the
posterior mean of the spike waveforms for each cluster as well
as the posterior mean of each singular spike waveforms.

Index Terms— Spike/LFP Separation, Neural Spike Classifi-
cation, Bayesian Approach, Variational Approach

I. I NTRODUCTION

Extra-cellular micro-recordings give the opportunity to
study the brain activity at the level of the neuronal cells.
Identifying the cells at the origin of each spike gives insight
on their involvement in the processing of a specific task
or stimulus. Due to different characteristics of the recorded
neurons (types of neurons, morphologies, relative positions
with respect to the micro-electrode), the spiking waveforms
of two different neurons will be seen in the signal with differ-
ent shapes and amplitudes. It is then possible to distinguish
them. The task is nonetheless challenging because the local
field potential (LFP) generally masks most of the spiking
activities, making it harder to distinguish between similar
spike waveforms originating from different cells.
Classical approaches first consider a pass-band filter (gen-
erally in the band 300-6000 Hz): the activity below300Hz
is assumed to stand mainly for the LFP (i.e., the activity of
the neural tissue surrounding the electrode), while the higher
frequency activities are considered to hold the main part of
the spiking activities. The time instants of the spikes are
identified by applying a threshold to the high frequency part
of the signal. After rejection of false detection (artefacts),
discriminant features are then extracted from the detected
spike shapes, considering about2 to 3ms time window
around the maximum peak of the spike shape. Most efficient
approaches have been reported to use wavelet decomposi-
tion and to select a given number of wavelet coefficients
with distributions most differing from a normal distribution
(e.g., based on a Kolmogorov-Smirnov test) [1]. A clustering

1Universit́e de Lorraine, CNRS, CRAN, F-54000 Nancy, France
steven.le-cam at univ-lorraine.fr

method is then applied on these features to identify the
different neurons (cluster) from which the spikes originate.
Clustering approach such as K-means or Superparamagnetic
clustering (SPC) have been considered. The SPC approach
has the advantage to consider non-parametric cluster shapes
(in particular the gaussianity of the spike features is not
assumed) and satisfactory performance are reported with
this approach [2]. However it requires user parameter tuning
(such as the parameter of temperature or stop criterion), and
manual expert intervention are still necessary at the end of
the clustering process for achieving satisfactory classification
performance [2], [1]. Few parametric and non-parametric
Bayesian inference methods have also been developed for
spike sorting purposes [3], [4]. Unlike common approaches
which produce hard label for each identified spikes, Bayesian
approaches provide (posterior) probabilities for the labelling
of each individual spike, which can be considered in subse-
quent analyses. Also, such probabilistic framework naturally
take into account the inherent uncertainties in the recording.
Most of the methods previously cited are considering only
the high frequency part of the signal, however some signifi-
cant features of the spikes may lie in the low frequency range.
For this reason it is preferable to separate properly the LFP
and the spiking activity while proceeding to the classification
of the spikes. In this paper we propose an iterative Bayesian
approach to properly separate the LFP from the spiking
activities as well as classifying the spikes simultaneously.
Similarly as in [5], we use a prior on the power spectral
density of the LFP to proceed to its separation from the
spikes. We rely a a classical spike detection step (300-6000
Hz band thresholding) to identify the spike support of the
spikes, and we then proceed to the separation and to the
classification iteratively from the wide band data. The spike
waveforms are considered as a mixture of gaussian, and a
Maximum A Posteriori (MAP) decision strategy is applied
for the classification. We demonstrate that separating the
spikes from the LFP indeed enhance the classification of the
spikes. The advantage of separating the spiking waveforms
from the LFP is evaluated on a realistic set of simulated data
available online [6].

II. T HE GENERATIVE MODEL

In this section we present the general Bayesian formaliza-
tion of the problem. We consider that each recorded channel
y of lengthT can be decomposed as the addition of the LFP
w and the spiking signalS, up to ǫ modelling the additive
noise:

y = w + S + ǫ (1)



The spiking signalS can be written as a sum ofN
spike waveforms with a time support of few milliseconds,
or alternatively as a sum ofN =

∑K
k=1 Nk waveforms

originating fromK different units (neurons):

S =
N∑

n=1

sn ∗ δn =
K∑

k=1

Nk∑

n=1

skn ∗ δkn (2)

δn (or δkn) being a dirac centered at the time location of
the spike with waveformsn (or skn), and∗ is the convolution
product.δk =

∑Nk

n=1 δ
k
n is thekth neuron spike train. These

waveforms can overlap in time, except for two waveforms
originating from the same neuron, due to the assumption
of refractory intervals. The waveformsskn are supposed to
follow a gaussian distribution over a mean waveformµk

with uniform varianceσ2
k (accounting for the uncertainties

in the data, small variations of the spike waveform, drifts of
the electrodes...). The spike waveformsS extracted from the
signal y are then supposed to be a mixture of Gaussian.
Let introduce the hidden variableZ, taking its values in
the set{λ1, ..., λK}, λk being the class of spike waveforms
originating from the kth neuron:

p(S|Z) =

N∏

n=1

p(sn|zn) (3)

p(sn|zn = λk) = N (µk, σ
2
kITs

) (4)

with Ts the length of the spike waveform,ITs
theTs×Ts

identity matrix. The posterior probabilitiesp(zn|sn) are
estimated providing a soft labelling of each spike. If a
hard decision is needed, a Maximum A Posteriori (MAP)
strategy can be used for the classification decision. Such
as in [5], w follows a gaussian distributionN (0, γΣw),
whereΣw is computed from the PSD of the signaly and
γ is a scaling parameter. Finally, the noiseǫ follows a i.i.d
gaussian distribution with meanµǫ and varianceσ2

ǫ . This
PSD being roughly learned from the data, we will let the
method adjust betweenγ (accounting for the signal space)
andσ2

ǫ (accounting for the noise space). The likelihood of the
observation given the parameters of the model then writes:

p(y|w, S) ∝ exp
1

2σ2
ǫ

||y − w − S||22 (5)

and the full probability law of the model is given by:

p(y, w, S, Z) = p(y|w, S)p(w)p(S|Z)p(Z) (6)

p(Z) being the prior probability over the coefficient of the
gaussian mixture. The optimization of the model is carried
out through a variational Bayesian procedure detailed in the
next section.

III. B AYESIAN SEPARATION/CLASSIFICATION

A. Variational optimization

A variational Bayesian (VB) approach is used to maxi-
mize the log-likelihood of the model, providing an iterative
two step optimization scheme very similar to Expectation-
maximization. Note that an EM procedure is not eligible

here because it is not possible to find a closed-form for
the joint posterior density of the latent variables(w, S, Z).
The VB approach consists in introducing the probability
densityq(w, S, Z) = q(w)

∏N
n=1 q(sn)q(zn), assuming the

posterior independence of the latent variables. This density
is optimized so that it approximates the true posterior density
p(w, S, Z|y). The update of these densities (E-step) are
obtained as follows:

log(q(w)) = 〈log(p(y, w, S, Z)〉S,Z (7)

log(q(sn)) = 〈log(p(y, w, S, Z)〉w,Z,S\sn
(8)

log(q(zn)) = 〈log(p(y, w, S, Z)〉w,S,Z\zn
(9)

We do not to deal with overlapping spikes, thus we can
consider the independence of the densities over theN spike
S and labelZ. The update ofq(zn) and q(sn) can be
simplified to:

log(q(sn)) = 〈log(p(y, w, S, Z)〉w,zn (10)

log(q(zn)) = 〈log(p(y, w, S, Z)〉w,sn (11)

The densitiesq(w) andq(sn) can be identified as multivariate
Gaussian distributions with mean̂w and ŝn and covariance
Σ̂w and σ̂n respectively:

ŵ = γΣw(γΣw + σ2
ǫ IT )

−1(y −
N∑

n=1

ŝn ∗ δn − µǫ) (12)

Σ̂w = σ2
ǫγΣw(γΣ

−1
w + σ2

ǫ IT )
−1 (13)

ŝn = σ̂2
n((σ

−2
ǫ (y − ŵ − µǫ) ∗ δ−n)ΠTs

+
∑K

k=1 q(zn = λk)σ
−2
k µk) (14)

σ̂−2
n = σ−2

ǫ +
K∑

k=1

q(zn = λk)σ
−2
k (15)

with ΠTs
is the indicator function1[−Ts/2, Ts/2], (x ∗

δ−n)ΠTs
is the segment of the signalx on the time support of

thenth spike. We suppose that the matrixΣw is circulant [5],
then the computation of the posterior covariance matrix of
w (requiring inversion of large matrix) can be efficiently
computed with Fast Fourier Transform (see section III-B.2).
The approximate discrete posterior probabilitiesq(zn) are
given by:

q(zn = λk) ∝ πkσ
−Ts

k exp
−0.5

σ2

k

(||ŝn−µk||
2

2
+Tsσ̂

2

n
)

(16)

up to a normalization constant summing these probabilities
to 1. The M-step provides an update of the parameters of
the modelθ = {γ, µǫ, σ

2
ǫ , µ1..K ,Σ1..K}, by deriving the

log likelihood of the full model under mean field approx-
imation (i.e., taking its expectation over the latent variables:
〈log(p(y, w, S, Z; θold))〉w,S,Z ) with respect to each param-



eter and equating to0:

µǫ =
1

T
(y − ŵ −

N∑

n=1

ŝn ∗ δn) (17)

σ2
ǫ =

1

T
||y − ŵ −

N∑

n=1

ŝn ∗ δn − µǫ||
2
2

+trace(Σ̂w) + Ts

N∑

n=1

σ̂2
n (18)

γ =
1

T
trace((ŵtŵ + Σ̂w)Σ

−1
w ) (19)

µk =

∑N
n=1 q(zn = λk) ŝn∑N
n=1 q(zn = λk)

(20)

σ2
k =

1

Ts

∑N
n=1 q(zn = λk) ||ŝn − µk||

2
2∑N

n=1 q(zn = λk)
(21)

with ŵtŵ the outer product of the line vector̂w.

B. Initialization

1) Filtering and Spike detection: Following [7], [1], [2],
the detection of the spikes is carried out by thresholding the
high frequency part of the signal in the range300−6000Hz.
The filter is a two pole butterworth band-pass filter with cut-
off frequency set to300Hz and 6000Hz. The threshold is
computed as a multiple of the backround noise standard-
deviationσn within this high frequency band. The estimation
of this parameter must be as robust as possible to artifact and
to the spiking activity, and the Donoho-Johnstone universal
thresholding method is used [8], [2]:

σn = median(
|x|

0.6745
) (22)

and the threshold is set as4× σn [2].

2) LFP covariance matrix and circulant approximation:
The prior over the LFP signal is a gaussian distribution with
zero mean and covarianceγΣw. The matrix Σw is fixed
while the scaling factorγ is estimated by the algorithm
and balance the respective contributions of the LFP and the
background noise to the observed signaly [5]. Given the
huge size ofΣw (T×T , with T the number of samples of the
signal of the order of several thousands), we shall avoid its
manipulation (matrix product, inversion, trace calculus), and
we follow [5] by constrainingΣw to be circulant, benefiting
of interesting properties of Toeplitz matrices [9]. Under
circulant approximation, inversion and product involving
Toeplitz matrices can be carried out efficiently using the FFT
of the sequence that defines the circulant. This FFT is known
to be the expected Power Spectral Density (PSD) of the LFP,
denotedg, and has to be estimated from the observed data
y. There are different possibilities for the estimation ofg. In
this paper, an autoregressive power spectral density estimate
(Yule-Walker method) is used, with a relatively low order (8
in this paper). This way, we preserve the main characteristics
of the LFP spectrum (the LFP being the main contributor to
y) while cutting out the contribution of the higher frequencies

due to the spiking activities. Given an estimate of the PSD
g, equations (12), (13), (18) and (19) can be efficiently
computed using the Fast Fourier Transform.

3) Estimation of the number of clusters (single units) and
cluster parameters initialization: The numberK of spiking
neurons (SU) has to be pre-determined. Using a Gaussian
Mixture Model (GMM) and Expectation Minimization (EM)
with the high-passed filtered spike waveforms as an input,
we determine the number of SU based on the MDL crite-
rion [10]. The true number of units are rather well estimated
for lower values (up to about ten SU), and tend to provide
a sub-estimation when higher number of neurons are to be
identified. This approach do not benefit from the LFP/spike
separation provided by our algorithm. Starting from the (sub-
)estimate given by the GMM-EM algorithm, we iteratively
increase the number of clustersK and we compute the MDL
criterion after convergence of our algorithm by considering
the marginal joint log-likelihood of(ŝn, Z):

MDLV B(K) = −
N∑

n=1

log(

K∑

k=1

p(ŝn|zn = λk)πk)

+0.5 ∗ (K ∗ L− 1) ∗ log(N ∗ Ts) (23)

with L = K(1 + Ts + Ts(Ts − 1)/2) − 1 the number of
continuously valued real numbers required to specify the
cluster parameters{πk, µk, σ

2
k}. We stop the iteration when

MDLV B(K + 1) > MDLV B(K).
The spike shapes are initialized based on a naive approach:
the peak values of each spike waveform insrn are ordered
and divided inK slices with even number of spikesNs/K.
Within each of theseK bins about10 spike shapes are ran-
domly selected, and their average are computed and affected
to the initial mean of the clusters. The initial variance of the
cluster are taken equal as the tenth of the standard deviation
of the original spike waveformssrn.

IV. RESULTS

We evaluate our algorithm on the data set from Ca-
munas et al. [6], which provide realistic simulation of
micro recordings containing units (SU) as well as multi-
units (MU) originating from the surrounding neuronal pop-
ulation. In these simulations, the presence of2 up to 20
units are simulated, and for each number of unit 5 signals
of 10 minutes length (24Khz sampling rate) are available
(https://www135.lamp.le.ac.uk/hgr3/). This provides a com-
mon ground-truth of95 signals for comparing various spike
sorting approaches [7], [11]. After the detection procedure,
the number of false positives (artifacts) ranges from1.2% to
3.4% of the total number of detected spikes (respectively
from 5 to 123 false detections). On average over the95
signals, only75.7% of all spikes (MU+SU) are detected
(std:7.4%), while 96.5% of the SU spikes are detected (std:
1.9%).
The performance of our algorithm is compared with these
of the GMM-EM algorithm applied on band-passed time
samples (used to initialize the proposed approach, see sub-
section III-B.3). Both for GMM and for the proposed ap-



proach, we consider a time window of1ms around the
maximum peak of the detected spikes (0.5ms before and
after). Our method can be seen as a combination of a
GMM clustering algorithm with a signal separation between
the LFP and the spike waveforms, thus comparing it with
GMM alone evaluate the contribution of separating the spikes
from the LFP and of considering low frequency features
for classification purpose. We also provide comparison with
Combinato [7], which proves to be more accurate than the
approach presented in [11], [2].
The method is evaluated using the criteria from [7], [11].
A cluster is counted as a hit if it contains more than 50%
of a given simulated SU, and if at least 50% of the spikes
originating from this unit are classified in this cluster. Ifa
cluster does not match any unit and is not formed of at least
50% of MU spikes, it is counted as a false positive. We
provide p-value of a Wilcoxon signed-rank test to evaluate
the significance of our results.
Our method significantly outperforms both the GMM ap-
proach and Combinato, providing78.1% (std: 10.7%) hits,
while GMM provides70.6% (std: 8.2%) hits (p=0.0009) and
Combinato achieves71.5% (std: 13.8%, p=0.001). Note that
Combinato performs slighly better than GMM, however not
significantly (p=0.97). Considering only the data with high
number of units (above 8), our approach achieves70.5% (std:
9.2%) hits, GMM reaches66.2% (std: 5.5%) hits (p=0.0034),
and 64.5% (std: 8.2%) for Combinato (p=0.0007). The
difference between GMM and Combinato is again not sig-
nificant (p=0.53). Figure 1, the average number of hits for
each number of simulated units in the signal is given. Our
approach proves to be consistently better than Combinato or
GMM, the difference in performance being increased with
the number of simulated spikes. We also evaluate the method
in term of false positives (dashed lines, not provided for
Combinato). The average number of false positives vary in
the same ranges (from 0 to 3) and, as expected, tends to
increase with the number of simulated units. No significant
difference are observed between GMM and the proposed
approach (p=0.87). Note that the presence of MU generates
1.67 (std: 0.76) additional clusters on average (i.e., clusters
with at least 50% of MU spikes). For these MU clusters
as well as for the false positives, additional criteria suchas
those described in [12] should be used to discard them.

V. CONCLUSION

We propose a method for both extracting and classify-
ing spiking waveforms originating from several units. We
demonstrate that the proper extraction of low frequency
features brings more accuracy to the classification task. The
gain in performance is about8% on average over all number
of simulated units. The method also proves to be competitive
with well-established methods of the literature. The version
of the approach presented in this paper considers temporal
features for the classification step, while it remains true that
more discriminant features could be extracted,e.g. using
principal component analysis or wavelet transform. Another
perspective not considered in this paper is that a despiked
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Fig. 1. Average of hits (solid lines) and FP (dashed lines) vsnumber of
simulated units.

version of the signal is provided by the method through the
variablew. It might then provide a refined version of the
STA as proposed by Zanoset al. [5] for further spike/LFP
relationship analysis [13].
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