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Abstract Simulating extracellular recordings of neuronal populations is an
important and challenging tasks both for understanding the nature and re-
lationships between extracellular field potentials at different scales, and for
the validation of methodological tools for signal analysis such as spike detec-
tion and sorting algorithms. Detailed neuronal multicompartmental models
with active or passive compartments are commonly used in this objective. Al-
though using such realistic neuron models could lead to realistic extracellular
potentials, it may require a high computational burden making the simulation
of large populations difficult without a workstation. We propose in this paper
a novel method to simulate extracellular potentials of firing neurons, taking
into account the neuron geometry and the relative positions of the electrodes.
The simulator takes the form of a linear geometry based filter that models
the shape of an action potential by taking into account its generation in the
cell body / axon hillock and its propagation along the axon. The validity of
the approach for different neuron morphologies is assessed. We demonstrate
that our method is able to reproduce realistic extracellular action potentials
in a given range of axon/dendrites surface ratio, with a time-efficient compu-
tational burden.

Keywords Extracellular action potential · LFP · computational modelling

1 Introduction

The analysis of extracellular potentials at macroscopic or microscopic scales is
widely used to infer on the functioning of the healthy and pathological brain.
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Such electrophysiological signals reflect the spatio-temporal neural activities
[11,17] and are useful to characterize local activity in a given population as
well as large-scale brain dynamics over several structures [51]. We focus in this
paper on signals recorded at a microscopic scale, by sensors such as micro-
wires, microelectrode array (MEA) such as Utah arrays (Blackrock) or silicon
probes (Neuropixels), that we commonly denote in the following as microelec-
trodes. Considering the signal recorded by a microelectrode, two components
are usually considered. The first one is a high-frequency component thought
to reflect mainly the action potentials (APs) produced by neurons in the vicin-
ity of the electrode tip (up to 200µm [10,24,66]). The second component is a
low-frequencies component (usually <300 Hz) known as the local field poten-
tial (LFP), which mainly originates from synaptic activities of neuronal cells
relatively close the recording site (up to several millimeters [49,46,30]). The
relationships between those scales are far from being fully understood [57,14],
partly because of the electrophysiological dynamics of the structures explored
at these different scales. Besides, the observed frequency dependence of the
extracellular recordings with the electrode-source relative positions is not yet
fully understood (resistive medium and complex source dynamics [17,40,59,
23,48,9] vs. complex medium and simpler source dynamics [5,22]). Computa-
tional models are thus needed to enlighten how field potentials are generated
by the activity of large neuronal assemblies, as well as providing validation
ground-truth for the development of inverse problem methodologies (e.g. spike
sorting, relation analysis, etc) that are required to analyze such large amount
of data.

Many methods and tools have been developed over the last decades to sim-
ulate realistic extracellular potentials from single neurons and neuronal popu-
lations. Following [47,64], one can distinguish between compartmental based
models [26,21,20,37,25,50,65,15], data-driven models [35,42] and hybrid ones
[12,47]. The detailed state of the art models, based on multicompartmen-
tal neuron models (most based themselves on the neuron environment [26]),
compute the extracellular potentials as a sum of monopolar current source
contributions placed within each passive or active compartment (point cur-
rent source model). An alternative is to use the Linear Source Approximation
(LSA), where the membrane surfaces are reduces to a line source, resulting in
a tractable analytic expression of the extracellular potentials [28]. Although
these modelling tools provide accurate forward modelling, they can require a
high computational burden for large neuronal populations.

In this paper, we propose a simplified and computationally efficient ap-
proach for simulating the extracellular action potential (EAP). Simplified mod-
ellings of EAP have been previously proposed, mainly for inverse problem pur-
poses. The simplest one takes the form of a monopolar source placed within
the soma [13,7], but do not accurately reproduce the decrease of the potential
with the square of the distance as observed in experimental data [21,53], and
do not respect the principle of current conservation. In this perspective, the
dipolar model stands as a better approximation and has been used to solve the
inverse problem [44]. Such simple point models are however not biophysically
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realistic in all ways and lack in reproducing accurately the variability of the
waveforms at different recording sites around the cell. A compromise is then
to be find between detailed compartmental models and point source models.

The method we propose aims to recover qualitatively realistic spike wave-
forms by taking into account the (simplified) morphology of the neuron and
the position of the electrode tips. We do not claim to obtain highly realis-
tic extracellular potentials waveforms, as for example in the highly detailed
models from [20,21], but rather qualitatively similar EAPs using a simpler
and computationally efficient model. More precisely, we focus on the axonal
contribution and include in our model also the propagation of the AP along
the axon, as well as different simplified axon / dendrites geometries. We show
that the EAPs generated by this model can be reduced to a linear filtering of
the EAP of a single dipole, with filters taking into account different neuron
morphologies (varying lengths and diameters of axons and dendrites) and elec-
trode positions. All along the paper, we consider that the medium impedance
is purely resistive [9,17,20,23,40,48,59].

2 METHODS

2.1 Multicompartmental modeling

The computation of the extracellular potentials is based on the volume con-
ductor theory [49]. To express the influence of the neuron morphology on the
extracellular potential, we started from the classical assumption that at every
time instant t, the potential φ(t) recorded by an electrode is a weighted sum
of membrane currents of all the neuron compartments [37,16], the weights de-
pending on the medium conductivity (assumed homogeneous and isotropic)
and the geometry (relative position of the compartments and the electrode).

The fundamental relationship between the potential φre(t) recorded at po-
sition re given a single point current source Ii(t) at a position ri is given by
the following equation:

φre(t) =
1

4πσ ‖re − ri‖
Ii(t) (1)

with σ the conductivity of the extracellular medium. Since contributions of N
current sources add linearly, the equation (1) generalizes to :

φre(t) =

N∑
k=1

1

4πσ ‖re − rk‖
Ik(t) (2)

for k current sources.
If each neuron compartment is approximated by a point in space, equation

(2) is called point source approximation (PSA) [28,54] and yields the potential
at re generated by the complete neuron. Note that if the compartment is
approximated by a line, one obtains the line-source approximation (LSA) [21].
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Both methods give similar results when the electrode is farther than about
100µm from the considered compartment [50], and it was shown that LSA is
very close to the (more precise) cylindrical approximation of the compartment
for distances above 1µm [28].

The time dynamics of Ik(t) depend on the modeling choice of the consid-
ered compartment. Indeed, compartments can be passive (i.e., their membrane
is modeled as a simple RC circuit) or active. In that case, ionic channels are
modeled (Hodgkin-Huxley dynamics for example [27]). The compartments of
a neuron are interconnected, and have interdependent time dynamics. The
complete set of Ik(t) currents for both passive and active compartments is
then computed using cable equations [58,38,56]. In addition, for the active
compartments, one needs to compute the Hodgkin-Huxley membrane dynam-
ics. For the multicompartmental neurons commonly used to model complex
morphologies, some of the compartments are set as active (at least the soma,
in general the axon) and others passive (e.g. usually the dendrites). In any
of these configurations, a complete simulation of the extracellular potentials
requires to simulate hundreds of compartments and could lead to high compu-
tational burden, especially when populations of neurons with multiple active
compartments are considered.

2.2 Morphological filtering

The EAP can be thus modeled as a sum of the contributions of its different
compartments, distributed over the three main parts of a neuron (soma, axon,
dendrites). Of course, because of the total electrical charge conservation, the
current sources from one compartment must be compensated by current sinks,
possibly located in other compartments, implying that the currents originating
in different compartments are linked together. We start our modelling by mak-
ing some simplifying yet plausible assumptions on the nature and relationships
of these sources/sinks:
– the soma and the axon are active, while the dendrites are mostly passive.
– the active membrane mechanisms are roughly the same all over the active

compartments for a given neuron (all the ionic channels have the same
dynamics and the same densities).

– the active current sources (sinks) are mainly compensated by passive sinks
(sources) in nearby compartments
Although the previous assumptions might seem oversimplifying (especially

the first two - see the much more detailed models from e.g., [28,21,20,64]),
we have chosen here to follow the simpler models from [16,54,55,39,52,56],
which have shown that the modelled extracellular potentials using passive
neurons (or with active conductance only in the soma and the axon [54]) are
qualitatively similar to the more detailed models cited above. This assumption
is also in agreement with [31,21,41], which have shown that the concentration
of the active channels responsible for the EAP generation is higher in the
axon/soma than in the dendrites.
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With these three preliminary hypotheses in mind, we can follow further
the development as follows: such as in single source models, the initiation site
and the main contributor to the AP is between the soma and the axon initial
segment (AIS) [13,7,44,63]. We model this contribution as a dipole, as in [44]
and we fix its origin in the soma and the orientation given by the direction
between the center of the soma and the center of the AIS. Such simplified model
lacks in reproducing the variability of the EAP shape around the neuron, and
in particular on the axon side.

We assume then that the AP propagates along the axon away from the
soma and that two consecutive axonal compartments act as pairs of source/sink,
implying thus that every pair of consecutive compartments can be modeled
as a current dipole. The axonal compartments being supposed identical and
active, the time course of the transmembrane currents due to the AP is pre-
served while it propagates. We thus model this contribution as a traveling
dipole along the axon.

Finally, the presence of dendrites is known to also impact the EAP pat-
tern [21,53,38]. We assume that the passive contribution of the dendrites can
be modeled as small dipoles between the soma and each dendritic compart-
ment1. Summing up, one can schematically split the EAP as follows:

φEAP (t) = φS,AIS(t) +
∑
k

φAk
(t) +

∑
j

φS,Dj
(t) (3)

where φS,AIS is the potential generated by the pair soma-AIS, modeled as a
dipole between these two compartments, φAk

are the potentials generated by
the k-th pair of neighbouring compartments on the axon and φS,Dj

are the
dipoles between the soma and the dendritic compartment j. Because of their
same origin, and because their time course is given by the somatic transmem-
brane currents, we can sum up the dendritic dipoles φS,Dj

in a single resultant
dipole φD (see figure 1).

1 This simplifying assumption lacks in reproducing the intrinsic dendritic filtering shown
in e.g., [38], as it will be discussed further in the Results section.
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Fig. 1 Sketch of a L5 pyramidal neuron inspired from [41] with the various dipoles modeled
: in red, the traveling dipole along the axon - in green, the soma-AIS dipole and in blue the
resulting dendrite dipole.

The orientation and amplitude of this dipole then depends on the partic-
ular shape of the dendritic tree. Moreover, the same reasoning can be applied
for the φS,AIS contributor (origin in the soma, but different orientation and
amplitude). Therefore, equation (3) can be rewritten as:

φEAP (t) = w0CsI0(t) +

N∑
k=1

wkCaIk(t) (4)

where I0 is the somatic membrane current with amplitude Cs (accounting
for the soma, AIS and dendrites morphologies and relative positions) and Ik
(k = 1 . . . N) are the currents generated by the N axonal compartments with
identical contributions Ca.

Because we assumed dipoles between two successive axonal compartments
k and k + 1, the weights wk above are not directly given by equation (2) but
they result from the propagation of a dipolar source in an infinite homoge-
neous medium. More precisely, if we note rk the position of the center of the
compartment k and re the position of the electrode, we can write:

wk =
(re − rk)T (rk+1 − rk)

4πσ ‖re − rk‖3
(5)

Here, rk+1 − rk indicates the current dipole orientation2.
Regarding the soma weight w0, the same equation applies:

w0 =
(re − r0)T (rres − r0)

4πσ ‖re − r0‖3
(6)

2 In other words, the dipolar moment at time t will be defined as j(t) = Ca(rk+1−rk)Ik(t).
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Here, r0 is the soma position and rres − r0 gives the resultant dipolar ori-
entation (recall that we model the soma originating dipole as a composition of
the soma-dendrites and soma-AIS dipoles, with a priori unknown orientation).
Without loss of generality, we can further consider that (rres − r0) has a unit
amplitude (its actual amplitude being included in the Cs coefficient in eq. 4)3,
meaning that w0 depends on the orientation of the resultant vector between
the soma and the dendrites, thus (in the general 3D case), on two azimuthal
and polar angles θ and φ (in spherical coordinates).

Next, we can normalize equation (4) by dividing by Ca (i.e., we are not
focusing on the actual amplitude of the EAP, but on its shape). The soma
amplitude coefficient CS = Cs/Ca will stand further for the relative weight
between the soma based dipole and the axonal (traveling) dipole.

Considering normalized transmembrane currents Ik, the vector of weights
corresponding to a specific electrode position and neuron morphology writes:

w̄ = [CSw0 w1 . . . wN−1 wN ] (7)

Next, as we have supposed similar dynamics for all active compartments (soma
and axon), we can write the axonal currents as time shifted versions of the
soma current:

Ik(t) = I0(t− τk) (8)

and we can gather them in a length N + 1 vector

I(t) = [I0(t) I1(t) . . . IN (t)]

To sum up, using equations (7) and (8), the extracellular signature of the
action potential writes as a dot product:

φEAP (t) = w̄I(t)T (9)

Finally, we make one last simplifying assumption: the action potential prop-
agates along the axon at a constant velocity v. If the axonal compartments
are identical, the traveling time of the axonal dipole from one compartment
to another is constant:

τk = τ =
‖rk+1 − rk‖

v
(10)

and equation (8) becomes:

Ik(t) = I0(t− kτ) (11)

Consequently, the EAP potential can be written under an computationally
efficient form as the convolution between the soma current (given by the HH
like dynamics) and a morphological filter w̄:

φEAP (t) =

N∑
k=0

w̄kI0(t− kτ) (12)

3 The same reasoning could be applied for (rk+1 − rk) in (5) and Ca coefficient.
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While in (12) the filter coefficients depend only on the morphology and the
AP velocity appears through τ , the convolution is commutative and thus it
can be as well written as:

φEAP (t) =

N∑
k=0

h(t− kτ)I0(t), (13)

where h(t) is the impulse response of the filter having the coefficients defined by
(7) (h(kτ) = w̄k). This last expression illustrates that the filtering coefficients
depend on four parameters (CS , θ, φ, v), that need to be fitted to the particular
morphology of the simulated neuron.

2.3 Simulation

This section presents our simulation and evaluation protocol. The final aim
is to evaluate the accuracy of our filtering model when compared to state of
the art compartmental models (seen as ground truth), as well as with simple
fixed-dipole models. As mentioned above, we normalize the obtained EAPs
because we are interested in their shapes recorded at different positions in
space around different types of neurons. Consequently, our main performance
criterion, used further on in the paper, is the correlation coefficient between
the ground truth given by the compartmental models and the morphological
filtering results.

Resulting 
dendrite Axon

Length (𝜇𝑚) : 0, 50, 100, 150, 200
Diameter (𝜇𝑚) : 2 and 4

Length (𝜇𝑚) : 200, 400, 600, 800, 1000
Diameter (𝜇𝑚) : 1, 2 and 4

x

y 𝜃

Fig. 2 Toy model of neuron used in this study. The stick of the neuron is aligned with
the x-axis and the center of the soma is the origin of the Cartesian system. The black dots
correspond to the positions for a subset of the 65 electrodes. The resulting dendrite (blue
dot line) has an angle of θ=20◦ compared to the axonal axis.
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2.3.1 Compartmental modelling

The ground truth is assumed to be the compartmental neuron model. Several
simulations were made:
1. As in other studies, we simulate the ball-and-stick (BS) neuron, commonly

used to study the frequency and spatial properties of neuron extracellular
potential despite its simplicity [53,56,1,8]. It consists of a lumped soma
attached to an axon subdivided into fixed-length compartments. We set
some assumptions about the morphology: the diameter of the axon is con-
stant and the soma is assimilated to a cylinder with equal diameter and
length. We considered the presence of the dendrites by adding them to
the classical BS neuron. The dendritic tree is reduced to a single stick
in the opposite direction of the axon, assuming that the dendrites are
well balanced around the soma with a bias in the opposite direction of
the axon. The resulting dendrite is also subdivided into fixed-length com-
partments with the same morphological characteristics as the axonal com-
partments (lengths and distance inter-compartments). We then simulate
different morphologies by varying four parameters: length and diameter of
the axon and length and diameter of the resulting equivalent dendrite. For
the axon, the diameters are set to 1, 2 and 4µm, while the length varies in
the set of values {1000, 800, 600, 400, 200}µm. For the equivalent dendrite
stick, the diameters are set to 2 and 4µm and the length varies in the set
{200, 150, 100, 50, 0}µm. The length and diameter of the soma are fixed to
25µm. In all, 135 morphologies are considered (for 0µm length dendrites,
the diameter is not relevant). Figure 2 illustrates the used model and the
different parameter values. With this simplified neuron morphology, the
neuron belongs to a plane defined by a Cartesian system whose origin cor-
responds to the soma center r0 = [0 0 0]T and with the x-axis aligned with
the axon. For this simulation setup, as the equivalent dendrite is aligned
with the axon and has thus a known orientation (θ, φ) the morphological
filter is only parametrized by two coefficients (CS ,v).

2. A slightly more general situation appears when the dendrites are biased and
the equivalent dipole is not oriented in the opposite direction to the axon.
We simulated thus a BS neuron with a tilted equivalent dendrite (dotted
line in figure 2, with θ=20◦ and φ=90◦). We do not consider all the varying
length and diameters for the axon and the equivalent dendrite, the role of
this simulation being to illustrate the performances of our proposed method
in a more general case. In particular, we simulate BS neuron with a 600µm
length and a diameter of 2µm (median values of axon length and width
with respect to the previous simulation). As we are interested in the effect
of the (tilted) dendritic stick on the accuracy of our model, we consider
the two extreme cases for a 2µm diameter dendrite, that is lengths of 50
and 200µm.

3. Finally, we evaluate our proposed modelling approach on neurons with
realistic morphologies. We consider two types of cells, one with a highly
biased and important dendritic tree (the pyramidal L5 neuron from [41])
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and the other one with a rather symmetric disposition of the dendrites (the
spiny stellate L4 neuron from [41]). As for the tilted dendrite simulation,
We have connected a 600µm length, 2µm diameter axon to the somas of
these two neurons.

These different morphologies were implemented in Neuron [26]. In order to
simulate their electrophysiology, we need to define the electrical characteristics
of the membrane for each compartment. In our simulations, we considered a
combination of active and passive channels (as in [21]). More precisely, passive
channels were implemented in all compartments of the neuron (default LFPy
values, gpas= 1/30000 S/cm2, epas= -65mV), and active channels were inserted
in the soma and axon compartments (default Neuron values, see also [19]).
The precise results of the simulations obviously depend on the specific chosen
channels and their parameters. For the purpose of this study, we have limited
ourselves to the default values and channels.

For obtaining the extracellular images of the action potentials, the different
Neuron models were called from the Python package for extracellular poten-
tial computation LFPy [37]. An excitatory current was injected in the somas,
such as the neurons fire an isolated spike. The extracellular potentials were
computed at several positions around the simulated neurons. Because of their
axial symmetry, we considered a grid of 65 electrodes positioned in the (x, y)
plane, evenly spaced around the neuron with a step of 50µm along the y-axis
and of 125µm along the x-axis (figure 2). The only exception is the pyramidal
L5 simulation, where the grid was extended on the apical dendrites side (figure
10), resulting in 105 electrodes.

Note that the method implemented in LFPy to calculate the extracellular
potentials is a mix method between the PSA and the LSA considering the
soma as a point and the membrane currents as evenly distributed along each
compartment axis.

2.3.2 Morphological filter parametrization

As mentioned above, the proposed morphological filter has four parameters:
the amplitude and the orientation of the somatic dipole (CS , θ, φ) determine
the w0 coefficient in (6), while the speed of the axonal propagation v determines
the convolution step τ in (12) or (13). In order to implement this convolution,
these parameters need to be determined. Their values are optimized with a
brute force method, that is the performances were evaluated on a regular grid
in the four dimensional parameter space. More precisely, we have optimized
the speed by exhaustively looking for the optimal τk in a range of 1 to 40
samples (1 to 40 µs, corresponding to speeds between 0.25 and 10m/s), and
we generally optimized the soma coefficient Cs in the range 0 to 20 (this range
was extended only for the L5 compartmental model to 50). The angles θ and φ
cover the whole range of orientations (from an equivalent dendrite opposed to
the axon to one pointing in the same direction), with a step of 10◦. Note that,
for the first simulation (BS with an equivalent dendrite pointing in an opposite
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direction as the axon), the angles θ and φ were fixed and the optimization was
done in the two-dimensional space (v, Cs).

In all simulations, the membrane current I0(t) is obtained by modeling
only one single compartment having a Hodgkin-Huxley dynamic [27] with the
values given in [19].

The optimized (maximized) criterion was the mean correlation between the
EAP produced by our convolutive approach and the detailed compartmental
approach over the 65 electrodes (105 for the L5, simulation 4).

3 Results and Discussion

This section presents the results of our simulation method. The EAP gener-
ated by morphological filtering of the membrane current of a single compart-
ment neuron is compared with the (ground-truth) LFPy/Neuron multicom-
partments modelling and with a simple two compartment model4 modelled as
a fixed dipole. Most of the results presented here focus on the first simulation
(BS neuron with an equivalent dendrite pointing in the opposite direction as
the axon). The results of this simulation are described and analyzed in details
in the first two subsections (3.1 and 3.2). Although we have simulated axons of
three diameters (1, 2 and 4µm), we only present here the results concerning the
axon diameters 2 and 4µm. Comparative results for the 1µm diameter axon
yields similar conclusions and they are given in the supplementary material.

The following subsections 3.3 and 3.4 are dedicated to simulations 2 and
3, i.e., the tilted dendrite BS and the realistic morphologies. Subsection 3.5
presents our first results on simulating the EAPs contribution of a whole pop-
ulation to the extracellular potentials, either recorded by micro or macro elec-
trodes. Finally, in the last subsection, we discuss the performances and the
limits of the proposed model.

3.1 Simulation 1: optimally parametrized morphological filter

As mentioned earlier, the EAPs are obtained by a filtering operation (see equa-
tion 13), and the filter coefficients depend on the axonal propagation velocity
v and on the somatic dipole amplitude CS (for simulation 1). Consequently,
the shape of the generated EAP depends on these two parameters. We present
first (see figure 3) the best fits after tuning v and CS in order to reproduce as
accurately as possible the LFPy ground-truth (by maximizing the correlation).

As it can be seen, the correlation coefficients are very high, especially in
the upper left corner of the figure, for long axons and low influence of the
dendritic tree (according to our initial assumptions, this configuration stands

4 It is well known that a single compartment neuron can not generate any extracellular
potential because the Kirchhoff’s current law is not respected – the net transmembrane
current must necessarily be equal to zero. The simplest neuron model able to generate an
LFP signature is then a two-compartment model where the membrane current enter the
neuron at one compartment and leaves at the other compartment.
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for dendrites distributed around the soma, yielding a short equivalent dendrite
stick). On the contrary, in the lower right corner, when the axon is short and
the dendrite stick is long, the accuracy of the model decreases. The model
remains relatively accurate when the axon influence is higher than that of
the dendrites, for short axons and short dendrites or long axons and long
dendrites, although in the latter case the diameter of the equivalent dendrite
needs to be also considered (if the dendrites are long and thick, the accuracy
is diminished). In summary, the quality of our model is determined by the
imbalance between the importance of the axon and the dendrites: when the
influence of the dendrites becomes too important relatively to the axon’s one,
i.e., when the dendrites are long and thick (e.g., bars b and d in the columns at
the right), the morphological filtering approach is less accurate in reproducing
the compartmental models5.

For comparison and further discussion, we present in figure 4 the perfor-
mances of a simple dipolar model having a fixed origin in the soma. Note that
in this case no filtering of the membrane current is performed and the shapes
of the EAP are the same (except for the gain, which can be negative depending
on the orientation of the dipole with respect to the electrode).

Correlation results for the ball-and-stick neuron for optimized parameters (v, CS)

Fig. 3 Best fit results. The heights of the bars represent the mean correlation coefficient
(over 65 electrodes) for a given morphology. The rows of the figure are organized by axon
length (200µm to 1000µm), while the columns are organized by dendrite length (0µm to
200µm). The indices a to d encode axon-dendrite diameter pairs: a : {ΦA = 2, Φd = 2}µm;
b : {ΦA = 2, Φd = 4}µm; c : {ΦA = 4, Φd = 2}µm; d : {ΦA = 4, Φd = 4}µm.

5 A similar figure comparing performances of 1µm and 2µm diameter axons can be found
in the Supplementary Material.
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Correlation results for the fixed-soma dipole

Fig. 4 Best fit results for a fixed-soma dipole. The heights of the bars represent the mean
correlation coefficient (over 65 electrodes) for a given morphology. The rows of the figure are
organized by axon length (200µm to 1000µm), while the columns are organized by dendrite
length (0µm to 200µm). The indices a to d encode axon-dendrite diameter pairs: a : {ΦA =
2, Φd = 2}µm; b : {ΦA = 2, Φd = 4}µm; c : {ΦA = 4, Φd = 2}µm; d : {ΦA = 4, Φd = 4}µm.

By construction, the fixed simple dipolar model does not take into account
the propagation of the action potential. We can thus expect to obtain higher
correlation coefficients for the morphological filtering approach for long axons
and possibly similar performances for short axons. This is partially confirmed
by figure 4: the performances of the fixed-soma dipole improve for shorter
axons. Still, they remain below our proposed approach, except for the short-
est considered axons (200µm, see explanations below in the soma coefficient
paragraph). In summary, as long as the axon length decreases, its electric
contribution to EAPs becomes more and more insignificant (the somatic and
dendritic influence increase) and the neuron can be more and more assimilated
to a point-neuron.

It is also interesting to notice that, for axon of length 400µm and above,
the fixed dipole approach is higher in correlation for thick axons (bars c and
d) than for the thin ones (a and b). In order to correctly interpret this observa-
tion, it is helpful to analyze the figure 5, giving the optimized speeds of axonal
propagation v which determines the convolution (eq. 10 to 13). A first obser-
vation is that the speeds (recall that they were chosen for every morphology in
order to maximize the correlation coefficients) have consistent values with the
literature, at least for axons above 600µm (or even above 400, for thin axons -
2µm), that is between about 0.5 and 1m/s. Moreover, as reported in the liter-
ature, the speed is higher for thicker axons than for thin ones (approximately
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proportional to the diameter, [61,29]): bars c and d are twice as high as a and
b. How can this observation explain better results of the fixed-soma dipole ap-
proximation for thick axons (bars c and d figure 4)? Our interpretation is the
following: as the speed increases, the τk in equation (10) decreases, which is
equivalent to a morphological filter with a shorter time support and thus with
a less filtering important effect. In other words, high axonal propagation speed
yields EAP shapes less distorted by filtering and thus closer to the membrane
current of a unique compartment (and thus to a fixed dipole).

Propagation speed of the axonal dipole v

Fig. 5 Best fit results about the propagation speedv (m/s) of the action potential. The y
axis is saturated at 3 m/s. The indices a to d encode axon-dendrite diameter pairs: a : {ΦA =
2, Φd = 2}µm; b : {ΦA = 2, Φd = 4}µm; c : {ΦA = 4, Φd = 2}µm; d : {ΦA = 4, Φd = 4}µm.

The second parameter of our model is the weight of the somatic dipole
CS . As for the optimal speed figure, we plot in figure 6 the optimal somatic
coefficients (i.e., the one maximizing the correlation coefficient and yielding
the best fits in figure 3).

As it can be seen, when the equivalent dendrite is negligible (first column),
the weight of the somatic dipole is small. This is especially true when the
axon is long and thus the axonal travelling action potential dominates the
extracellular potentials. As the axon becomes shorter (still in the first column),
the importance of the soma increases. One can notice a gap between 400 and
200µm (for the latter, the soma coefficient saturates), indicating again that
the validity of our model is weak for short axons (or at least its similarity with
the LFPy model decreases). Note that the CS coefficient saturation explains
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Somatic dipole coefficient CS

Fig. 6 Best fit results about the somatic dipole coefficient CS (unitless). The y axis is
saturated at ±10. The indices a to d encode axon-dendrite diameter pairs: a : {ΦA =
2, Φd = 2}µm; b : {ΦA = 2, Φd = 4}µm; c : {ΦA = 4, Φd = 2}µm; d : {ΦA = 4, Φd = 4}µm.

also why the morphological filtering approach remains below the single dipole
model (figures 3 and 4, 200µm axon length).

As the length of the dendrites increases (columns from 2 to 5), the CS

coefficient becomes more and more important and more and more negative,
supporting the intuition of a fixed dipole oriented from the soma towards the
dendrites. This is even more clear when the surface of the equivalent dendrite
increases (i.e., for thick dendrites): bars b and d have bigger (absolute) values
than bars a and c. It is interesting to notice that the value of the soma coeffi-
cient saturates quite rapidly as the length of the dendrite increases, except for
the thick axon / thin dendrite case (bars c), where the relative weight of the
axonal travelling dipole remains important compared to the somatic dipole.

The previous analysis of the CS coefficient needs nevertheless to be taken
with care, because its importance is far less significant than the speed v influ-
ence. Indeed, for a given speed, the correlation coefficient between the mor-
phological filtering and the ground truth varies little with CS . This could seem
quite paradoxical, as we argued that this coefficients should be highly negative
for important dendrites. In fact, the performances are quite similar for a large
interval of negative values (see figure 19 in the Supplementary Material). In
our opinion, this is caused by a deeper caveat of our model, that is the unique
dipole combining the dendrite and the AIS contributions. The price to pay for
this simplified model is a dipole having less influence on the total performance
(see also the discussion below, when presenting simulations 2 and 3 for the
tilted dendrite and the realistic morphologies).
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To sum up these analysis, we can conclude that our morphological filtering
approach is able to accurately reproduce compartmental models for different
simple (BS) neural morphologies, except for weak axons to dendrite surface
ratios. Moreover, the parameters of the model have biological interpretations
and pertinent values, coherent with the neurobiology for most of these mor-
phologies (especially for the axonal travelling speed v). For a more detailed
discussion on the limits of our model, see below, subsection 3.6.

3.2 Simulation 1: empirical model

According to the previous analysis, it is tempting to fix the parameters of the
morphological filter according to some rules derived directly from the mor-
phology of the simulated neurons. In order to test this hypothesis, we have
empirically fixed the speeds depending on the axon diameter only, to 0.45 m/s
(for a diameter of 2µm) and 0.83m/s (for 4µm)6.

Next, once the speeds were fixed, we have tried to obtain a rule for adjust-
ing the CS coefficient depending on the dendrites weights in the morphology.
We have fitted different curves Cs = f(ΦD, LD), with ΦD and LD the diameter
and the length of the equivalent dendrite (up to second order). Finally, a very
simple linear regression explaining the somatic coefficient CS as a linear func-
tion of the dendrite surface (ΦD ×LD) gave the best results, being consistent
with our expectations:

CS = 2.9− ΦDLD

37
(14)

The correlation coefficients obtained with these fixed speeds (one per axon
diameter) and the somatic coefficients given by (14) are given figure 7.

As it can be seen, the performances remain very high (correlation coeffi-
cients above 0.8) for the first three rows (axons above 600µm, regardless of
the dendritic morphology, except for the long thick dendrites and 600µm thick
axon, bar d or row 3, column 5, where the correlation equals 0.75). High corre-
lation values are also obtained for 400µm thin axons up to dendrites of 100µm
length and even for 200µm axons with no equivalent dendrite (recall that this
configuration models an dendritic tree radially surrounding the soma). As a
matter of fact, neurons with thick short axons but no dendrites are also quite
well modelled by this empirically parametrized morphological filtering (bars c
and d in the lower part of the first column of figure 7, with the lowest corre-
lation value at 0.75).

To sum up, the proposed morphological filtering approach, with empiri-
cally tuned parameters based on neurobiologically sound hypothesis, achieves
good to very good performances for an important number of ball-stick type
neural morphologies. Visual and quantitative performances for a given neuron

6 These values correspond in fact to τk equal to 21, respectively 12 samples, at a sampling
frequency of 106Hz. These values are the median speeds over the optimal speed values for
all configurations having a given axon diameter (for example, 0.45 is the medians of optimal
v for all BS models with an axon of 2µm diameter).
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Correlation results on the ball-and-stick neuron for empirical parameters (v, CS)

Fig. 7 Correlation coefficients between the LFPy ground truth and the morphological filter
approach, with fixed speed per axon diameter (see text). The heights of the bars represent the
mean correlation coefficient (over 65 electrodes) for a given morphology, as in the previous
figures. The indices a to d encode axon-dendrite diameter pairs: a : {ΦA = 2, Φd = 2}µm;
b : {ΦA = 2, Φd = 4}µm; c : {ΦA = 4, Φd = 2}µm; d : {ΦA = 4, Φd = 4}µm.

morphology (BS with an axon having a length of 1000µm and a diameter of
2µm, as well as a 50µm length 2µm diameter equivalent dendrite) can be seen
on the figure 8.

It is also interesting to notice (figure 8), that the spectra vary with the
positions in space, with relatively higher frequencies along the axon than near
the soma. Note that a dendritic influence on the spectra was shown in, for
example, [38].

3.3 Simulation 2: tilted equivalent dendrite

Up to now, we considered an equivalent resulting dendrite aligned with
the axon and oriented in the opposite direction. This case is an idealized
configuration, as for most neurons the dendrites are not perfectly symmetric
[18]. This simulation aims to evaluate the performances of the morphological
filtering approach for asymmetric configurations, but still supposing that the
dendritic ramifications can be approximated by a unique equivalent (tilted)
dendrite. Two extreme cases were modelled and studied, namely a long and
short equivalent dendrite with lengths LD of 50µm and 200µm. The axon
length LA was set to 600µm (the mean length in the previous simulations), its
diameter ΦA to 2µm and the diameter of the equivalent dendrite ΦD was set
to 2µm.
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It is important to notice that, if in the previous simulations the orientation
of the dipole accounting for the equivalent dendrite was fixed in the oppo-
site direction to the axon, this orientation needs to be estimated for a tilted
dendrite. In other words, we have to estimate the rres or more precisely its
spherical coordinates, see eq. (6). The morphological filter then is configured
using 4 parameters and, as for the speed and the CS coefficient, we have per-
formed an exhaustive research in order to determine the optimal polar and
azimuthal angles φ and θ.

Figure 9 show the correlation values for each electrode position around the
neuron for the two tested equivalent dendrite lengths. It can be seen that,
for a short equivalent dendrite, the waveforms are very similar with the ones
computed with the multicompartmental model (ground-truth), supporting the
idea that the method can deal with asymmetric dendritic ramifications as long
as the asymmetry remains low and the equivalent dendrite short. In fact, as
indicated by the small CS value (= 1), the contribution of the somatic dipole is
low and the φ and θ angles are not relevant (indeed, practically the same mean
correlation performances, within a 10−2 precision, are obtained regardless of
these angles).

For the long dendrite case, although the EAPs are correctly modelled on
the axon side, the proposed method can not reproduce realistic waveforms on
the dendrite side. It is nevertheless interesting to notice that, unlike for the
short dendrite, the weight of the somatic dipole is important and the angles
become relevant. Indeed, the only θ angles achieving correlations above 0.75
are between 0 and 2π/9, i.e., around the actual tilted dendrite angle of π/9.
Still, despite the good angle estimation, the EAPs on the dendrite side are not
well modelled, pointing out the limits of our model (in our opinion, this is at
least partly due to the inaccuracy of the dipolar estimation in the close field,
see also the Discussion section below).

3.4 Simulation 3: complex morphologies

The next step in evaluating the performances of the proposed morpholog-
ical filter is to confront it with multicompartmental simulations of neurons
having complex morphologies. This section focuses on EAPs generated by two
neurons:
– a modified L5 pyramidal neuron based on [41]. More precisely, we have

kept the complete dendritic morphology (apical and basal dendrites) and
we have added a 600µm length axon of 2µm diameter, connected to the
soma. The dendrites were kept passive, while active channels (as above)
were included in the axon and the soma.

– a modified stellate inhibitory neuron, also based on [41]. As for the L5, we
have kept the complete dendritic morphology (basal dendrites only) and
we have added a 600µm length axon of 2µm diameter, connected to the
soma. The dendrites were kept passive, while active channels (as above)
were included in the axon and the soma.
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Considering the previously presented simulations, one would expect better re-
sults for the stellate neuron compared to the pyramidal L5, because of their
different dendritic morphologies (symmetric basal for the stellate, highly asym-
metric and tilted for the L5). Moreover, for the latter, the EAPs should be
better reproduced on the axon side than on the (apical) dendrite side. In-
deed, these expectations are confirmed by the quantitative results, presented
in figure 10.

3.5 Simulating EAP contributions to the LFP for large populations

It is well known that one of the main components of the extracellular elec-
tric field (LFP) is generated by the membrane currents of neurons situated
in a volume around the recording electrode [11]. The extent of this volume is
debated, but the LFP is usually known to reflect the neural activity of pop-
ulations within a few hundred micrometers from the recording electrode [66,
30,39].

The method we propose in this paper can be used to quickly evaluate the
contribution to the measured extracellular potentials of the action potentials
generated by a whole population. Of course, in a real population or in a realistic
model [67], the variety of the neurons yields contributions to the extracellular
potential with different shapes that our model cannot capture. We rather follow
the philosophy behind the populations simulators from [43], where the aim was
to obtain approximations of (the synaptic contributions to) the LFP. Still,
unlike in [43], we focus on the EAP contributions, which our model is able to
reproduce to a certain extent, especially considering the relative positions of
the electrodes and neurons.

If the previous simulations showed that the morphological filtering is able to
yield varying EAP waveforms depending on the neuron positions with respect
to the electrode, we have not yet explored the EAPs variations due to the
morphologies themselves. Of course, the simple BS models we propose cannot
capture the variability of the EAPs of realistic neurons, but an interesting
question is if it still can generate varying waveforms, for the same relative
neuron positions with respect to the electrode, but for neurons with different
simple morphologies7.

We have thus simulated two different (extreme) BS morphologies:

– long axon (1000µm) - long dendrite (200µm) morphologies, that we call
further on pyramidal neurons (long projecting axon and long apical den-
drites, yielding a long equivalent dendrite stick);

– short axons (200µm) - no dendrite, that we call further on inhibitory neu-
rons (short axon and radially distributed dendrites).

7 Note that this would allow to create signals for training or evaluating spike sorting
algorithms [36,60]. Recall that these algorithms are based on distinct features of the EAPs
(amplitude, width... etc), which our simulator is able to reproduce for varying positions. Note
that supplementary variability could be in principle obtained by varying also the parameters
of the HH model.
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All diameters are set to 2µm.
The simulated EAPs as seen by an electrode near the soma (the closest

on the dendrite side) are presented figure 11. As it can be seen, the shapes

Fig. 11 Examples of EAP simulated waveforms: the pyramidal cell (blue) has a larger spike
width than the inhibitory cell (dotted red). The two horizontal dotted lines represent the
half peak-to-peak width.

respect basic features of the inhibitory EAP (shorter duration) and excitatory
EAP (larger duration). These shapes are to be compared to results from the
literature [4,6,34,62]. If the peak-to-peak width is quite similar for both types
of neurons (2.14 ms for the pyramidal neuron and 2.19 ms for the inhibitory
neuron), the half peak-to-peak width is significantly shorter for the inhibitory
neuron compared to the width of the excitatory (pyramidal) neuron - respec-
tively 0.26 ms (horizontal red line) and 0.41 ms (horizontal blue line). Without
pretending to simulate highly realistic waveforms as in [21], our simulations
are qualitatively coherent with the basic biological observations on the EAPs
shapes.

With these considerations in mind, we simulated a population of neurons,
roughly implementing the same setup as in [43]. Our population consists of
4000 pyramidal and 1000 inhibitory neurons having the somas randomly and
uniformly positioned in a cylinder with 250µm radius and 250µm height (z
from 0 to -250µm) – (figure 14.A). These dimensions correspond to a neuronal
population which contributes the most to the LFP [39,33,16] and have also
been used in [43].

Pyramidal neurons are know for having a preferred orientation, so they
were z-oriented with a (small) random angle, while inhibitory neurons do not
have a specific orientation for the axons, which were thus oriented randomly,
see figure 12.

Several measurement points (electrodes) were simulated, with different po-
sitions and sizes. The activity was first simulated at different depths along
the z-axis by placing three groups of three point electrodes in a linear man-
ner (as for a laminar electrode). The distance between electrodes was set at
50µm, while the three groups were placed at depths 150, -75 and -700µm (first
electrode of each group). These three depths correspond respectively to the in-
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fluence area of the dendrites (micro A), somas (micro B) and axons (micro C),
see figure 12. In order to evaluate the contribution of the population EAPs to
macro electrodes (intracerebral SEEG or ECoG), we have also simulated finite
surface contacts, for which the potentials were computed by spatial averag-
ing [37]. These macro electrodes were placed either parallel to the z-axis (and
thus to the population, more or less like SEEG electrodes passing through the
cortex) or perpendicular to the z-axis and above the population (apical den-
drites side, more or less like an ECoG electrode). Their dimensions were set at
1200×600µm for the SEEG1 and SEEG2, while the circular ECoG electrode
radius was set at 250µm. The SEEG-like electrodes were placed at 350µm and
550µm from the population frontier (cylinder surface), while the ECoG-like
electrode was placed at 300µm from the somas (see figure 12). The potentials
recorded by these electrodes were simulated by averaging over a regular grid
of points on their surfaces (153 points for the SEEG and 83 points for the
ECoG).

Fig. 12 Micro and macroelectrodes positions with respect to the neural population (SEEG,
electrodes 1 and 2, ECoG, electrode 3). Notice the laminar electrodes inside the population.

Modelling a realistic dynamics of this neural population through realistic
synaptic connectivity is beyond the scope of this paper. We thus generated
the spiking activity of the simulated population using a random (Poisson)
process with variable intensity, the same for all neurons in order to simulate
phases of synchronous firing (see figure 13 bottom). A refractory phase of 10ms
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was considered for all neurons. The resulting raster (3 seconds at a sampling
frequency of 32000Hz) is shown in figure 13. In order to simulate the membrane
currents and the spiking activity of the population, the raster was convolved
with Im(t), the membrane currents generated by a Hodgkin-Huxley model.
For every neuron and electrode, the corresponding morphological filter was
computed as described in the previous sections, and the contribution of the
population action potentials to the extracellular potential were obtained, for
every point in space and thus every electrode, by adding the contributions of
the different neurons.

Fig. 13 Spiking activity of the excitatory (blue) and the inhibitory neurons (red). The
black line corresponds to the common firing rate

The signals seen by the micro electrodes inserted into the simulated pop-
ulation are shown in figure 14. Previous simulations and studies have shown
that the extracellular signature of the action potential can be recorded by
several electrodes [17,30]. The main key feature is that the shape and the
amplitude will change according to their relative positions compared to the
neuron morphology as it can be seen on the figure 14 (and as it was shown for
a single neuron simulation in the previous sections).

Another feature of the simulation is that the electrodes of group C (lower
part of the cylinder) detect mainly pyramidal neurons activity and more specif-
ically axonal action potentials (figure 14). The inhibitory contribution to the
extracellular potential is not significant because of the size of the inhibitory
neurons and their short axonal influence area. However, when the electrodes
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Micro A

Micro B

Micro C

Fig. 14 Signals recorded by the different electrodes located in the neuronal population : in
the dendrites area (Micro A - top), among the inhibitory and pyramidal somas (Micro B -
middle) and in the pyramidal axons area (Micro C - bottom). The colored spikes correspond
to the same neurons type (inhibitory in red, pyramidal in blue). Note the different shapes
of the EAP of the same neuron, depending on the electrode. The circles show the contri-
bution (in terms of energy, computed as the sum of squared magnitudes) of the excitatory
neurons (blue) and the inhibitory neurons (red) to the extracellular potentials (the EAP
contribution).

are located among the somas (micro B), it is clear that EAPs from both neu-
rons types can be seen (figure 14 - middle). Their contribution to the global
signal is no more negligible (red parts in the circles on the right). It is note-
worthy to mention here that this decrease of the contribution of inhibitory
interneurons is also present when moving away radially from the center of the
population (perpendicular to z-axis, not shown). Moreover, the inhibitory con-
tribution rises when the electrodes are located in the dendrites influence area
(micro A) and EAPs from both neurons types can still been seen. These obser-
vations can be explained by the intrinsic properties of the inhibitory neurons,
having a smaller morphology and no preference for axon orientation. Conse-
quently, it appears that the overall contribution of the inhibitory EAPs to
the spiking activity is much smaller and more local than the excitatory EAPs
contribution (the same conclusions were drawn for synaptic contributions of
the post-synaptic pyramidal neurons, compared to the ones of the inhibitory
neurons [43]). It also appears that the shapes of the different EAPs show a
high variability (between neurons but also for the same neuron recorded on a
given electrode depending on the background activity), indicating that these
signals could be in principle used for spike sorting algorithms benchmarking
or training - see more detailed discussion below.
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We finish this section by discussing the contribution of the action potentials
of the whole population to macroscopic recordings, simulated by averaging
the extracellular potentials over the surface of the macro electrodes. We have
filtered the obtained signals in order to mimic a macroscopic (clinical) EEG
recording device. Here, the populations activities have been bandpass-filtered
with a 2nd-order Butterworth filter between 0.15Hz and 480Hz (Micromedr,
Treviso, Italy, Technical Note). For each macro electrode, we computed the
recorded extracellular potential, as well as the separate contributions of the
the excitatory and inhibitory neurons8. For both types of macro electrodes, we
quantified the relation between the population firing rate and the extracellular
potentials by estimating the correlation coefficient between them. The figure 15
illustrates the relation between this firing rate and both populations activities
on both types of electrodes.

Fig. 15 Macro oscillations of both populations correspond to the firing rate. (A) Simulated
firing rate. (B) and (C) The activity of the excitatory neurons (blue) is more significant
than the activity of the inhibitory neurons (red) for the SEEG1 electrode (B) and the EcoG
electrode (C). The correlation between the firing rate and the SEEG signal is about 0.46 and
the correlation with the ECoG signal is 0.61. The circles quantify the contribution of the
excitatory (blue) and the inhibitory (red) neurons to the extracellular potentials (relative
energy, computed as the sum of squared magnitudes).

It is clearly visible that the excitatory population contributes more signif-
icantly to the global extracellular recordings than the inhibitory population.
The most interesting observation is that the action potentials of synchronous
firing pyramidal neurons seem to contribute to very low frequencies in the

8 Only the part due to the EAP, no synaptic currents were taken into account, see [3] for
preliminary results on the relative contributions of both synaptic and EAP currents to the
extracellular potential.



28 Harry Tran et al.

extracellular signals and that this contribution is correlated to the firing rate.
Assuming that the overall EAPs contribution to the LFP is significant (i.e., it
is not completely dominated by the synaptic contribution), this would help to
explain and justify the use of the firing rate of a population as a proxy for
the LFP, or at least as a partial component. It is noteworthy that the ECoG
electrode seems to have a relatively stronger low-frequencies component com-
pared to the SEEG (the ECoG potential has a higher correlation than the
SEEG one with the firing rate, 0.61 compared to 0.46). This observation can
be explained by the predominant somatic and dendritic contribution to the
ECoG simulated signal, having lower-frequencies than the axonal contribution
that contributes more significantly to the SEEG-like signals (see also spectra
in figure 8).

3.6 Discussion

Simulating realistic EAP waveforms is a great challenge because they depend
on many parameters such as the different ionic channels of the membrane,
their density, the detailed morphology and the electrode position [21,53]. The
method that we propose in this paper does not aim to reproduce these highly
realistic waveforms, but to compute qualitatively plausible EAPs, especially
of the axon contributions, with a very low computational burden.

Indeed, the computation speed is significantly enhanced with respect to
more sophisticated simulation techniques, as for example the LFPy/Neuron
environment, that we used as a ground-truth to evaluate the performance
of our approach. The computation time is decreased by at least an order of
magnitude. For example, on a personal laptop, simulating the extracellular
potential (in one point in space) due to 1000 pyramidal neurons modelled as
above (BS, with an axon having 1000µm length and 2µm in diameter and
en equivalent dendrite of 200µm length and 2µm diameter), during one ac-
tion potential (10ms), takes 10s using the morphological filter (implemented
in Matlab) and 215s using the multicompartmental approach (LFPy/Neuron
- in Python). The difference is even higher if we only compute one single
Hodgkin-Huxley model for all 1000 neurons, in this case the simulation us-
ing the morphological filter only lasts 400ms for the 1000 neurons (note that
this last option can be considered if all neurons are assumed to share exactly
the same dynamics, i.e., there is no difference among them in surfaces or in
conductances/capacities).

On the same laptop, for the complete population of 5000 neurons and the 3
seconds length signal presented in the previous subsection (3.5), the simulation
of the EAPs contribution to the extracellular potential takes 17.5 s for one
point in space (slightly less than two hours for the complete simulation on
the almost 400 points in space representing the set of laminar/SEEG/ECoG
electrodes)9, while the LFPy/NEURON simulation takes more than 4 hours
for a single point in space.

9 When a single HH compartment is simulated for all 5000 neurons.
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This increase in computation speed does not necessarily alter the accuracy
of the simulation for simple ball-stick type neurons, in particular for those with
a rather small equivalent dendrite stick. Moreover, in these favourable config-
urations, the parameters of the morphological filter used in the simulation
can be tuned using basic information about the morphology of the simulated
neurons (see subsection 3.2) and the resulting EAPs have qualitatively realis-
tic features: the axon propagation speed depends on the diameter, waveform
shapes and spectra depend on the morphology of the neuron (short/long axons
and dendrites) and on the position of the electrode.

On the other hand, the morphological filter approach has its limits. Re-
turning to figures 5 and 6, it seems that the model parameters v and CS are
less plausible and/or saturate for the short axons/long dendrites configura-
tions. For example, figure 7 seems to indicate that our empirically/biologically
tuned model is physiologically valid for morphologies limited to the first three
rows (axons above 600µm) and for shorter axons also as long as they remain
thin (2µm) or when the dendrites weight is low. Indeed, the yellow bars (c
and d) in the lower right corner of figure 5 are implausibly high - the axonal
speeds are too fast. Similarly, figure 6 shows that in the lower right corner (and
partially even in the upper rows, for long dendrites) the CS coefficients are
saturated (as a matter of fact, we have tested values up to ±20, and even if the
figures are saturated to ±10, the obtained optimal values of CS are actually
saturated at ±20). In other words, the best correlations between the LFPy
ground truth and the morphological filtering model are obtained for implausi-
ble values of some of the filter coefficients. On the one hand, even if they loose
their physiological meaning, they still might be simply interpreted as model
coefficients necessary for a good reproduction of the actual EAP shapes (this
reasoning might hold for 400µm axons and long dendrites, for which higher
speeds ensure higher correlations, see the last three columns of the fourth row
in figures 3 and 5). On the other hand, these morphologies might simply be
seen as out of the reach of our model.

The accuracy of the method diminishes further for more complex mor-
phologies. Indeed, cells such as the L5 pyramidal neurons have good results
only on the axon side and this is the most critical issue (and future research di-
rection) of the model. Some possible explanations of these weak performances
could be linked to the (oversimplified) dipolar approximation on the dendrite
side: complex apical dendrites cannot be modelled by a single equivalent dipole
having a somatic origin (in fact, the dipole approximation of this configuration
stems from two monopoles, one in the soma and the other somewhere far in the
apical dendrite: we are thus in a near field situation, where the dipolar model
does not hold; in other words, only the potentials of the electrodes situated far
from the two monopoles model could be modelled using a dipole approxima-
tion, meaning that almost all electrodes on the dendrite side are affected by
this error). Of course, it is totally possible that a two monopole approximation
would not be sufficiently accurate neither (although a qualitatively acceptable
approximation seems to hold [52]). In this case, multicompartmental models
and full cable theory need to be used. Even so, as long as the dendrites models
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remain passive and the soma and the axon active, one can imagine combining
the LFPy cable computations (for simulating the dendrites contributions) with
the morphological filter introduced in this paper (for the axonal contribution)
in order to obtain fast and accurate EAPs for passive dendrites/active axon
neuron models (as EAP computation is simply a linear combination of the
two). This would still imply only one active compartment simulation (soma),
instead of a complete LFPy simulation of a full neuron with passive dendrites
and active soma and axon.

We also have to note that the model and the results proposed in this paper
were validated on neurons having an unmyelinated axons above 200µm. We
might legitimately ask if the model can be adapted to myelinated axon. In our
opinion, the myelin shield isolates the axon and the only visible contributions
to the EAPs are, in this case, those generated by the initial unmyelinated part
(the contributions of the Ranvier nodes to the EAPs should be small, both
because they are situated in principle far from the recording sites and because
of their small surface). Still, unmyelinated long axons or axons with long initial
segments are not uncommon. In the literature, unmyelinated 1mm axons were
reported for the (rat) CA3 pyramidal cells, as well as long unmyelinated initial
axonal segments, from 200µm the (ferret) L5 pyramidal neurons to 1mm for
the (rat) CA3 pyramidal cells or Dentate Gyrus granule cells, see [32] and the
references therein.

To sum up, our morphological filter model yields reliable results (repro-
duces accurately the EAPs at different space locations) for neurons having a
rather radially distributed dendritic tree around the soma (basal dendrites).
Apical (biased and/or tilted) dendritic ramifications diminish the performances
(although they remain correct if these ramifications are not very important
and can be modelled by a short equivalent dendrite). For biased dendritic
trees (i.e., non-null “equivalent dendrite”) the results are maintained as long
as the axon is significant compared to the equivalent dendrite assumed to ac-
count for the spatial bias of the dendritic tree. The parameters of our filter
are biologically founded and depend on the neuron morphology.

4 Conclusion

This paper introduces a new method to model extracellular signatures of ac-
tion potentials, starting from single-dipole neurons and requiring thus only
one computation of the membrane dynamics. We showed that the proposed
method is able to fit accurately a large variety of shapes of action potentials
for various neurons morphologies with a predominant axon compared to the
dendrite. For inhibitory neurons and morphologies with a predominant axon,
these EAPs shapes are really similar to those produced by state of the art mul-
ticompartmental models such as LFPy/NEURON [37], while the gain in com-
putational speed is shown to be of one to two order of magnitude10. Moreover,

10 Other detailed simulation techniques such as [64,15] are also based on NEURON, having
thus more or less the same advantages (in terms of precision) and caveats (computing time).
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they are qualitatively comparable to those found in experimental extracellular
recordings from the literature [62]. The main novelty is the rewriting of the
potentials generated by a travelling action potential (along the axon) as a con-
volution with a morphological filter whose coefficients can be estimated from
the neuron morphology and the relative position of the recording electrode
with respect to this neuron. The parameters of the morphological filter have
biophysical justifications and interpretations (traveling speed along the axons,
total dendrite surface). Choosing adequately these coefficients, it should be
possible to simulate neurons morphologies producing different EAPs shapes.
Despite the use of such simple modeling, our results provide evidence that
the proposed model is indeed able to reproduce features of the EAPs already
observed in recent studies, such as the time/frequency variability at different
positions around the neurons.

We have also shown that with this simulation setup we are able to rapidly
compute the EAP contributions from a whole population of neurons with dif-
ferent morphologies (yielding waveforms qualitatively comparable to inhibitory
and excitatory EAP shapes). Using as input a realistic rasterplot, the method
proposed in this paper could be seen as a computationally efficient alternative
to HybridLFPy [24].

The simulated population signal could be in principle used for preliminarily
testing signal processing methods such as spike sorting algorithms. Other spike
sorting benchmark signals simulators were proposed in the literature, either
multicompartmental based methods [12] or including real spikes [42]. Unlike
these methods, the approach described here can handle a complete population
simulation, including (close) single and (far) multi-units as well as (farther)
population contributions. It is true that, in our approach, the variability among
the simulated EAPs does not stem mainly from the morphology, but from the
relative positions of the electrodes with respect to the neurons. Still, enriched
with a more accurate model of the dendritic contribution, with variable HH
dynamics per neuron and with synaptic contributions (using for example the
methods proposed in [43,2], see preliminary results in [3]), our approach might
become an all-in-one simulation method of extracellular potentials, potentially
able to compete with (state of the art) hybrid methods combining real signals,
simulated noise and detailed multicompartmental models.

To conclude, our method could become a valuable tool to generate qualita-
tively realistic extracellular potentials of neuronal populations being done on
any computer. It also shows that the variability of the obtained EAPs shapes
due to relative position changes of a neuron with respect to the electrodes
is important, indicating that the spatial configuration is a strong factor in-
fluencing for example spike sorting algorithms. We believe that the tool we
propose here can be a starting point for a more complete simulator useful to
validate, train or benchmark neural signal processing methods such as spike
sorting algorithms.
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Supplementary material

It is known that the axons are structures with a relatively small diameter
[29,45]. The results presented here include thinner axons, i.e., 1µm diameter,
which are compared to the 2µm axon diameter results presented in the main
text. The following figure can be directly compared to the figure 3.

Fig. 16 Best fit results. The heights of the bars represent the mean correlation coefficient
(over 65 electrodes) for a given morphology. The rows of the figure are organized by axon
length (200µm to 1000µm), while the columns are organized by dendrite length (0µm to
200µm). The indices a to d encode axon-dendrite diameter pairs: a : {ΦA = 1, Φd = 2}µm;
b : {ΦA = 1, Φd = 4}µm; c : {ΦA = 2Φd = 2}µm; d : {ΦA = 2, Φd = 4}µm.

Overall, there is no a significative correlation results difference between 1
and 2µm diameter - except for morphologies with predominant dendrite (right
corner bottom) as it was expected and the correlation values are very high for
the others morphologies. On the figure 16, the values for the diameter 2µm
have the same color code as in the figure 3. The same conclusion stands for the
propagation speed: the values are consistent with the literature (see figure 17)
and with the results from the main text (figure 5): a larger diameter results in
a higher propagation speed. However, the propagation speed is not so different
between diameters 1 and 2µm (figure 17).

The figure 18 displays the soma dipole coefficient results and it is again
quite similar to the figure 6: the resulting dendrite affects the soma coefficient.
Indeed, when it exists (starting from column 2), the coefficient is consistently
negative, indicating a strong dipole pointing in the opposite direction as the
axon. Unlike in the main text where thick axons could compensate thin den-
drites (bar c), for thin axons (1 and 2µm), the CS coefficient is always negative.
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Fig. 17 Best fit results about the speed propagation v (m/s) of the action potential. The y
axis is saturated at 3 m/s. The indices a to d encode axon-dendrite diameter pairs: a : {ΦA =
1, Φd = 2}µm; b : {ΦA = 1, Φd = 4}µm; c : {ΦA = 2Φd = 2}µm; d : {ΦA = 2, Φd = 4}µm.

Fig. 18 Best fit results about the somatic dipole coefficient CS (unit less). The y axis is
saturated at ±10. The indices a to d encode axon-dendrite diameter pairs: a : {ΦA = 1, Φd =
2}µm; b : {ΦA = 1, Φd = 4}µm; c : {ΦA = 2Φd = 2}µm; d : {ΦA = 2, Φd = 4}µm.
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As it can be seen on the figure 19, the soma coefficient does not affect
significantly the correlation values while the propagation speed does. In that
case (or for the morphology described in the caption), the correlation values
increase with the negativity of the soma dipole but the main factor affecting
them is still the propagation speed.

Fig. 19 Surface of the performance criterion (correlation coefficient CC with the ground-
truth) for the BS configuration {LA = 1000, ΦA = 2, Ld = 200, Φd = 2}µm. The maximum
value is 0.88 (bar c in fig 3, the blue line indicates the CC values for the empirical speed
v = 0.45 m/s (see section 3.2), while the red triangle indicates the performance for the
empirical couple of parameters v = 0.45 m/s, CS = −14 (CC = 0.81)


