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Abstra
t The starting point of this paper is the analysis of the referen
e problem in

intra-
erebral ele
troen
ephalographi
 (iEEG) re
ordings. It is well a

epted that both

surfa
e and depth EEG signals are always re
orded with respe
t to some unknown time-

varying signal 
alled referen
e. This arti
le dis
usses di�erent methods for determining

and redu
ing the in�uen
e of the referen
e signal for the iEEG signals. In parti
ular, we

derive optimal approa
hes for the estimation of the referen
e signal in iEEG re
ording

setups and demonstrate their relation to the well known Minimum Power/Varian
e

Distortionless Response (MPDR/MVDR) approa
hes derived for general array and

antenna signal pro
essing appli
ations. We show that the proposed approa
hes a
hieve

optimal performan
e in terms of estimation error and that they outperform other

referen
e identi�
ation methods proposed in the literature. The developed algorithms

are illustrated on simulated examples and on real iEEG signals.

Keywords Referen
e problem · intra-
erebral EEG · Blind Sour
e Separation · Array

Signal Pro
essing

1 Introdu
tion

Multi
hannel (array) signal pro
essing has in
reasingly gained prominen
e in the med-

i
al �eld for the a
quisition and analysis of bio-medi
al signals. The most well known

examples are the bio-potentials re
ording devi
es, ele
troen
ephalography (EEG) in
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parti
ular. In this 
ontext, an important but rather negle
ted issue is the re
ording

setup and, in parti
ular, the referen
e problem. Indeed, signal a
quisition is performed

with measuring ele
trodes, pla
ed on or inside the human body and referen
ed to a

referen
e ele
trode, itself pla
ed on the body. Therefore, the ele
tri
al a
tivity at the

referen
e (never 
onstantly zero) a�e
ts measurements at all other a
tive ele
trode

sites [1,19,6,7℄. In EEG, this type of a
quisition setup is 
alled Common Referen
e

(CR) montage. In 
lassi
al s
alp EEG, the referen
e ele
trode is often pla
ed on the

head. In this 
ase, this ele
trode is in�uen
ed by brain sour
es and by spe
i�
 artefa
ts,

depending on its lo
ation (eye artefa
ts for a frontally pla
ed ele
trode, for example).

The artefa
tual a
tivity is thus present in all the measures. To eliminate the in�uen
e

of the referen
e ele
trode, and 
onsequently to ease the interpretation and the use of

di�erent signal pro
essing te
hniques1, several montages (average, bipolar, Lapla
ian)


an be derived from the CR re
ordings by simple manipulations (see [3,14℄ for more

details of the re
ording setup).

In depth EEG re
ordings, like in the re
ording setup from [6,10℄, the signals are

a
quired from intra-
erebral 
onta
ts, pla
ed along an ele
trode implanted in the brain

(see �gure 2 for an example of depth EEG implantation s
heme). The referen
e 
an be

either a surfa
e ele
trode [6℄ or a user 
hosen 
onta
t of some depth ele
trode [10℄. In

both setups, the referen
e 
onta
t is pla
ed as far as possible from the region of interest

(the supposed epileptogeni
 zone in our 
lini
al 
ontext). The referen
e signal is then

supposed un
ontaminated by the ele
tri
al a
tivity re
orded by the measuring 
onta
ts,

but not ne
essarily null: the surfa
e referen
e ele
trode, besides potentially propagated

brain signals (assumed negligible), re
ords also physiologi
al artefa
ts (mus
le, eyes) or

other re
ording devi
e artefa
ts, while the distant intra-
ranial referen
e 
onta
t might

re
ord lo
al brain potential 
hanges. Both these a
tivities (extra-
erebral artefa
ts or

di�erent stru
ture a
tivity) appear on all measured signals, as they are obtained as a

potential di�eren
e between the measuring ele
trodes and the referen
e one. Finally,

noise also a�e
ts the referen
e ele
trode, espe
ially when it is pla
ed on the s
alp.

To avoid the referen
e problem, all iEEG signals are interpreted by 
lini
ians using a

bipolar (BL) derivation: neighbouring 
onta
ts on the same ele
trode are subtra
ted to

obtain images of the lo
al a
tivity and to eliminate the referen
e2. Still, dire
t measures

obtained by the CR montage 
an be useful for the interpretation, as they o�er a global

view, 
omplementary to the lo
al view furnished by the BL montage. Unfortunately,

they are 
ontaminated by the ele
tri
al a
tivity re
orded by the referen
e 
onta
t.

An interesting attempt to redu
e this in�uen
e, based on a 
onstrained blind sour
e

separation (BSS) approa
h, was proposed by Hu et al. [6,7℄ and further developed by

[13℄. The proposed idea was to estimate the referen
e signal and then eliminate this

estimated referen
e signal from the CR montage. Ranta et al. [13℄ termed this montage

the zero referen
e (ZR) montage.

This 
ontribution presents a unifying analysis of the referen
e estimation problem

for the spe
i�
 setup of the independent referen
e. A framework is developed, under

whose umbrella the above mentioned BSS-based methods are 
losely related. Within

this framework we further develop a simple referen
e estimation approa
h whi
h is

shown to be reliant only on the se
ond order statisti
s of the signals and whi
h is opti-

1 Syn
hroni
ity measures (
oheren
e and similar methods), spe
tral analysis, sour
e lo
al-
ization [2,5,4,11,9℄.
2 Average or Lapla
ian referen
es are never used for depth EEG signals. In fa
t, ele
trode

pla
ement is not symmetri
, so there is no reason to suppose that signals should average to 0
as in s
alp re
ordings.
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mal in terms of signal-to-noise ratio (SNR) maximisation (see Se
tion 2.3.1). We further

demonstrate the equivalen
e of this approa
h to the well known MPDR/MVDR (mini-

mum power/varian
e distortionless response) approa
h to signal estimation. These are

well known approa
hes in the array signal pro
essing �eld and while we brie�y des
ribe

these approa
hes in Se
tion 2.3.2, we would refer the interested reader to the ex
ellent

book of van Trees [17℄ for more details. Finally, simulated examples and results on real

iEEG re
ordings are presented in Se
tion 3.

2 Methods

2.1 Signal model

The underlying signal model we 
onsider is:

x(n) = As(n) (1)

where x(n) ∈ R
(M×1) is the ve
tor of M observations at time instant n (measured

EEG signals after sampling and quantization) and s(n) ∈ R
(Q×1) is the 
orresponding

ve
tor of Q sour
e realisations (underlying brain a
tivity) at the same instant. A ∈

R
(M×Q) =

`

a1, . . . , aQ

´

represents the linear 
ombination of the sour
es to yield the

observation ve
tor x, where aq ∈ R
(M×1). This model, also known as instantaneous

mixture model, is widely a

epted in the EEG pro
essing �eld [15℄.

In the �eld of array signal pro
essing, the ve
tors aq are known as steering ve
tors

whereas in the �eld of EEG pro
essing and in the BSS framework, these are often

referred to as the mixing parameters. Note that we denote these terms as belonging

in the real domain, as in the EEG appli
ations, but the generalization to the 
omplex


ase is immediate.

When using the 
ommon referen
e montage (subsequently referred to as CR), the

signal model is obtained by modifying (1), as proposed in [6℄. This implies that we will


onsider that the mixing A is unknown, ex
ept for one 
olumn whose ea
h element is

−1:

x(n) =

0

B

@

−1
... A2

−1

1

C

A

„

r(n)
s2(n)

«

, (2)

△
=

`

a1 A2

´

„

r(n)
s2(n)

«

(3)

△
= a1r(n) + v(n) , (4)

where x(n) shall subsequently denote the measured CR EEG signals; r(n), the non-zero

ommon referen
e signal; a1, the M × 1 
olumn ve
tor with ea
h element being −1;
A2, the matrix of the remaining mixing parameters; and s2(n), the remaining sour
es.

Equation (4) where v(n) = A2s2(n) presents an alternative, 
ompa
t expression for

the signal model, whi
h will also be used in the following development.

Our aim of referen
e estimation is to make the best estimate of r(n) from the

observations xm(n) by a weighted linear 
ombination w ∈ R
(M×1):

br(n) = w
T
x(n) (5)



4 Nilesh Madhu et al.

The only ne
essary hypothesis is that the referen
e r(n) is independent (in fa
t un-


orrelated is su�
ient) from the other sour
es s2(n) (i.e. E
˘

sqr
¯

= 0, ∀sq ∈ s2, where

E
˘

·
¯

stands for the statisti
al expe
tation operator).

2.2 Analysis of the referen
e estimation problem

2.2.1 Non-blind estimation

For the sake of 
ompleteness, we 
onsider �rst the 
ase when the mixing A is known. In

this 
ase, the most immediate approa
h would be to try to invert the mixing, yielding

estimates for all sour
es, r(n) in
luded. The general approa
h followed in this 
ase is

to formulate the estimation as a least-squares optimisation problem:

Jw = argmin
w

‖wT
A − e

T
1 ‖

2 (6)

where em is a 
olumn-ve
tor of whi
h the m th element is unity and the remaining

elements are zero. What this 
ost fun
tion implies is the re
overy of only the desired

sour
e, nulling the e�e
t of other sour
es. Di�erentiating this 
ost fun
tion w.r.t. w

and equating to 0 we obtain:

AA
T
w = Ae1 (7)

Depending upon M and Q, the analysis 
an be divided into three 
ases:

1. well-determined 
ase: square full rank mixing A (M = Q)

2. over-determined 
ase: rank de�
ient A (M > Q)

3. under-determined 
ase: full row-rank mixing A (M < Q)

Obviously, when the mixing matrix is known and is full-rank square, w is obtained

as:

w = AA
−T

Ae1 = A
−T

e1 (8)

when
e we obtain br(n) as

br(n) = w
T
x(n) = r(n) (9)

When the mixing is known and over-determined (rank(A) = Q < M), the solution

for w is not unique, but it 
an be determined by redu
ing the dimension of the observa-

tions x (and thus of the mixing matrix A) to Q in order to obtain a full rank invertible

mixture, and then applying (6) in this redu
ed spa
e. A 
lassi
al approa
h for su
h

dimension redu
tion is the prin
ipal 
omponent analysis (PCA). The estimated br(n)
will be an exa
t re
onstru
tion of r(n) in this 
ase too.

Finally, when the mixture is known but under-determined, the solution will be

given by:

w =
`

AA
T ´

−1
Ae1 (10)

where e1 is now of dimension Q × 1.

In this 
ase we take re
ourse to the singular value de
omposition (SVD) [16℄ of A as:

A
△
= U

`

Σ 0
´

VT , where U ∈ R
((M×M)) and V ∈ R

(Q×Q) are unitary matri
es and

Σ ∈ R
(M×M) is a diagonal matrix of the singular values of A, and 0 is an M×(Q−M)
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matrix of zeroes. Using this de
omposition, the least-squares estimate of br(n) from (10)


an be obtained as:

br(n) = w
T
x(n)

= e
T
1 V

„

IM,M 0M,Q−M

0Q−M,M 0Q−M,Q−M

«

V
T

„

r(n)
s2(n)

«

= e
T
1

„

V1:M,1:MVT
1:M,1:M 0M,Q−M

0Q−M,M 0Q−M,Q−M

« „

r(n)
s2(n)

«

,

(11)

where I is the identity matrix and the subs
ripts for the matri
es in the above equation

indi
ate the 
orresponding dimensions of the matri
es. We also use the notation Ba:b,c:d

to indi
ate the sub-matrix of B 
onsisting of rows a through b and 
olumns c through d.

The matrix V1:M,1:MVT
1:M,1:M in (11) guarantees the presen
e of residual interferen
e.

Furthermore, unit-gain on r(n) is not guaranteed. While this 
an be enfor
ed, it should

be 
lear that in the under-determined 
ase a 
lean extra
tion of the referen
e signal is

not possible.

2.2.2 Referen
e estimation via blind sour
e separation

When nothing about A or s(n) is known, model inversion needs to be done in a


ompletely blind manner, and this is generally a

omplished through an appropriate

BSS approa
h. In the 
ase where some a priori information is available (on the mixing

or on the sour
es), the BSS be
omes semi-blind sour
e separation � sBSS. This is

exa
tly our problem setting, where the mixing 
olumn for the referen
e sour
e (the

sour
e of interest) is known.

The solutions proposed by [6℄ start by deriving from the measured x(n) the bipo-
lar montage (BL) xb(n). This BL montage is 
onstru
ted from the CR montage by


omputing pairwise di�eren
es among the xm(n), whi
h eliminates the in�uen
e of the

referen
e r(n) in the resulting xb(n) signals. Separating the xb by FastICA [8℄, one

obtains statisti
ally independent estimates of s2 sour
es3 (if the number of measures

is too small, M < Q, one still obtains independent signals, but not ne
essarily 
lose

to s2). Exploiting the absen
e of the referen
e r(n) in the new estimates, [6℄ propose

two methods for estimating r(n) by 
omparing the x(n) from the CR montage (whi
h

in
ludes the referen
e) with the sour
es obtained from xb(n) (for details, see [6℄).

Ranta et al. [13℄ exploited the same model (2) to derive a more robust and faster

method. The basi
 idea being: if 
omplete sour
e separation needs a two step approa
h

(whitening + rotation), and if one wants to estimate only one sour
e, the rotation

matrix does not need to be 
ompletely determined, determining one row is su�
ient. It


an be shown that su
h a 
onstrained approa
h where one 
olumn of the mixing matrix

is known has an optimal estimator that ties into a 
entral framework dependent only

on the se
ond order statisti
s (SOS) of the signals. These relations are subsequently

des
ribed and the model generalized to this 
ase.

3 [7℄ proposed an alternative method repla
ing the FastICA step by simple prin
ipal 
om-
ponent analysis, thus not imposing statisti
al independen
e but only de
orrelation.
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2.3 Uni�ed framework

2.3.1 The semi-Blind Sour
e Separation (sBSS) solution of [13℄

In the absen
e of any a priori knowledge of the sour
es or the mixing system, the

aim of blind sour
e separation algorithms is to invert the mixing system to obtain the

underlying sour
es. Su
h 
ompletely blind approa
hes su�er from the fundamental, un-

avoidable indetermina
y regarding the amplitude of the sour
es. From the perspe
tive

of blind sour
e separation a mixing of the kind in (1) is equivalent to:

x(n) = ADD
−1

s(n)

= eAes(n)
(12)

where D is some arbitrary diagonal s
aling matrix whi
h 
hanges the amplitude, but

not the time 
ourse of the sour
es. A unique solution of (12) for eA and es(n) is therefore
impossible4.

Traditionally, therefore, BSS approa
hes 
onsider unit varian
e sour
es es(n). This,

ombined with the independen
e assumption, means that:

Φeses = E
˘

es(n)es
T (n)

¯

= I , (13)

whi
h impli
itly implies that D = Φ
1/2
ss . The aim of BSS approa
hes is then to invert

the mixing system eA.

Note that eA may be expressed in terms of its 
onstituent 
omponents from the

SVD as:
eA

△
= eU eΣ eV

T
, (14)

where eU ∈ R
(M×M) and eV ∈ R

(Q×Q) are orthogonal matri
es and eΣ ∈ R
(M×Q)


ontains the singular values.

Classi
 blind sour
e separation algorithms demand that M ≥ Q in order to obtain

plausible sour
e estimates. Our �rst analysis fo
usses therefore on the 
ase when eA

(thus A) is full-rank square, i.e.,linearly independent rows, M = Q. Note that when
eA is row rank de�
ient (M > Q), the inversion problem 
an be easily separated into

multiple well-behaved sub-problems by 
onsidering subsets of Q signals. An alternative

approa
h is to perform dimension redu
tion using PCA followed by BSS on the redu
ed

spa
e.

From (14), obtaining the inverse of eA is equivalent to 
omputing the individual


omponents of its SVD. This is done in two stages � a whitening, followed by a rotation.

Consider Φxx = E
˘

x(n)xH(n)
¯

. The eigenvalue de
omposition (EVD) of Φxx


an be written as:

Φxx = UxΣxU
T
x (15)

Under the assumption of (13) and 
onsidering (14), Φxx 
an also be expressed as:

Φxx = E
˘

eAes(n)es
T (n) eA

T ¯

= eAΦeses
eA

T

= eA eA
T

= eU eΣ
2

eU
T

(16)

From (15) and (16) eU = Ux and the non-zero singular values of eΣ are given by Σ
1/2
x .

4 Another ambiguity relates to the order of the sour
es, whi
h is also impossible to re
over.
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Thus we see that (16) 
an already give us two 
omponents of eA: eU and eΣ. We use

this to �rst whiten the data, whi
h yields:

◦
x(n) = Σ

−1/2
x U

T
x x(n)

= Σ
−1/2
x U

T
x

eAes(n)

= eV
T

es(n)

(17)

What remains is to estimate the unitary, rotation matrix eV. Denote this estimate

of eV by fW. ICA approa
hes estimate fW by optimizing fun
tions that maximise the

statisti
al independen
e between the outputs yq(n) of y(n), where y(n) = fWT ◦
x(n).

E�e
tively, what these methods aim to a
hieve is:

fW
T ◦
x(n) = fW

T
Σ

−1/2
x U

T
x x(n)

= fW
T
Σ

−1/2
x U

T
x

eAes(n)

= fW
T
Σ

−1/2
x U

T
x

`

ea1 ea2 . . . eaM

´

es(n)

△
= eDes(n)

△
= Ds(n)

(18)

where, as before, eD, D are diagonal matri
es of s
ale values. For a 
ompletely blind

approa
h su
h as ICA, this is the best result possible under no knowledge of the mixing

system or sour
e auto-
orrelations.

In 
ontrast, when we know a1 and wish to estimate only the 
orresponding sour
e

r(n), we do not need 
omplete inversion of eA and 
an adopt another strategy, namely

that:

fW
T ◦
x(n) = fW

T
Σ

−1/2
x U

T
x

“

ea1
eA2

”

es(n) (19)

whereby from (12) and the impli
ations of (13),

Ds(n) = fW
T
Σ

−1/2
x U

T
x

“

Φ
1/2
rr a1

eA2

”

Φ
−1/2
ss s(n) (20)

From this, and given that fW is unitary, it follows that:

fWDs(n) =
“

Φ
1/2
rr Σ

−1/2
x UT

x a1 Σ
−1/2
x UT

x
eA2

”

Φ
−1/2
ss s(n) , (21)

where eA2 =
`

ea2 . . . eaM

´

. Thus the �rst 
olumn of fW 
an be determined, ex
ept for

the unknown s
ale fa
tor of Φ
1/2
rr as:

ew1 = αΣ
−1/2
x U

T
x a1 , (22)

where α is the unknown s
ale fa
tor to be determined.

From (18) and (22) we have an e�e
tive demixing �lter for r(n) whi
h we express


ompa
tly as:

w1 = UxΣ
−1/2
x ew1

= αUxΣ
−1
x U

T
x a1

= αΦ
−1
xxa1

(23)
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It remains now to �x the s
ale, whi
h is done by ensuring that w1 introdu
es no

distortion along a1, i.e., wT
1 a1 = 1. Introdu
ing this 
onstraint yields:

α =
`

a
T
1 Φ

−1
xxa1

´−1
. (24)

Note, also, that whereas traditional BSS approa
hes 
annot be applied to the under-

determined 
ase, the sBSS solution des
ribed above still applies. For this 
ase, where

M < Q, we 
an write (14) as:

eA = eU eΣ eV
T

“

Φ
1/2
rr a1

eA2

”

= Ux

“

Σ
1/2
x 0M,Q−M

”

eV
T

= UxΣ
1/2
x

eV
T
p ,

(25)

where eVp = eV1:Q,1:M .

Thus, the mixing model of (12) may be written in terms of (25) as:

x(n) =
“

Φ
1/2
rr a1

eA2

”

es(n) = UxΣ
1/2
x

eV
T
p es(n) . (26)

Applying the whitening transform to (26) then yields:

eV
T
p es(n) = Σ

−1/2
x U

T
x

“

Φ
1/2
rr a1

eA2

”

es(n) . (27)

The solution of this equation for es(n) requires the right pseudo-inverse of eV
T
p whi
h,

given that the 
olumns of eVp are orthogonal, is simply eVp. Moreover, for extra
ting

only r(n), we require just the �rst row of eVp (and, 
orrespondingly, the �rst 
olumn

of eV
T
p ). This is, in e�e
t, the same solution as (22) and the demixing �lter is identi
al

to the solution for the determined 
ase, when imposing unit gain along a1.

We shall show next that the solution we obtain for w1 using this s
ale fa
tor in (23)

is identi
al to well-known approa
hes from array te
hnology, whi
h only 
onsider the

se
ond-order statisti
s of the signals for the extra
tion of a `desired' or `target' signal

along a known dire
tion. As will be shown, the sBSS solution is also the best a
hievable

in terms of signal-to-noise ratio (SNR) maximisation.

2.3.2 MPDR estimator

Re
all that our aim is to �nd a linear 
ombination w, able to estimate the unknown

sour
e r(n). One possible approa
h is to minimise the output power of the resultant

signal y(n) = wT x(n), under the 
onstraint that the gain on the estimated referen
e

signal (also denoted as the `target' or `desired' signal in this estimation 
ontext) remains

unity. This may be posed as the following optimisation:

Jw = E
˘

|wT
x(n) |2

¯

+ λ(wT
a1 − 1)

= w
T
Φxxw + λ(wT

a1 − 1) ,
(28)

where Φxx is the 
orrelation matrix of x, and λ is the Lagrange multiplier.

The solution to this 
onstrained optimisation is obtained, after some manipulation,

as:

w =
Φ−1

xx

aT
1 Φ−1

xxa1

a1 . (29)
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This solution is well known in array te
hnology as the minimum power distortionless

response approa
h [17℄. The title aptly des
ribes the design 
onsiderations behind this

approa
h: minimizing the output power while keeping the desired signal undistorted.

2.3.3 Maximum SNR approa
h

We may also pose the sear
h for the optimal w as an SNR maximising 
riterion.

Consider the signal model of (4), under the linear 
ombination w:

w
T
x(n) = w

T
a1r(n) + w

T
v(n) (30)

The SNR after applying w is then easily obtained as:

SNR =
E

˘

|wT a1r(n) |2
¯

E
˘

|wT v(n) |2
¯

=
|wT a1|

2Φrr

wT Φvvw

(31)

As the SNR is a positive value, maximising the SNR w.r.t. w is also equivalent to

maximising the following 
ost fun
tion:

Jw =
1

1 + SNR−1

=
|wT a1|

2Φrr

|wT a1|2Φrr + wT Φvvw

=
|wT a1|

2Φrr

wT Φxxw

(32)

The solution is obtained as:

|wT a1|
2Φrr

wT Φxxw
Φxxw = a1a

T
1 w . (33)

from whi
h (and re
ognising that aT
1 w is a s
alar) we 
an 
on
lude that

w ∝ Φ
−1
xxa1 .

Sele
ting the 
onstant of proportionality to yield unit gain along a1 results in α =
(aT

1 Φ−1
xxa1)

−1 and the resulting w is identi
al to the sBSS and MPDR solutions.

2.3.4 Redu
tion to MVDR

Observe that maximizing the SNR dire
tly is equivalent to minimizing the error term

in equation (30), under the same unit gain 
onstraint. The optimization problem is

stri
tly similar to the one posed in (28):

Jw = E
˘

|wT
v(n) |2

¯

+ λ(wT
a1 − 1)

= wΦvvw
T + λ(wT

a1 − 1) .
(34)

Assuming that Φvv is full ranked, this will lead to:

w =
Φ−1

vv

aT
1 Φ−1

vva1

a1 . (35)
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This solution is known as the minimum varian
e distortionless response approa
h as it

minimises the varian
e of the output signal about r(n).

To prove the equivalen
e between the MVDR solution and the previous approa
hes,

we fa
torise Φxx as:

Φxx =
`

a1a
T
1 Φrr + Φvv

´

(36)

Applying Woodbury's identity [18℄ (and assuming Φvv is full-rank and invertible) Φ−1
xx


an be written as:

Φ
−1
xx = Φ

−1
vv − Φrr

Φ−1
vva1a

T
1 Φ−1

vv

1 + Φrra
T
1 Φ−1

vva1

. (37)

Substituting this value of Φ−1
xx in (29) and after some trivial algebrai
 manipulations

we obtain again the solution in (35).

Finally, if we return to the SNR maximisation problem (31) under the hypothesis

that Φvv is invertible, we 
an dire
tly write:

SNRΦvvw = a1a
T
1 w . (38)

Again, as aT
1 w is a s
alar, (38) redu
es to:

SNR

aT
1 w

Φvvw = a1 , (39)

from whi
h:

w =
aT
1 w

SNR
Φ

−1
vva1 (40)

= αΦ
−1
vva1 (41)

In other words, w is a s
aled version of Φ−1
vva1. To impose the distortionless 
onstraint,

we may again rede�ne the s
ale fa
tor su
h that:

w
T
a1 = 1 (42)

yielding

α = (aT
1 Φ

−1
vva1)

−1
. (43)

To 
on
lude, if Φvv is also full-ranked, MVDR, MPDR and sBSS solutions are

stri
tly equivalent. Nevertheless, in pra
ti
al appli
ations, Φvv is seldom known, while

Φxx 
an be estimated from the data, so we will fo
us in the next se
tions on this

solution only.

2.3.5 Sour
e estimate

As seen previously, the linear 
ombination permitting an optimal re
overy of the un-

known referen
e signal r(n) 
an be written as:

w =
Φ−1

xx

aT
1 Φ−1

xxa1

a1 . (44)
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Applying this linear 
ombination to x(n) we obtain the following estimate of the

target signal:

br(n) = w
T
x(n)

= r(n) +
aT
1 Φ−1

xxv(n)

aT
1 Φ−1

xxa1

(45)

One 
an easily prove that this estimate is identi
al to r(n) if the mixing is over or

well-determined (
olumn rank of A ≤ M).

Consider �rst the 
ase of a square invertible matrix A (M × M). This 
ase also

implies that Φxx is invertible and permits a fa
torisation of its inverse as:

Φ
−1
xx =

`

AΦssA
T ´−1

= A
−T

Φ
−1
ss A

−1
(46)

The 
orresponding estimate br(n) is:

br(n) = w
T
x(n)

=
aT
1 Φ−1

xx

aT
1 Φ−1

xxa1

As(n)

=
eT
1 AT `

A−T Φ−1
ss A−1

´

eT
1 AT

`

A−T Φ−1
ss A−1

´

AT e1

As(n)

=
eT
1 Φ−1

ss

eT
1 Φ−1

ss e1

s(n)

= r(n)

(47)

When A is not full-ranked (as in the 
ase when M > Q for example), Φxx is not

invertible and a dimension redu
tion step is ne
essary. Again, as in the 
ase of the

known matrix A, prin
ipal 
omponent analysis (PCA) 
an be employed. The number

of non-null eigenvalues of the 
ovarian
e matrix Φxx will indi
ate the new dimension

of the system, equal to Q. In theory, any well 
onditioned linear transform P (Q ×

M) applied to the measured signals will lead to similar results. Indeed, the original

model (1) 
an be rewritten as:

Px(n) = PAs(n)

xP(n) = APs(n) ,
(48)

where xP and AP indi
ate the resulting observations and mixing system under the

linear 
ombination P. The sBSS/MPDR approa
h 
an then be applied in this redu
ed,

well-
onditioned spa
e to obtain a Q-dimensional weight ve
tor wP as:

wP =
Φ−1

xPxP

aT
P,1Φ

−1
xPxP

aP,1

aP,1 . (49)

A similar analysis as in (47) proves that br(n) = r(n) i.e., the estimation is perfe
t.
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Finally, when the mixing is under-determined (rank of A = M < Q), the estimated

sour
e will be equal to the original, plus some residue:

br(n) =
aT
1 Φ−1

xx

aT
1 Φ−1

xxa1

As(n)

=
aT
1 Φ−1

xx

aT
1 Φ−1

xxa1

a1r(n) +
eT
1 AT Φ−1

xx

aT
1 Φ−1

xxa1

v(n)

= r(n) + ev(n) (50)

An interesting point must be noted here: unlike (10), the weight ve
tor obtained by

sBSS/MPDR methods is the solution of a 
onstrained optimization problem. Therefore,

the residue ev(n) 
ontains a weighted average of the remaining signals, the weighting

being inversely proportional to the power of ea
h sour
e. Thus, powerful sour
es would

be more strongly suppressed as 
ompared to weaker sour
es. Su
h a weighting is of ad-

vantage and, therefore, for under-determined 
onditions, this method is re
ommended

even when the mixing matrix A is 
ompletely known.

2.4 Experimental setup

We illustrate the referen
e estimation approa
h and the bene�ts of the zero-referen
e

montage (ZR), obtained by eliminating the estimated referen
e signal from the CR

montage, using both simulated signals and real depth EEG measurements, as des
ribed

next.

2.4.1 Simulation

The aim of this se
tion is to 
ompare the sBSS/MPDR method to matrix inversion (if

A is known) or to BSS estimation. The three estimates of r are r̂sBSS , r̂A and r̂BSS

respe
tively5. Two simulation setups are possible:

1. Determined 
ase M ≥ Q. We have regrouped the over-determined (M > Q) and

the well-determined (M = Q) 
ases together, as the �rst one redu
es to the se
ond

after dimension redu
tion. Therefore, we simulate in the sequel only this last 
ase,

that is a full-rank square matrix.

2. Under-determined 
ase M < Q. An important parti
ular 
ase of under-determined

mixture is the noisy 
ase: indeed, when 
onsidering noisy measures, well or over-

determined mixtures transform in under-determined mixtures, as noise 
an be 
on-

sidered as a sour
e. This general formulation allows to 
onsider independent noises

for every 
hannel (in whi
h 
ase the extra-
olumns of the mixing matrix 
orrespond-

ing to noise sour
es will be zero, ex
ept for one element) or spatially 
orrelated

noises (arbitrary supplementary 
olumns in the mixing).

We have 
onsidered, for the simulation, four sour
es (Q = 4), with the setup

presented in Table 1 (see also Fig. 1a). As seen in the table, only one sour
e is

Gaussian, in order to respe
t the basi
 hypothesis of independent 
omponent analysis

5 The BSS estimate r̂BSS was sele
ted, among all sour
es found by BSS, as the signal having
the highest absolute value of the 
orrelation 
oe�
ient with the original signal r.
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Table 1: Setup for the simulations.
Signal Type Power (dB)

r(n) Sawtooth waveform (50Hz) 0
s2(n) Sinusoid (30Hz) 0
s3(n) Sequen
e of ±1 (20Hz) -10
s4(n) Gaussian noise 0
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Fig. 1: Simulated sour
es and under-determined mixture (M = Q − 1)

(ICA) based blind sour
e separation. Indeed, taking two or more Gaussian sour
es

prevents ICA from su

eeding be
ause of the non-existen
e of the high order moments6.

The powers of the sour
es are indi
ated respe
tive to the �rst (target) one. The

mixing matrix A was randomly generated (uniform distribution in [−1, 1], in order to

simulate dissipative propagation medium and dipolar-like sour
es). We have 
onsid-

ered 1000 mixing matri
es, the results presented here being the mean values over all

simulations.

The 
onsidered performan
e 
riterion was the 
orrelation 
oe�
ient between the

target sour
e and its estimate obtained by the three tested approa
hes (matrix inver-

sion, BSS and sBSS/MPDR). Although mean square error 
an also be 
onsidered for

matrix inversion and sBSS/MPDR, it penalizes BSS approa
hes, as they are unable to

estimate 
orre
t amplitudes.

2.4.2 Intra-
erebral EEG re
ordings

Intra-
erebral EEG re
ordings are a
quired from multi-
onta
t depth ele
trodes im-

planted in the brain in order to lo
alise the epileptogeni
 zone (see �gure 2 for an

example). The referen
e is pla
ed somewhere su�
iently far away from this zone, so it


an be 
onsidered as independent, although unknown and di�erent from 0. The depth

ele
trodes might have from 10 to 15 
onta
ts ea
h, with a 2 mm distan
e between

them. The total number of a
quired signals varies around 100, depending on the num-

ber of implanted ele
trodes by patient. The unknown referen
e signal 
ontributes to

all re
ordings a

ording to model (2).

A

ording to this des
ription of the re
ording setup, it appears that one might


hoose to estimate the referen
e either using all the re
orded signals or after some

6 Still, other BSS algorithms, based on se
ond order statisti
s only (SOBI for example) will
fun
tion also for Gaussian sour
es.
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(a)

(b)

Fig. 2: Depth EEG implantation example. (a) implantation s
heme (the ele
trodes insertion
points are superimposed on the MRI image in a saggital view). (b) axial view on the level of
a horizontally inserted multi-
onta
t depth ele
trode (left side up).

dimension redu
tion. We will not insist here on the di�erent 
hoi
es and on their in�u-

en
e on the quality of the estimation from a medi
al interpretation point of view, this

analysis will be presented elsewhere. We will only fo
us on three example of referen
e

estimation and elimination 
onsidering a subset of the re
orded signals. The obtained


orre
ted montages will be 
alled further on zero-referen
ed (ZR).

The 
onsidered signals are obtained from three patients diagnosed with temporal

lobe epilepsy, at the University Hospital (CHU) from Nan
y, Fran
e. Ea
h patient

gave his informed 
onsent and the study was approved by the ethi
s 
ommittee of the

hospital.
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3 Results

3.1 Simulated signals

3.1.1 Determined 
ase M = Q

In this simple 
ase, all approa
hes should be essentially equivalent and the solutions

should be ideal (assuming that the independen
e 
ondition ne
essary for BSS ap-

proa
hes is respe
ted). Indeed, extensive numeri
al simulations 
on�rm this expe
ted

hypothesis: matrix inversion leads to perfe
t re
onstru
tion (
orrelation ≈ 1), while
BSS and sBSS/MPDR solutions are very 
lose between them and 
lose to the ideal

solution (mean 
orrelation 
oe�
ients greater than 0.99).

3.1.2 Under-determined 
ase M < Q

A more 
ru
ial 
ase arises when M < Q. In su
h a 
ase, the MPDR solution weights

the residual sour
es by the inverse of their power, thus giving lower weights to the

more powerful sour
es. Thus, we would expe
t that the data-adaptive stru
ture of the

MPDR would be better than when only applying the solution in (10).

This is presented in the simulation below, where we 
onsidered only 3 measuring


hannels for the 4 sour
es from Table 1 (M = 3, Q = 4, see an example of mixed

signals in Fig. 1b). An example of sour
e estimate br(n) is presented in Figure 3. Mean

0 0.02 0.04 0.06 0.08 0.1
−3

−2

−1

0

1

2

3

 

 

r r̂A r̂BSS r̂sBSS

Fig. 3: Original (r, dashed line) and estimated referen
e signals using the di�erent approa
hes
when M < Q,. brA is the estimate when using 
omplete knowledge of A (
orrelation 
oe�-

ient=0.83), the brBSS is the solution using FastICA (
orrelation=0.89) and the estimate using
the sBSS/MPDR approa
h is brsBSS (
orrelation=0.91)

and standard deviation values of the 
orrelation 
oe�
ient between r and its estimates

r̂A, r̂BSS and r̂sBSS (1000 simulations) are given Table 2. The distribution of the


orrelation 
oe�
ient over all simulations is presented in the box-plots �gure 4.

Table 2: Performan
e evaluation using the 
orrelation 
oe�
ient between the simulated original
sour
e r and di�erent estimates (mean values over 1000 simulations) for the under-determined

ase.

r̂A r̂BSS r̂sBSS

0.88 (±0.14) 0.90 (±0.14) 0.92 (±0.11)
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Fig. 4: Correlation 
oe�
ients distribution over 1000 simulations. As it 
an be seen, the pro-
posed sBSS method surpasses both matrix inversion and 
lassi
al BSS, both in terms of mean
value and of robustness to the mixing 
hara
teristi
s.

3.2 Real depth EEG signals

3.2.1 Noisy i
tal iEEG

The analyzed time window was 20 se
onds length, re
orded at a sampling frequen
y

of 512 Hz. The signals are measured relative to a referen
e 
onta
t pla
ed in the skull-

bone (one of the exterior re
ording 
onta
ts of one depth ele
trode). The 
omplete

depth EEG has 112 
ommon referen
es 
hannels.

The 
onsidered subset of signals is re
orded by ele
trode OT , implanted in the right

median and lateral o

ipital lobe below the 
al
arine sul
us. We 
hose this ele
trode

be
ause it was initially involved by the epilepti
 dis
harge in this 
ase. It had 12

measuring 
onta
ts inside the brain (OT1 to OT12, OT1 being the most profound).

Figure 5 shows an example of the 
lini
al use of the estimated zero-referen
e mon-

tage (ZR). After an initial fast low voltage a
tivity starting from se
ond 4, the dis
harge

appears as a rhythmi
 a
tivity in the theta band (4-8 Hz) from se
ond 10, on the lateral


onta
ts OT7 to OT10. We used the proposed method to estimate the referen
e signal

and to 
orre
t the original a
quisition montage. As it 
an be seen in �gure 5a, in the

original 
ommon referen
e montage (CR) all signals had a rather noisy appearan
e,

while in the 
orre
ted zero-referen
e montage (ZR, �gure 5b) the obtained signals were

mu
h 
leaner. This noise is due to an unexpe
ted ele
tri
al noise appearing on the

referen
e 
hannel.

To illustrate the 
lini
al use of a zero-referen
ed montage, we 
ompare it to the usual

bipolar montage (BL), routinely employed for iEEG interpretation (�gure 5
). Clearly,

the BL montage eliminates the referen
e artefa
t and it provides a lo
al view of the

brain a
tivity. On the other hand, it loses the amplitude and propagation information,

preserved on the (zero)-referen
ed signals.

The spatial de
rease of the signal amplitude is signi�
antly di�erent for the 
or-

re
ted ZR montage 
ompared to the bipolar montage. In �gure 6, CR and ZR montage


learly indi
ate a gradual de
rease of amplitude roughly mat
hing the separation be-

tween grey matter (
ontaining the ele
tri
al sour
es) and white matter (ele
tri
ally

ina
tive). Maximum amplitude is noti
ed on 
onta
t OT8 with these montages. In 
on-

trast, bipolar montage shows maximum amplitude on OT9 − OT10 and a de
rease of
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(b) 
orre
ted ZR montage
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(
) bipolar BL montage

Fig. 5: Depth i
tal EEG example using di�erent montages (20 se
onds). Shaded 
olumn on the
right approximately represents the brain stru
tures explored by the OT ele
trode (a

ording
to the patient s
anner). One 
an noti
e the elimination of the referen
e noise between 5b and
5a, while still preserving amplitude and topography information better than in 5


amplitude on OT8−OT9. This lo
al minimum 
ould be falsely 
onsidered as ele
tri
ally

ina
tive (white matter) be
ause of the low signal in this 
erebral area.

Con
erning the ele
tri
al di�usion of the potentials inside the brain, visual analysis

of the ZR montage allows identifying a 
lear ele
tri
al propagation in the white matter

(
onta
ts 4 to 6) from generators lo
ated in the grey matter (
onta
ts 7 to 10). This

di�usion, absent on the BL montage, might be useful to better estimate the lo
ation

and the orientation of the neural generator.

3.2.2 Artefa
ted spontaneous iEEG

In the previous example, all signals were issued from a one of the implanted depth

ele
trodes having 12 
onta
ts. In the general 
ase, this is not the most favourable

situation, as the signals might be highly 
orrelated and thus the 
ovarian
e matrix Φxx

might be badly 
onditioned (i.e. numeri
ally di�
ult to invert in, for example, eq. 29).

The se
ond example we present here 
on
erns one 
onta
t by implanted depth ele
trode

(7 ele
trodes, thus 7 
onta
ts in all), measured with respe
t to a s
alp referen
e pla
ed

in the FPz position a

ording to the 10-20 system. The signals have 5 se
onds length

and are sampled at 512 Hz. Right temporal lobe was implanted with depth ele
trodes,
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Fig. 6: Normalised power of the signals re
orded by the di�erent 
onta
ts of the OT ele
trode.
The 
orresponding powers of the signals issued from the BL montage are represented in inter-
mediate positions among the 
onta
ts. Shaded row on the bottom of the �gure approximately
represents the brain stru
tures explored by the ele
trode.

from the anterior to the posterior part, in order to delineate the epileptogeni
 zone.

The anatomi
al stru
tures explored by the 
onsidered 
onta
ts are the insula (T1 and

H1), the entorhinal 
ortex (TB1), the hippo
ampus (B1 and C1), the temporal pole

(P1) and the amygdala (A1). The raw signals are presented �gure 7a.

As seen in �gure 7a, all signals are perturbed by additive noise and artefa
ts, very

likely a�e
ting the referen
e ele
trode. Both noise and artefa
ts disappear, as expe
ted,

when using the bipolar montage obtained by subtra
ting neighbouring 
onta
ts from

the same depth ele
trode, see �gure 7b. For example, the peak appearing around se
-

ond 4 on the 
ommon referen
e montage is 
ompletely removed. On the other hand,

this visualization also drasti
ally redu
e the amplitude of some patterns not present

on the referen
e, but still appearing on several 
onta
ts (positive peak after se
ond

1). For the 
orre
ted ZR montage, this pattern is preserved 
learly identi�ed on TB1,

P1 and A1, whi
h are implanted in neighbouring and 
onne
ted regions of the brain.

Roughly7, this 
an be evaluated by 
omputing the 
orrelation 
oe�
ients ρ between

the involved signals: ρTB1,P1
= 0.69, ρTB1,A1

= 0.84 and ρP1,A1
= 0.80. These


orrelations are signi�
antly higher than all the other 
orrelation values among ele
-

trodes: the next value equals 0.46 between 
onta
ts A1 and C1, still situated in 
losely


onne
ted regions(amygdala and hippo
ampus). The relations between these signals

(and presumably between the 
orresponding brain areas, anatomi
ally 
onne
ted in

the human brain) are masked on the CR montage (more than half of the 
orrelations

are greater than 0.8 be
ause of the referen
e artefa
t) and they are redu
ed on the

BL montage be
ause of the elimination of the a
tivity appearing simultaneously on

two neighbouring 
onta
ts (ρTB1−TB2,P1−P2
= 0.60, ρTB1−TB2,A1−A2

= 0.32 and

ρA1−A2,P1−P2
= 0.04).

3.2.3 Interi
tal spikes

A last example is presented for interi
tal spikes enhan
ement. These pathologi
al EEG

patterns appear between seizures in epilepti
 patients and they are markers of the

7 more spe
i�
 studies using 
onne
tivity measures will be des
ribed elsewhere
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Fig. 7: Depth EEG obtained using one 
onta
t for ea
h ele
trode (two neighbouring 
onta
ts
for the BL montage). The signals are ordered by anatomi
al stru
ture: insula (T1 and H1),
entorhinal 
ortex (TB1), hippo
ampus (B1 and C1), temporal pole (P1) and amygdala (A1).

epilepti
 disease having a 
hara
terized morphology. They are usually present on sev-

eral re
orded signals, in
reasing thus the 
orrelation between them. Visual analysis of

these patterns helps the neurologists to lo
alize malfun
tioning regions in the brain. In


lassi
al iEEG analysis, a spike 
hanging its polarity on two neighbouring signals of a

bipolar montage indi
ates that the generator is situated 
lose to the 
ommon 
onta
t

(see example in �gure 8b), signals A10 −A11 and A11 −A12). On the other hand, the

BL montage also might diminish the amplitude of a spike, as for example on signals

TB9 − TB10 and TB10 − TB11. This e�e
t of the BL montage is 
orre
ted on the

ZR montage from �gure 8
, where the spikes are preserved and they 
an 
learly be

distinguished from the ba
kground a
tivity (although they are almost masked on the

original montage, perturbed by the referen
e artefa
t, see �gure 8a).

4 Dis
ussion

The main obje
tive of this work was to revisit the referen
e problem in iEEG signal

pro
essing and present a uni�ed multi
hannel signal pro
essing framework. Generaliz-

ing previous approa
hes presented in the literature, we have shown that, under 
ertain

realisti
 hypothesis, the referen
e signal 
an be estimated from the measures using
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A 10
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P 7

(a) original CR montage

0 1 2 3 4 5
TB11−TB12

TB10−TB11

TB9−TB10

A 12−A 13

A 11−A 12

A 10−A 11

P9−P 10

P8−P9

P 7−P8

(b) bipolar BL montage

0 1 2 3 4 5
TB11

TB10

TB9

A 12

A 11

A 10

P9

P8

P 7

(
) 
orre
ted ZR montage

Fig. 8: Depth EEG obtained using three 
onta
ts for three ele
trodes, all pla
ed in the exter-
nal right temporal lobe (four neighbouring 
onta
ts per ele
trode for the BL montage). The
enhan
ement of the interi
tal spikes is delineated by the dotted lines.

a semi blind sour
e separation (sBSS) approa
h, based on partial knowledge of the

mixing model.

We have shown furthermore that the sBSS approa
h is stri
tly equivalent to mini-

mum power distortionless response �lter (MPDR) and that it a
hieves optimal perfor-

man
es in terms of SNR. The developed sBSS/MPDR algorithm was 
ompared with


ompletely blind approa
hes (i.e. 
onsidering that the mixing is 
ompletely unknown)

and with dire
t matrix (pseudo-)inversion (i.e. 
onsidering that the mixing is 
om-

pletely known). We have shown, using di�erent measuring setups (well, over and under

determined mixtures), that our method yields 
omparable or better results than both


lassi
al blind sour
e separation and matrix inversion.

The main bene�t of the referen
e estimation is the 
onstru
tion of a 
orre
ted

referen
e-free montage ZR, whi
h 
an help both 
lini
al interpretation and further

automati
 EEG analysis. Possible appli
ations (see �rst and se
ond examples in the

se
tion 3.2) are dire
t 
lini
al analysis of i
tal, interi
tal and ba
kground iEEG without

transforming the data into a bipolar montage, o�ering thus a 
omplementary view on

the brain ele
tri
al a
tivity. A promising resear
h dire
tion is the intra-
erebral sour
e

lo
alization using iEEG measures, potentially allowing the lo
alization of sour
es whi
h

are not situated in stru
tures implanted by the iEEG ele
trodes (see for example the

interi
tal spikes, enhan
ed in the third example). The usefulness of our method should
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be validated further for evoked potential (EP) analysis: by 
onstru
tion, it makes no

hypothesis on the morphology of the informative signals, so it should a

urately 
orre
t

the referen
e for EP re
ordings also. On the other hand, as EP are mostly studied after

averaging on several trials, the referen
e in�uen
e is anyway diminished and it probably

disappears if the number of trials is su�
iently big.

As a �nal note, we would like to add that we have been able to prove in [12℄ that

even the methods of [5,7℄ 
onverge to the MPDR solution. Thus, the state-of-the-art

approa
hes for referen
e estimation all fall within our proposed framework.

5 Con
lusion

We present a novel and rigorous methodology for the referen
e estimation problem in

depth EEG signal pro
essing. We prove that this method is optimal in terms of SNR

maximisation and demonstrate, further, that it also en
ompasses existing approa
hes.

The pra
ti
al usefulness of the proposed approa
h was illustrated on simulated and real

iEEG re
ordings in taken in di�erent situations (ba
kground, interi
tal spikes, epilepti


seizure).
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