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Abstrat The starting point of this paper is the analysis of the referene problem in

intra-erebral eletroenephalographi (iEEG) reordings. It is well aepted that both

surfae and depth EEG signals are always reorded with respet to some unknown time-

varying signal alled referene. This artile disusses di�erent methods for determining

and reduing the in�uene of the referene signal for the iEEG signals. In partiular, we

derive optimal approahes for the estimation of the referene signal in iEEG reording

setups and demonstrate their relation to the well known Minimum Power/Variane

Distortionless Response (MPDR/MVDR) approahes derived for general array and

antenna signal proessing appliations. We show that the proposed approahes ahieve

optimal performane in terms of estimation error and that they outperform other

referene identi�ation methods proposed in the literature. The developed algorithms

are illustrated on simulated examples and on real iEEG signals.

Keywords Referene problem · intra-erebral EEG · Blind Soure Separation · Array

Signal Proessing

1 Introdution

Multihannel (array) signal proessing has inreasingly gained prominene in the med-

ial �eld for the aquisition and analysis of bio-medial signals. The most well known

examples are the bio-potentials reording devies, eletroenephalography (EEG) in
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partiular. In this ontext, an important but rather negleted issue is the reording

setup and, in partiular, the referene problem. Indeed, signal aquisition is performed

with measuring eletrodes, plaed on or inside the human body and referened to a

referene eletrode, itself plaed on the body. Therefore, the eletrial ativity at the

referene (never onstantly zero) a�ets measurements at all other ative eletrode

sites [1,19,6,7℄. In EEG, this type of aquisition setup is alled Common Referene

(CR) montage. In lassial salp EEG, the referene eletrode is often plaed on the

head. In this ase, this eletrode is in�uened by brain soures and by spei� artefats,

depending on its loation (eye artefats for a frontally plaed eletrode, for example).

The artefatual ativity is thus present in all the measures. To eliminate the in�uene

of the referene eletrode, and onsequently to ease the interpretation and the use of

di�erent signal proessing tehniques1, several montages (average, bipolar, Laplaian)

an be derived from the CR reordings by simple manipulations (see [3,14℄ for more

details of the reording setup).

In depth EEG reordings, like in the reording setup from [6,10℄, the signals are

aquired from intra-erebral ontats, plaed along an eletrode implanted in the brain

(see �gure 2 for an example of depth EEG implantation sheme). The referene an be

either a surfae eletrode [6℄ or a user hosen ontat of some depth eletrode [10℄. In

both setups, the referene ontat is plaed as far as possible from the region of interest

(the supposed epileptogeni zone in our linial ontext). The referene signal is then

supposed unontaminated by the eletrial ativity reorded by the measuring ontats,

but not neessarily null: the surfae referene eletrode, besides potentially propagated

brain signals (assumed negligible), reords also physiologial artefats (musle, eyes) or

other reording devie artefats, while the distant intra-ranial referene ontat might

reord loal brain potential hanges. Both these ativities (extra-erebral artefats or

di�erent struture ativity) appear on all measured signals, as they are obtained as a

potential di�erene between the measuring eletrodes and the referene one. Finally,

noise also a�ets the referene eletrode, espeially when it is plaed on the salp.

To avoid the referene problem, all iEEG signals are interpreted by liniians using a

bipolar (BL) derivation: neighbouring ontats on the same eletrode are subtrated to

obtain images of the loal ativity and to eliminate the referene2. Still, diret measures

obtained by the CR montage an be useful for the interpretation, as they o�er a global

view, omplementary to the loal view furnished by the BL montage. Unfortunately,

they are ontaminated by the eletrial ativity reorded by the referene ontat.

An interesting attempt to redue this in�uene, based on a onstrained blind soure

separation (BSS) approah, was proposed by Hu et al. [6,7℄ and further developed by

[13℄. The proposed idea was to estimate the referene signal and then eliminate this

estimated referene signal from the CR montage. Ranta et al. [13℄ termed this montage

the zero referene (ZR) montage.

This ontribution presents a unifying analysis of the referene estimation problem

for the spei� setup of the independent referene. A framework is developed, under

whose umbrella the above mentioned BSS-based methods are losely related. Within

this framework we further develop a simple referene estimation approah whih is

shown to be reliant only on the seond order statistis of the signals and whih is opti-

1 Synhroniity measures (oherene and similar methods), spetral analysis, soure loal-
ization [2,5,4,11,9℄.
2 Average or Laplaian referenes are never used for depth EEG signals. In fat, eletrode

plaement is not symmetri, so there is no reason to suppose that signals should average to 0
as in salp reordings.
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mal in terms of signal-to-noise ratio (SNR) maximisation (see Setion 2.3.1). We further

demonstrate the equivalene of this approah to the well known MPDR/MVDR (mini-

mum power/variane distortionless response) approah to signal estimation. These are

well known approahes in the array signal proessing �eld and while we brie�y desribe

these approahes in Setion 2.3.2, we would refer the interested reader to the exellent

book of van Trees [17℄ for more details. Finally, simulated examples and results on real

iEEG reordings are presented in Setion 3.

2 Methods

2.1 Signal model

The underlying signal model we onsider is:

x(n) = As(n) (1)

where x(n) ∈ R
(M×1) is the vetor of M observations at time instant n (measured

EEG signals after sampling and quantization) and s(n) ∈ R
(Q×1) is the orresponding

vetor of Q soure realisations (underlying brain ativity) at the same instant. A ∈

R
(M×Q) =

`

a1, . . . , aQ

´

represents the linear ombination of the soures to yield the

observation vetor x, where aq ∈ R
(M×1). This model, also known as instantaneous

mixture model, is widely aepted in the EEG proessing �eld [15℄.

In the �eld of array signal proessing, the vetors aq are known as steering vetors

whereas in the �eld of EEG proessing and in the BSS framework, these are often

referred to as the mixing parameters. Note that we denote these terms as belonging

in the real domain, as in the EEG appliations, but the generalization to the omplex

ase is immediate.

When using the ommon referene montage (subsequently referred to as CR), the

signal model is obtained by modifying (1), as proposed in [6℄. This implies that we will

onsider that the mixing A is unknown, exept for one olumn whose eah element is

−1:

x(n) =

0

B

@

−1
... A2

−1

1

C

A

„

r(n)
s2(n)

«

, (2)

△
=

`

a1 A2

´

„

r(n)
s2(n)

«

(3)

△
= a1r(n) + v(n) , (4)

where x(n) shall subsequently denote the measured CR EEG signals; r(n), the non-zero
ommon referene signal; a1, the M × 1 olumn vetor with eah element being −1;
A2, the matrix of the remaining mixing parameters; and s2(n), the remaining soures.

Equation (4) where v(n) = A2s2(n) presents an alternative, ompat expression for

the signal model, whih will also be used in the following development.

Our aim of referene estimation is to make the best estimate of r(n) from the

observations xm(n) by a weighted linear ombination w ∈ R
(M×1):

br(n) = w
T
x(n) (5)
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The only neessary hypothesis is that the referene r(n) is independent (in fat un-

orrelated is su�ient) from the other soures s2(n) (i.e. E
˘

sqr
¯

= 0, ∀sq ∈ s2, where

E
˘

·
¯

stands for the statistial expetation operator).

2.2 Analysis of the referene estimation problem

2.2.1 Non-blind estimation

For the sake of ompleteness, we onsider �rst the ase when the mixing A is known. In

this ase, the most immediate approah would be to try to invert the mixing, yielding

estimates for all soures, r(n) inluded. The general approah followed in this ase is

to formulate the estimation as a least-squares optimisation problem:

Jw = argmin
w

‖wT
A − e

T
1 ‖

2 (6)

where em is a olumn-vetor of whih the m th element is unity and the remaining

elements are zero. What this ost funtion implies is the reovery of only the desired

soure, nulling the e�et of other soures. Di�erentiating this ost funtion w.r.t. w

and equating to 0 we obtain:

AA
T
w = Ae1 (7)

Depending upon M and Q, the analysis an be divided into three ases:

1. well-determined ase: square full rank mixing A (M = Q)

2. over-determined ase: rank de�ient A (M > Q)

3. under-determined ase: full row-rank mixing A (M < Q)

Obviously, when the mixing matrix is known and is full-rank square, w is obtained

as:

w = AA
−T

Ae1 = A
−T

e1 (8)

whene we obtain br(n) as

br(n) = w
T
x(n) = r(n) (9)

When the mixing is known and over-determined (rank(A) = Q < M), the solution

for w is not unique, but it an be determined by reduing the dimension of the observa-

tions x (and thus of the mixing matrix A) to Q in order to obtain a full rank invertible

mixture, and then applying (6) in this redued spae. A lassial approah for suh

dimension redution is the prinipal omponent analysis (PCA). The estimated br(n)
will be an exat reonstrution of r(n) in this ase too.

Finally, when the mixture is known but under-determined, the solution will be

given by:

w =
`

AA
T ´

−1
Ae1 (10)

where e1 is now of dimension Q × 1.

In this ase we take reourse to the singular value deomposition (SVD) [16℄ of A as:

A
△
= U

`

Σ 0
´

VT , where U ∈ R
((M×M)) and V ∈ R

(Q×Q) are unitary matries and

Σ ∈ R
(M×M) is a diagonal matrix of the singular values of A, and 0 is an M×(Q−M)
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matrix of zeroes. Using this deomposition, the least-squares estimate of br(n) from (10)

an be obtained as:

br(n) = w
T
x(n)

= e
T
1 V

„

IM,M 0M,Q−M

0Q−M,M 0Q−M,Q−M

«

V
T

„

r(n)
s2(n)

«

= e
T
1

„

V1:M,1:MVT
1:M,1:M 0M,Q−M

0Q−M,M 0Q−M,Q−M

« „

r(n)
s2(n)

«

,

(11)

where I is the identity matrix and the subsripts for the matries in the above equation

indiate the orresponding dimensions of the matries. We also use the notation Ba:b,c:d

to indiate the sub-matrix of B onsisting of rows a through b and olumns c through d.

The matrix V1:M,1:MVT
1:M,1:M in (11) guarantees the presene of residual interferene.

Furthermore, unit-gain on r(n) is not guaranteed. While this an be enfored, it should

be lear that in the under-determined ase a lean extration of the referene signal is

not possible.

2.2.2 Referene estimation via blind soure separation

When nothing about A or s(n) is known, model inversion needs to be done in a

ompletely blind manner, and this is generally aomplished through an appropriate

BSS approah. In the ase where some a priori information is available (on the mixing

or on the soures), the BSS beomes semi-blind soure separation � sBSS. This is

exatly our problem setting, where the mixing olumn for the referene soure (the

soure of interest) is known.

The solutions proposed by [6℄ start by deriving from the measured x(n) the bipo-
lar montage (BL) xb(n). This BL montage is onstruted from the CR montage by

omputing pairwise di�erenes among the xm(n), whih eliminates the in�uene of the

referene r(n) in the resulting xb(n) signals. Separating the xb by FastICA [8℄, one

obtains statistially independent estimates of s2 soures3 (if the number of measures

is too small, M < Q, one still obtains independent signals, but not neessarily lose

to s2). Exploiting the absene of the referene r(n) in the new estimates, [6℄ propose

two methods for estimating r(n) by omparing the x(n) from the CR montage (whih

inludes the referene) with the soures obtained from xb(n) (for details, see [6℄).

Ranta et al. [13℄ exploited the same model (2) to derive a more robust and faster

method. The basi idea being: if omplete soure separation needs a two step approah

(whitening + rotation), and if one wants to estimate only one soure, the rotation

matrix does not need to be ompletely determined, determining one row is su�ient. It

an be shown that suh a onstrained approah where one olumn of the mixing matrix

is known has an optimal estimator that ties into a entral framework dependent only

on the seond order statistis (SOS) of the signals. These relations are subsequently

desribed and the model generalized to this ase.

3 [7℄ proposed an alternative method replaing the FastICA step by simple prinipal om-
ponent analysis, thus not imposing statistial independene but only deorrelation.
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2.3 Uni�ed framework

2.3.1 The semi-Blind Soure Separation (sBSS) solution of [13℄

In the absene of any a priori knowledge of the soures or the mixing system, the

aim of blind soure separation algorithms is to invert the mixing system to obtain the

underlying soures. Suh ompletely blind approahes su�er from the fundamental, un-

avoidable indeterminay regarding the amplitude of the soures. From the perspetive

of blind soure separation a mixing of the kind in (1) is equivalent to:

x(n) = ADD
−1

s(n)

= eAes(n)
(12)

where D is some arbitrary diagonal saling matrix whih hanges the amplitude, but

not the time ourse of the soures. A unique solution of (12) for eA and es(n) is therefore
impossible4.

Traditionally, therefore, BSS approahes onsider unit variane soures es(n). This,
ombined with the independene assumption, means that:

Φeses = E
˘

es(n)es
T (n)

¯

= I , (13)

whih impliitly implies that D = Φ
1/2
ss . The aim of BSS approahes is then to invert

the mixing system eA.

Note that eA may be expressed in terms of its onstituent omponents from the

SVD as:
eA

△
= eU eΣ eV

T
, (14)

where eU ∈ R
(M×M) and eV ∈ R

(Q×Q) are orthogonal matries and eΣ ∈ R
(M×Q)

ontains the singular values.

Classi blind soure separation algorithms demand that M ≥ Q in order to obtain

plausible soure estimates. Our �rst analysis fousses therefore on the ase when eA

(thus A) is full-rank square, i.e.,linearly independent rows, M = Q. Note that when
eA is row rank de�ient (M > Q), the inversion problem an be easily separated into

multiple well-behaved sub-problems by onsidering subsets of Q signals. An alternative

approah is to perform dimension redution using PCA followed by BSS on the redued

spae.

From (14), obtaining the inverse of eA is equivalent to omputing the individual

omponents of its SVD. This is done in two stages � a whitening, followed by a rotation.

Consider Φxx = E
˘

x(n)xH(n)
¯

. The eigenvalue deomposition (EVD) of Φxx

an be written as:

Φxx = UxΣxU
T
x (15)

Under the assumption of (13) and onsidering (14), Φxx an also be expressed as:

Φxx = E
˘

eAes(n)es
T (n) eA

T ¯

= eAΦeses
eA

T

= eA eA
T

= eU eΣ
2

eU
T

(16)

From (15) and (16) eU = Ux and the non-zero singular values of eΣ are given by Σ
1/2
x .

4 Another ambiguity relates to the order of the soures, whih is also impossible to reover.
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Thus we see that (16) an already give us two omponents of eA: eU and eΣ. We use

this to �rst whiten the data, whih yields:

◦
x(n) = Σ

−1/2
x U

T
x x(n)

= Σ
−1/2
x U

T
x

eAes(n)

= eV
T

es(n)

(17)

What remains is to estimate the unitary, rotation matrix eV. Denote this estimate

of eV by fW. ICA approahes estimate fW by optimizing funtions that maximise the

statistial independene between the outputs yq(n) of y(n), where y(n) = fWT ◦
x(n).

E�etively, what these methods aim to ahieve is:

fW
T ◦
x(n) = fW

T
Σ

−1/2
x U

T
x x(n)

= fW
T
Σ

−1/2
x U

T
x

eAes(n)

= fW
T
Σ

−1/2
x U

T
x

`

ea1 ea2 . . . eaM

´

es(n)

△
= eDes(n)

△
= Ds(n)

(18)

where, as before, eD, D are diagonal matries of sale values. For a ompletely blind

approah suh as ICA, this is the best result possible under no knowledge of the mixing

system or soure auto-orrelations.

In ontrast, when we know a1 and wish to estimate only the orresponding soure

r(n), we do not need omplete inversion of eA and an adopt another strategy, namely

that:

fW
T ◦
x(n) = fW

T
Σ

−1/2
x U

T
x

“

ea1
eA2

”

es(n) (19)

whereby from (12) and the impliations of (13),

Ds(n) = fW
T
Σ

−1/2
x U

T
x

“

Φ
1/2
rr a1

eA2

”

Φ
−1/2
ss s(n) (20)

From this, and given that fW is unitary, it follows that:

fWDs(n) =
“

Φ
1/2
rr Σ

−1/2
x UT

x a1 Σ
−1/2
x UT

x
eA2

”

Φ
−1/2
ss s(n) , (21)

where eA2 =
`

ea2 . . . eaM

´

. Thus the �rst olumn of fW an be determined, exept for

the unknown sale fator of Φ
1/2
rr as:

ew1 = αΣ
−1/2
x U

T
x a1 , (22)

where α is the unknown sale fator to be determined.

From (18) and (22) we have an e�etive demixing �lter for r(n) whih we express

ompatly as:

w1 = UxΣ
−1/2
x ew1

= αUxΣ
−1
x U

T
x a1

= αΦ
−1
xxa1

(23)
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It remains now to �x the sale, whih is done by ensuring that w1 introdues no

distortion along a1, i.e., wT
1 a1 = 1. Introduing this onstraint yields:

α =
`

a
T
1 Φ

−1
xxa1

´−1
. (24)

Note, also, that whereas traditional BSS approahes annot be applied to the under-

determined ase, the sBSS solution desribed above still applies. For this ase, where

M < Q, we an write (14) as:

eA = eU eΣ eV
T

“

Φ
1/2
rr a1

eA2

”

= Ux

“

Σ
1/2
x 0M,Q−M

”

eV
T

= UxΣ
1/2
x

eV
T
p ,

(25)

where eVp = eV1:Q,1:M .

Thus, the mixing model of (12) may be written in terms of (25) as:

x(n) =
“

Φ
1/2
rr a1

eA2

”

es(n) = UxΣ
1/2
x

eV
T
p es(n) . (26)

Applying the whitening transform to (26) then yields:

eV
T
p es(n) = Σ

−1/2
x U

T
x

“

Φ
1/2
rr a1

eA2

”

es(n) . (27)

The solution of this equation for es(n) requires the right pseudo-inverse of eV
T
p whih,

given that the olumns of eVp are orthogonal, is simply eVp. Moreover, for extrating

only r(n), we require just the �rst row of eVp (and, orrespondingly, the �rst olumn

of eV
T
p ). This is, in e�et, the same solution as (22) and the demixing �lter is idential

to the solution for the determined ase, when imposing unit gain along a1.

We shall show next that the solution we obtain for w1 using this sale fator in (23)

is idential to well-known approahes from array tehnology, whih only onsider the

seond-order statistis of the signals for the extration of a `desired' or `target' signal

along a known diretion. As will be shown, the sBSS solution is also the best ahievable

in terms of signal-to-noise ratio (SNR) maximisation.

2.3.2 MPDR estimator

Reall that our aim is to �nd a linear ombination w, able to estimate the unknown

soure r(n). One possible approah is to minimise the output power of the resultant

signal y(n) = wT x(n), under the onstraint that the gain on the estimated referene

signal (also denoted as the `target' or `desired' signal in this estimation ontext) remains

unity. This may be posed as the following optimisation:

Jw = E
˘

|wT
x(n) |2

¯

+ λ(wT
a1 − 1)

= w
T
Φxxw + λ(wT

a1 − 1) ,
(28)

where Φxx is the orrelation matrix of x, and λ is the Lagrange multiplier.

The solution to this onstrained optimisation is obtained, after some manipulation,

as:

w =
Φ−1

xx

aT
1 Φ−1

xxa1

a1 . (29)
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This solution is well known in array tehnology as the minimum power distortionless

response approah [17℄. The title aptly desribes the design onsiderations behind this

approah: minimizing the output power while keeping the desired signal undistorted.

2.3.3 Maximum SNR approah

We may also pose the searh for the optimal w as an SNR maximising riterion.

Consider the signal model of (4), under the linear ombination w:

w
T
x(n) = w

T
a1r(n) + w

T
v(n) (30)

The SNR after applying w is then easily obtained as:

SNR =
E

˘

|wT a1r(n) |2
¯

E
˘

|wT v(n) |2
¯

=
|wT a1|

2Φrr

wT Φvvw

(31)

As the SNR is a positive value, maximising the SNR w.r.t. w is also equivalent to

maximising the following ost funtion:

Jw =
1

1 + SNR−1

=
|wT a1|

2Φrr

|wT a1|2Φrr + wT Φvvw

=
|wT a1|

2Φrr

wT Φxxw

(32)

The solution is obtained as:

|wT a1|
2Φrr

wT Φxxw
Φxxw = a1a

T
1 w . (33)

from whih (and reognising that aT
1 w is a salar) we an onlude that

w ∝ Φ
−1
xxa1 .

Seleting the onstant of proportionality to yield unit gain along a1 results in α =
(aT

1 Φ−1
xxa1)

−1 and the resulting w is idential to the sBSS and MPDR solutions.

2.3.4 Redution to MVDR

Observe that maximizing the SNR diretly is equivalent to minimizing the error term

in equation (30), under the same unit gain onstraint. The optimization problem is

stritly similar to the one posed in (28):

Jw = E
˘

|wT
v(n) |2

¯

+ λ(wT
a1 − 1)

= wΦvvw
T + λ(wT

a1 − 1) .
(34)

Assuming that Φvv is full ranked, this will lead to:

w =
Φ−1

vv

aT
1 Φ−1

vva1

a1 . (35)
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This solution is known as the minimum variane distortionless response approah as it

minimises the variane of the output signal about r(n).

To prove the equivalene between the MVDR solution and the previous approahes,

we fatorise Φxx as:

Φxx =
`

a1a
T
1 Φrr + Φvv

´

(36)

Applying Woodbury's identity [18℄ (and assuming Φvv is full-rank and invertible) Φ−1
xx

an be written as:

Φ
−1
xx = Φ

−1
vv − Φrr

Φ−1
vva1a

T
1 Φ−1

vv

1 + Φrra
T
1 Φ−1

vva1

. (37)

Substituting this value of Φ−1
xx in (29) and after some trivial algebrai manipulations

we obtain again the solution in (35).

Finally, if we return to the SNR maximisation problem (31) under the hypothesis

that Φvv is invertible, we an diretly write:

SNRΦvvw = a1a
T
1 w . (38)

Again, as aT
1 w is a salar, (38) redues to:

SNR

aT
1 w

Φvvw = a1 , (39)

from whih:

w =
aT
1 w

SNR
Φ

−1
vva1 (40)

= αΦ
−1
vva1 (41)

In other words, w is a saled version of Φ−1
vva1. To impose the distortionless onstraint,

we may again rede�ne the sale fator suh that:

w
T
a1 = 1 (42)

yielding

α = (aT
1 Φ

−1
vva1)

−1
. (43)

To onlude, if Φvv is also full-ranked, MVDR, MPDR and sBSS solutions are

stritly equivalent. Nevertheless, in pratial appliations, Φvv is seldom known, while

Φxx an be estimated from the data, so we will fous in the next setions on this

solution only.

2.3.5 Soure estimate

As seen previously, the linear ombination permitting an optimal reovery of the un-

known referene signal r(n) an be written as:

w =
Φ−1

xx

aT
1 Φ−1

xxa1

a1 . (44)
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Applying this linear ombination to x(n) we obtain the following estimate of the

target signal:

br(n) = w
T
x(n)

= r(n) +
aT
1 Φ−1

xxv(n)

aT
1 Φ−1

xxa1

(45)

One an easily prove that this estimate is idential to r(n) if the mixing is over or

well-determined (olumn rank of A ≤ M).

Consider �rst the ase of a square invertible matrix A (M × M). This ase also

implies that Φxx is invertible and permits a fatorisation of its inverse as:

Φ
−1
xx =

`

AΦssA
T ´−1

= A
−T

Φ
−1
ss A

−1
(46)

The orresponding estimate br(n) is:

br(n) = w
T
x(n)

=
aT
1 Φ−1

xx

aT
1 Φ−1

xxa1

As(n)

=
eT
1 AT `

A−T Φ−1
ss A−1

´

eT
1 AT

`

A−T Φ−1
ss A−1

´

AT e1

As(n)

=
eT
1 Φ−1

ss

eT
1 Φ−1

ss e1

s(n)

= r(n)

(47)

When A is not full-ranked (as in the ase when M > Q for example), Φxx is not

invertible and a dimension redution step is neessary. Again, as in the ase of the

known matrix A, prinipal omponent analysis (PCA) an be employed. The number

of non-null eigenvalues of the ovariane matrix Φxx will indiate the new dimension

of the system, equal to Q. In theory, any well onditioned linear transform P (Q ×

M) applied to the measured signals will lead to similar results. Indeed, the original

model (1) an be rewritten as:

Px(n) = PAs(n)

xP(n) = APs(n) ,
(48)

where xP and AP indiate the resulting observations and mixing system under the

linear ombination P. The sBSS/MPDR approah an then be applied in this redued,

well-onditioned spae to obtain a Q-dimensional weight vetor wP as:

wP =
Φ−1

xPxP

aT
P,1Φ

−1
xPxP

aP,1

aP,1 . (49)

A similar analysis as in (47) proves that br(n) = r(n) i.e., the estimation is perfet.
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Finally, when the mixing is under-determined (rank of A = M < Q), the estimated

soure will be equal to the original, plus some residue:

br(n) =
aT
1 Φ−1

xx

aT
1 Φ−1

xxa1

As(n)

=
aT
1 Φ−1

xx

aT
1 Φ−1

xxa1

a1r(n) +
eT
1 AT Φ−1

xx

aT
1 Φ−1

xxa1

v(n)

= r(n) + ev(n) (50)

An interesting point must be noted here: unlike (10), the weight vetor obtained by

sBSS/MPDR methods is the solution of a onstrained optimization problem. Therefore,

the residue ev(n) ontains a weighted average of the remaining signals, the weighting

being inversely proportional to the power of eah soure. Thus, powerful soures would

be more strongly suppressed as ompared to weaker soures. Suh a weighting is of ad-

vantage and, therefore, for under-determined onditions, this method is reommended

even when the mixing matrix A is ompletely known.

2.4 Experimental setup

We illustrate the referene estimation approah and the bene�ts of the zero-referene

montage (ZR), obtained by eliminating the estimated referene signal from the CR

montage, using both simulated signals and real depth EEG measurements, as desribed

next.

2.4.1 Simulation

The aim of this setion is to ompare the sBSS/MPDR method to matrix inversion (if

A is known) or to BSS estimation. The three estimates of r are r̂sBSS , r̂A and r̂BSS

respetively5. Two simulation setups are possible:

1. Determined ase M ≥ Q. We have regrouped the over-determined (M > Q) and

the well-determined (M = Q) ases together, as the �rst one redues to the seond

after dimension redution. Therefore, we simulate in the sequel only this last ase,

that is a full-rank square matrix.

2. Under-determined ase M < Q. An important partiular ase of under-determined

mixture is the noisy ase: indeed, when onsidering noisy measures, well or over-

determined mixtures transform in under-determined mixtures, as noise an be on-

sidered as a soure. This general formulation allows to onsider independent noises

for every hannel (in whih ase the extra-olumns of the mixing matrix orrespond-

ing to noise soures will be zero, exept for one element) or spatially orrelated

noises (arbitrary supplementary olumns in the mixing).

We have onsidered, for the simulation, four soures (Q = 4), with the setup

presented in Table 1 (see also Fig. 1a). As seen in the table, only one soure is

Gaussian, in order to respet the basi hypothesis of independent omponent analysis

5 The BSS estimate r̂BSS was seleted, among all soures found by BSS, as the signal having
the highest absolute value of the orrelation oe�ient with the original signal r.
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Table 1: Setup for the simulations.
Signal Type Power (dB)

r(n) Sawtooth waveform (50Hz) 0
s2(n) Sinusoid (30Hz) 0
s3(n) Sequene of ±1 (20Hz) -10
s4(n) Gaussian noise 0
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Fig. 1: Simulated soures and under-determined mixture (M = Q − 1)

(ICA) based blind soure separation. Indeed, taking two or more Gaussian soures

prevents ICA from sueeding beause of the non-existene of the high order moments6.

The powers of the soures are indiated respetive to the �rst (target) one. The

mixing matrix A was randomly generated (uniform distribution in [−1, 1], in order to

simulate dissipative propagation medium and dipolar-like soures). We have onsid-

ered 1000 mixing matries, the results presented here being the mean values over all

simulations.

The onsidered performane riterion was the orrelation oe�ient between the

target soure and its estimate obtained by the three tested approahes (matrix inver-

sion, BSS and sBSS/MPDR). Although mean square error an also be onsidered for

matrix inversion and sBSS/MPDR, it penalizes BSS approahes, as they are unable to

estimate orret amplitudes.

2.4.2 Intra-erebral EEG reordings

Intra-erebral EEG reordings are aquired from multi-ontat depth eletrodes im-

planted in the brain in order to loalise the epileptogeni zone (see �gure 2 for an

example). The referene is plaed somewhere su�iently far away from this zone, so it

an be onsidered as independent, although unknown and di�erent from 0. The depth

eletrodes might have from 10 to 15 ontats eah, with a 2 mm distane between

them. The total number of aquired signals varies around 100, depending on the num-

ber of implanted eletrodes by patient. The unknown referene signal ontributes to

all reordings aording to model (2).

Aording to this desription of the reording setup, it appears that one might

hoose to estimate the referene either using all the reorded signals or after some

6 Still, other BSS algorithms, based on seond order statistis only (SOBI for example) will
funtion also for Gaussian soures.
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(a)

(b)

Fig. 2: Depth EEG implantation example. (a) implantation sheme (the eletrodes insertion
points are superimposed on the MRI image in a saggital view). (b) axial view on the level of
a horizontally inserted multi-ontat depth eletrode (left side up).

dimension redution. We will not insist here on the di�erent hoies and on their in�u-

ene on the quality of the estimation from a medial interpretation point of view, this

analysis will be presented elsewhere. We will only fous on three example of referene

estimation and elimination onsidering a subset of the reorded signals. The obtained

orreted montages will be alled further on zero-referened (ZR).

The onsidered signals are obtained from three patients diagnosed with temporal

lobe epilepsy, at the University Hospital (CHU) from Nany, Frane. Eah patient

gave his informed onsent and the study was approved by the ethis ommittee of the

hospital.
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3 Results

3.1 Simulated signals

3.1.1 Determined ase M = Q

In this simple ase, all approahes should be essentially equivalent and the solutions

should be ideal (assuming that the independene ondition neessary for BSS ap-

proahes is respeted). Indeed, extensive numerial simulations on�rm this expeted

hypothesis: matrix inversion leads to perfet reonstrution (orrelation ≈ 1), while
BSS and sBSS/MPDR solutions are very lose between them and lose to the ideal

solution (mean orrelation oe�ients greater than 0.99).

3.1.2 Under-determined ase M < Q

A more ruial ase arises when M < Q. In suh a ase, the MPDR solution weights

the residual soures by the inverse of their power, thus giving lower weights to the

more powerful soures. Thus, we would expet that the data-adaptive struture of the

MPDR would be better than when only applying the solution in (10).

This is presented in the simulation below, where we onsidered only 3 measuring

hannels for the 4 soures from Table 1 (M = 3, Q = 4, see an example of mixed

signals in Fig. 1b). An example of soure estimate br(n) is presented in Figure 3. Mean

0 0.02 0.04 0.06 0.08 0.1
−3

−2

−1

0

1

2

3

 

 

r r̂A r̂BSS r̂sBSS

Fig. 3: Original (r, dashed line) and estimated referene signals using the di�erent approahes
when M < Q,. brA is the estimate when using omplete knowledge of A (orrelation oe�-
ient=0.83), the brBSS is the solution using FastICA (orrelation=0.89) and the estimate using
the sBSS/MPDR approah is brsBSS (orrelation=0.91)

and standard deviation values of the orrelation oe�ient between r and its estimates

r̂A, r̂BSS and r̂sBSS (1000 simulations) are given Table 2. The distribution of the

orrelation oe�ient over all simulations is presented in the box-plots �gure 4.

Table 2: Performane evaluation using the orrelation oe�ient between the simulated original
soure r and di�erent estimates (mean values over 1000 simulations) for the under-determined
ase.

r̂A r̂BSS r̂sBSS

0.88 (±0.14) 0.90 (±0.14) 0.92 (±0.11)
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Fig. 4: Correlation oe�ients distribution over 1000 simulations. As it an be seen, the pro-
posed sBSS method surpasses both matrix inversion and lassial BSS, both in terms of mean
value and of robustness to the mixing harateristis.

3.2 Real depth EEG signals

3.2.1 Noisy ital iEEG

The analyzed time window was 20 seonds length, reorded at a sampling frequeny

of 512 Hz. The signals are measured relative to a referene ontat plaed in the skull-

bone (one of the exterior reording ontats of one depth eletrode). The omplete

depth EEG has 112 ommon referenes hannels.

The onsidered subset of signals is reorded by eletrode OT , implanted in the right

median and lateral oipital lobe below the alarine sulus. We hose this eletrode

beause it was initially involved by the epilepti disharge in this ase. It had 12

measuring ontats inside the brain (OT1 to OT12, OT1 being the most profound).

Figure 5 shows an example of the linial use of the estimated zero-referene mon-

tage (ZR). After an initial fast low voltage ativity starting from seond 4, the disharge

appears as a rhythmi ativity in the theta band (4-8 Hz) from seond 10, on the lateral

ontats OT7 to OT10. We used the proposed method to estimate the referene signal

and to orret the original aquisition montage. As it an be seen in �gure 5a, in the

original ommon referene montage (CR) all signals had a rather noisy appearane,

while in the orreted zero-referene montage (ZR, �gure 5b) the obtained signals were

muh leaner. This noise is due to an unexpeted eletrial noise appearing on the

referene hannel.

To illustrate the linial use of a zero-referened montage, we ompare it to the usual

bipolar montage (BL), routinely employed for iEEG interpretation (�gure 5). Clearly,

the BL montage eliminates the referene artefat and it provides a loal view of the

brain ativity. On the other hand, it loses the amplitude and propagation information,

preserved on the (zero)-referened signals.

The spatial derease of the signal amplitude is signi�antly di�erent for the or-

reted ZR montage ompared to the bipolar montage. In �gure 6, CR and ZR montage

learly indiate a gradual derease of amplitude roughly mathing the separation be-

tween grey matter (ontaining the eletrial soures) and white matter (eletrially

inative). Maximum amplitude is notied on ontat OT8 with these montages. In on-

trast, bipolar montage shows maximum amplitude on OT9 − OT10 and a derease of
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(a) original CR montage
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(b) orreted ZR montage
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() bipolar BL montage

Fig. 5: Depth ital EEG example using di�erent montages (20 seonds). Shaded olumn on the
right approximately represents the brain strutures explored by the OT eletrode (aording
to the patient sanner). One an notie the elimination of the referene noise between 5b and
5a, while still preserving amplitude and topography information better than in 5

amplitude on OT8−OT9. This loal minimum ould be falsely onsidered as eletrially

inative (white matter) beause of the low signal in this erebral area.

Conerning the eletrial di�usion of the potentials inside the brain, visual analysis

of the ZR montage allows identifying a lear eletrial propagation in the white matter

(ontats 4 to 6) from generators loated in the grey matter (ontats 7 to 10). This

di�usion, absent on the BL montage, might be useful to better estimate the loation

and the orientation of the neural generator.

3.2.2 Artefated spontaneous iEEG

In the previous example, all signals were issued from a one of the implanted depth

eletrodes having 12 ontats. In the general ase, this is not the most favourable

situation, as the signals might be highly orrelated and thus the ovariane matrix Φxx

might be badly onditioned (i.e. numerially di�ult to invert in, for example, eq. 29).

The seond example we present here onerns one ontat by implanted depth eletrode

(7 eletrodes, thus 7 ontats in all), measured with respet to a salp referene plaed

in the FPz position aording to the 10-20 system. The signals have 5 seonds length

and are sampled at 512 Hz. Right temporal lobe was implanted with depth eletrodes,
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Fig. 6: Normalised power of the signals reorded by the di�erent ontats of the OT eletrode.
The orresponding powers of the signals issued from the BL montage are represented in inter-
mediate positions among the ontats. Shaded row on the bottom of the �gure approximately
represents the brain strutures explored by the eletrode.

from the anterior to the posterior part, in order to delineate the epileptogeni zone.

The anatomial strutures explored by the onsidered ontats are the insula (T1 and

H1), the entorhinal ortex (TB1), the hippoampus (B1 and C1), the temporal pole

(P1) and the amygdala (A1). The raw signals are presented �gure 7a.

As seen in �gure 7a, all signals are perturbed by additive noise and artefats, very

likely a�eting the referene eletrode. Both noise and artefats disappear, as expeted,

when using the bipolar montage obtained by subtrating neighbouring ontats from

the same depth eletrode, see �gure 7b. For example, the peak appearing around se-

ond 4 on the ommon referene montage is ompletely removed. On the other hand,

this visualization also drastially redue the amplitude of some patterns not present

on the referene, but still appearing on several ontats (positive peak after seond

1). For the orreted ZR montage, this pattern is preserved learly identi�ed on TB1,

P1 and A1, whih are implanted in neighbouring and onneted regions of the brain.

Roughly7, this an be evaluated by omputing the orrelation oe�ients ρ between

the involved signals: ρTB1,P1
= 0.69, ρTB1,A1

= 0.84 and ρP1,A1
= 0.80. These

orrelations are signi�antly higher than all the other orrelation values among ele-

trodes: the next value equals 0.46 between ontats A1 and C1, still situated in losely

onneted regions(amygdala and hippoampus). The relations between these signals

(and presumably between the orresponding brain areas, anatomially onneted in

the human brain) are masked on the CR montage (more than half of the orrelations

are greater than 0.8 beause of the referene artefat) and they are redued on the

BL montage beause of the elimination of the ativity appearing simultaneously on

two neighbouring ontats (ρTB1−TB2,P1−P2
= 0.60, ρTB1−TB2,A1−A2

= 0.32 and

ρA1−A2,P1−P2
= 0.04).

3.2.3 Interital spikes

A last example is presented for interital spikes enhanement. These pathologial EEG

patterns appear between seizures in epilepti patients and they are markers of the

7 more spei� studies using onnetivity measures will be desribed elsewhere
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Fig. 7: Depth EEG obtained using one ontat for eah eletrode (two neighbouring ontats
for the BL montage). The signals are ordered by anatomial struture: insula (T1 and H1),
entorhinal ortex (TB1), hippoampus (B1 and C1), temporal pole (P1) and amygdala (A1).

epilepti disease having a haraterized morphology. They are usually present on sev-

eral reorded signals, inreasing thus the orrelation between them. Visual analysis of

these patterns helps the neurologists to loalize malfuntioning regions in the brain. In

lassial iEEG analysis, a spike hanging its polarity on two neighbouring signals of a

bipolar montage indiates that the generator is situated lose to the ommon ontat

(see example in �gure 8b), signals A10 −A11 and A11 −A12). On the other hand, the

BL montage also might diminish the amplitude of a spike, as for example on signals

TB9 − TB10 and TB10 − TB11. This e�et of the BL montage is orreted on the

ZR montage from �gure 8, where the spikes are preserved and they an learly be

distinguished from the bakground ativity (although they are almost masked on the

original montage, perturbed by the referene artefat, see �gure 8a).

4 Disussion

The main objetive of this work was to revisit the referene problem in iEEG signal

proessing and present a uni�ed multihannel signal proessing framework. Generaliz-

ing previous approahes presented in the literature, we have shown that, under ertain

realisti hypothesis, the referene signal an be estimated from the measures using
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Fig. 8: Depth EEG obtained using three ontats for three eletrodes, all plaed in the exter-
nal right temporal lobe (four neighbouring ontats per eletrode for the BL montage). The
enhanement of the interital spikes is delineated by the dotted lines.

a semi blind soure separation (sBSS) approah, based on partial knowledge of the

mixing model.

We have shown furthermore that the sBSS approah is stritly equivalent to mini-

mum power distortionless response �lter (MPDR) and that it ahieves optimal perfor-

manes in terms of SNR. The developed sBSS/MPDR algorithm was ompared with

ompletely blind approahes (i.e. onsidering that the mixing is ompletely unknown)

and with diret matrix (pseudo-)inversion (i.e. onsidering that the mixing is om-

pletely known). We have shown, using di�erent measuring setups (well, over and under

determined mixtures), that our method yields omparable or better results than both

lassial blind soure separation and matrix inversion.

The main bene�t of the referene estimation is the onstrution of a orreted

referene-free montage ZR, whih an help both linial interpretation and further

automati EEG analysis. Possible appliations (see �rst and seond examples in the

setion 3.2) are diret linial analysis of ital, interital and bakground iEEG without

transforming the data into a bipolar montage, o�ering thus a omplementary view on

the brain eletrial ativity. A promising researh diretion is the intra-erebral soure

loalization using iEEG measures, potentially allowing the loalization of soures whih

are not situated in strutures implanted by the iEEG eletrodes (see for example the

interital spikes, enhaned in the third example). The usefulness of our method should
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be validated further for evoked potential (EP) analysis: by onstrution, it makes no

hypothesis on the morphology of the informative signals, so it should aurately orret

the referene for EP reordings also. On the other hand, as EP are mostly studied after

averaging on several trials, the referene in�uene is anyway diminished and it probably

disappears if the number of trials is su�iently big.

As a �nal note, we would like to add that we have been able to prove in [12℄ that

even the methods of [5,7℄ onverge to the MPDR solution. Thus, the state-of-the-art

approahes for referene estimation all fall within our proposed framework.

5 Conlusion

We present a novel and rigorous methodology for the referene estimation problem in

depth EEG signal proessing. We prove that this method is optimal in terms of SNR

maximisation and demonstrate, further, that it also enompasses existing approahes.

The pratial usefulness of the proposed approah was illustrated on simulated and real

iEEG reordings in taken in di�erent situations (bakground, interital spikes, epilepti

seizure).
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