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Abstract. Blind Source Separation (BSS) approaches for multi-channel EEG
processing are popular, and in particular Independent Component Analysis (ICA)
algorithms have proven their ability for artefacts removal and source extraction
for this very specific class of signals. However, the blind aspect of these tech-
niques implies well-known drawbacks. As these methods are based on estimated
statistics from the data and rely on an hypothesis of signal stationarity, the length
of the window is crucial and has to be chosen carefully: large enough to get re-
liable estimation and short enough to respect the rather non-stationary nature of
the EEG signals. In addition, another issue concerns the plausibility of the result-
ing separated sources. Indeed, some authors suggested that ICA algorithms give
more physiologically plausible results than others. In this paper, we address both
issues by comparing four popular ICA algorithms (namely FastICA, Extended
InfoMax, JADER and AMICA). First of all, we propose a new criterion aiming
to evaluate the quality of the decorrelation step of the ICA algorithms. This crite-
rion leads to a heuristic rule of minimal sample size that guarantees statistically
robust results. Next, we show that for this minimal sample size ensuring con-
stant decorrelation quality we obtain quasi-constant ICA performances for some
but not all tested algorithms. Extensive tests have been performed on simulated
data (i.i.d. sub and super Gaussian sources mixed by random mixing matrices)
and plausible data (macroscopic neural population models placed inside a three
layers spherical head model). The results globally confirm the proposed rule for
minimal data length and show that the use of sphering as decorrelation step might
significantly change the global performances for some algorithms.
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1 INTRODUCTION

The analysis of electro-physiological signals generated by brain sources leads to a better
understanding of brain structures interaction and is useful in many clinical applications
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or for brain-computer interfaces (BCI) [1]. One of the most commonly used method
to collect these signals is the scalp electroencephalogram (EEG). The EEG consists
in several signals recorded simultaneously using electrodes placed on the scalp (see
fig[I). The electrical activity of the brain sources is propagated through the anatomical
structures and the resulting EEG is a linear mixture (with unknown or difficult to model
parameters) of brain sources and other electro-physiological disturbances, often with a
low signal to noise ratio (SNR) [2]. It is widely assumed that electrical brain potentials
recorded by the electrodes mainly arise from synchronous activity of neurons within
localized cortical patches. The far-field projection of such locally generated activity
can be suitably model by the projection of a single equivalent current dipole placed at
the center of the patch, resulting in a linear mixing of mostly dipolar sources on the
EEG [3].

The blind source separation (BSS) is a nowadays well established method to retrieve
original sources from the EEG mixing, as it can estimate both the mixing model and
original sources [4]. In particular, approaches based on High Order Statistics (HOS)
such as Independent Component Analysis (ICA) are common methods in this context
and have been very useful for denoising purpose or brain sources identification. Gen-
erally, ICA algorithms include a preliminary decorrelation step based on second order
statistics (estimated on a user chosen window length), which serves as an initialization
for the next optimization step (independence maximization). Still, there is an infinite
number of possible decorrelation matrices (as they are determined up to an arbitrary
rotation). The two most popular decorrelation techniques are whitening and sphering,
and it seems that they might influence the final separation results, especially in EEG
applications [3]]. In this paper, two issues will then be evaluated: 1) the accuracy of the
decorrelation matrix estimation given the considered data length and 2) the sensitivity
to the initialization step using whitening or sphering in the specific context of dipolar
sources mixing. Four ICA algorithms based on HOS have been chosen: FastICA [6],
Extended InfoMax [[7], AMICA [8]] and JADER [9].

1) The use of BSS on EEG signals implicitly assumes that the estimated second
order statistics are meaningful. In order to ensure the reliability of these statistics, dif-
ferent authors propose optimal sample sizes (i.e. EEG signal time points), generally
equal to k x n> where n is number of channels and k is some empirical constant vary-
ing from 5 to 32 [LO11112]. If these assumptions are correct, large amount of channels
requires huge sample sizes, processing and time resources. On the other hand, EEG
signals are at most short term stationary, so it would be interesting to find a sufficient
inferior bound for the number of necessary samples. The first question is then how to
define a minimum sample size that provides reliable estimation of sources and mixing
model.

2) The second issue addressed in this paper concerns the sensitivity of the BSS/ICA
performance given the initial decorrelation step in the dipolar mixing context. In the lit-
erature [[13l], some authors observed that using different initializations (different decor-
relation methods like classical whitening or sphering), the results are more or less bi-
ologically plausible, meaning that more or less dipolar sources are retrieved from the
data. A recent extensive study from the same authors [5] proposed an evaluation of
the ability of 18 source separation methods to result in maximally independent com-



ponent processes with nearly dipolar scalp projection. The results show that AMICA
and Extended InfoMax give better performances compared to FastICA and JADER.
Both AMICA and Extended InfoMax begin by sphering the data, while FastICA and
JADER begin with a classical whitening step. We would like to evaluate the impact of
whitening and sphering on these four ICA algorithm performances. Unlike the previ-
ous studies that are directly using real EEG data, this evaluation will be performed on
simulated data, giving the possibility of a controlled quantification of the algorithm per-
formances. The evaluation is here proposed in the context of randomly generated data
using i.i.d. sub and super Gaussian sources mixed by random mixing matrices, and in
the context of plausible EEG data generated by macroscopic neural population models
placed inside a three layers spherical head model.

The paper is organized as follow: section 2]exposes the EEG forward problem, ex-
plains the basics of the BSS methodology and gives some details on the four evaluated
ICA methods. Section 3] proposes a normalized Riemannian likelihood as an evaluation
criterion for the accuracy of the covariance matrix estimation and recalls the separabil-
ity performance index used to evaluate the ICA algorithms. In section ] both random
and biologically plausible data set are described, while estimation and separation per-
formances of the algorithms facing these data set are provided in section[5] In section[6]
these results are discussed and future works are considered.

2 PROBLEM STATEMENT

2.1 EEG mixing model

Classical EEG generation and acquisition model is presented in Figure [T} It is widely
accepted that the signals collected by the sensors are linear mixtures of the sources [2].

Fig. 1. EEG linear model

Subsequently, the EEG mixture can be written as
X =AS, (1)

where X are the observations (electrodes), A is the mixing system (anatomical structure)
and S are the original sources.



2.2 EEG separation model

We restrain in this paper to classical well determined mixtures, where the number of
channels is equal to the number of underlying sources. In this case, BSS gives the linear
transformation (separating) matrix H and the output signal vector Y = HX, contain-
ing source estimates. Ideally, the global system matrix G = HA between the original
sources S and their estimates Y will be a permuted scaled identity matrix, as it can be
proven that the order and the original amplitude of the sources cannot be recovered [4].

In almost all BSS methods, the matrix H is obtained as a product of two statistically
based linear transforms: H = JW with

— W performing data orthogonalization: whitening/sphering,
— J performing data rotation : independence maximization via higher-order statistics
(HOS) or joint decorrelation of several time (frequency) intervals

The first step (data decorrelation) can be seen as an initialization for the second step. In
theory any orthogonalization technique can be used to initialize the second step but in
this paper we will focus on two popular decorrelation techniques: whitening (classical
solution) and sphering (assumed to be more biologically plausible [13]).

BSS initialization: whitening/sphering

Whitening In general EEG signals X are correlated so their covariance ¥ will not be a
diagonal matrix and their variances will not be normalized. Data whitening means pro-
jection in the eigenspace and normalisation of variances. The whitening transform can
be computed from the eigen-decomposition of the data covariance matrix £ = ®ADT:

X, = A 207X, )

where A and & are the eigenvalues and the eigenvectors matrices respectively. After
, the signals are orthogonal and with unit variances (Figure [2(c)).

Sphering completes whitening by rotating data back to the coordinate system defined
by principal components of the original data [14]. In other words, sphered data are
turned as close as possible to the observed data (Figure 2(d)):

Xgph = PA 27X, 3)

2.3 Optimization: data rotation

Second step would be finding a rotation matrix J to be applied to the decorrelated
data (whitened or sphered) in order to maximize their independence. Rotation can be
done using second order statistics (SOS) using joint decorrelations and/or using HOS
cost functions. We restrain here to the second (HOS) approaclﬂ Several cost functions

3 As described in the next section, in our simulations we used random non-Gaussian station-
ary data, without any time-frequency structure. Therefore algorithms based on SOS as SOBI,
SOBI-RO and AMUSE were not used.
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Fig. 2. Example of different decorrelation approaches for two signals

and optimization techniques were described in the literature (see for example [4/12]).
Among the most well known and used in EEG applications, we can cite FastICA (neg-
entropy maximization [6]), Extended InfoMax (mutual information minimization [71])
and JADER (joint diagonalization of fourth order cumulant matrices [9]). Another re-
cent algorithm has been proposed by Palmer et al. and is called AMICA [§]]. Based on
the modeling of each source component as a sum of extended Gaussians, this method
has shown very promising results in the context of EEG data [3].

Specifically, in this paper we test the performances and the robustness of these four
ICA algorithms with respect to the sample size and the initialization step in both con-
texts of random unstructured data mixing and biologically plausible data mixing.

3 Performance evaluation criteria

3.1 Reliable estimate of the covariance: Riemannian likelihood

As noted before, BSS model consists of decorrelation and rotation. Both steps are based
on statistical estimates. The first step is common for all algorithms and relies on the
estimation of the covariance matrix. Therefore it is necessary to have reliable estimates
of this matrix. In other words, given a known covariance matrix X, we want to evaluate
the minimum sample size N necessary to obtain a covariance matrix estimation £y close
enough to the original one with respect to a distance that we have to define.

We propose here an original distance measure between the true and the estimated
covariance matrices, inspired from digital image processing and computer vision tech-
niques [[15]]. In the context of object tracking and texture description, a distance measure
is used to estimate whether an observed object or region corresponds to a given covari-
ance descriptor. To estimate similarity between matrices respectively corresponding to
the target model and the candidate, and knowing that covariance matrices are symmetric
positive definite, the following generaﬂ distance measure can be used:

d*(& Z)—tr<10 2(2 “ixf ‘%)> 4
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In the ideal case of a perfect estimation, the matrix C = Xy *XXy 2 equals the

identity matrix I, and d becomes 0 (n being the number of measured signals, equal
to the source number in our case). In real cases though, assuming that the covariance
estimate is not very far from the real covariance matrix, C = I, +¢, € being a symmetric
error matrix. In this case, using the eigenvalues decomposition and the properties of the
trace of a symmetric matrix, equation (#) can be rewritten as:

d*(En,Z) = tr (log? (I, +¢)) (5)
= tr (Ulog? (Dy,+¢) UT) (6)
=tr (log2 (Dr,1¢)) (7)
~ I log*(1+g;) (8)

Now, using the fact that for small €, log(1 +¢€) ~ € and assuming that the errors are
equally distributed over the diagonal Dy, ¢, (3] becomes:

d*(EN, %) ~ ne? )

proportional with the matrix dimension n and, in our case, with the number of EEG
channels. In order to avoid this channel number effect, we propose to modify the dis-
tance by multiplying it by k/n, with k being a user chosen constant ensuring the desired
level of the estimation quality:

A A 1 . 1
d,,z(ZN,Z)zgtr <1og2 (ZN 2y 2)) (10

As in [15], we adopt an exponential function of the modified distance d,, as the local
likelihood

p(Zy) o< exp{—A-d,>(Z,En)}. (11)

with the parameter A fixed to the constant value A = 0.5 [L3]). This p(Xy) value varies
between 0 and 1, 1 meaning perfect estimation (£ = )iN). A p(Xy) value of 0.95 is con-
sidered as a well chosen threshold above which the covariance matrices are considered
to be approximately equal.

3.2 Separability Performance Index

In order to measure the global performance of BSS algorithms (orthogonalization plus
rotation), we use the performance index (PI) [4] defined by

i i glj| 1)+ 1 i i |gij| 1 (12)
2n(n—1) S\ /=1 max g 2n(n—1) =\ S max gy
where g;; is the (i, j)-element of the global n x n system matrix G = HA, max; [gi| is
the maximum value among the absolute values of the elements in the ith row of G and
maxy |gx;| is the maximum value among the absolute values of the elements in the jth
column of G. Perfect separation yields a null performance index. In practice a PI under
10~! means that the separation result is reliable.



4 Simulated data set

The algorithms performances are assessed on two types of data. Following our BIOSIG-
NALS paper [16], the first data set consists in simulated generalized Gaussian sources
mixed by randomly simulated matrices. The second one is obtained by mixing sources
given by macroscopic neural populations models [[17] with mixing matrices computed
from a realistic three layers lead field model.

4.1 Random data set

We have chosen to simulate stationary white source signals, as the retrieval of time
structures is not the purpose of this work (in fact, in all the tested algorithms, as in
most of the HOS type methods, the time structure is ignored). In order to simulate
sources with realistic probability distributions, we analysed depth intra-cerebral mea-
sures (SEEG). According to our observations (see also [[11110]), the probability distri-
bution of the electrical brain activity signals can be suitably modelled by Generalized
zero-mean Gaussians, as shown in fig. [3(a) and fig. 3(b)). For this reason we used ran-
domly generated both supergaussian (Laplace - Figure [3(c)) and subgaussian (close to
uniform (Figure [3(d))) distributions.

500

400|

300

200

100|

03000 -500 0

()

Fig. 3. Histograms of real SEEG samples ((a) background and (b) ictal activities) and histograms
of generalized Gaussian simulated data ((c) super-Gaussian and (d) sub-Gaussian data).

Several simulations were made, using 8, 16, 24, 32 and 48 source signals. Half of
the sources were generated as supergaussian and half as subgaussian. The sources were
afterwards mixed using a randomly generated mixing matrix A (uniform distribution
in [—1,1]). We then consider here the performance of each of the four ICA algorithms
facing simulated stationary non-artefacted data. Such evaluation is likely to give us a
rule of a minimum amount of data needed for a reliable source separation in favourable
conditions (after an artefact elimination step for example).

4.2 Plausible data set

More realistic contexts is to be simulated in order to evaluate the behaviour of the
algorithm confronted to the real EEG BSS problem. We then propose a second data



set where the sources are simulated by a macroscopic model [17] able to reproduce
normal background activity as well as pre-ictal and ictal (epileptic) electromagnetic ac-
tivity. The mixing matrices are designed using a fast accurate three layers head model
[L8]. Such mixing matrices guarantee the dipolarity of the underlying sources to be re-
trieved, providing a framework where the influence issue of the initialization (whitening
or sphering) in such context can be addressed.
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Fig. 4. Realistic activities and corresponding histograms. first pre-ictal: (a) & (d), second pre-
ictal: (b) & (e), second ictal: (c) & (f).

Realistic sources Macroscopic models describe the neuronal activity at the scale of
neuronal populations by modelling the interconnection of pyramidal cells with inhibitory
or excitatory inter-neurons. They have been particularly used to successfully gener-
ate realistic electrophysiological recordings [19/20]]. In this work we have chosen the
Wendling’s model [17]], described by a set of ten differential equations. It has been
shown that this model is able to reproduce normal background activity (inter-ictal), first
and second pre-ictal activities as well as first and second ictal activities. Parameter val-
ues to be chosen in order to get these distinct epileptic activities are detailed in [21]].
In this paper, these simulated activities have been introduced as sources (see fig. {.2),
excepted the normal background and the first ictal activities that have Gaussian-like
distribution and are then inadequate for the selected ICA algorithms.

In a realistic situation, the number of ictal sources to be retrieved is limited. In our
simulation, the number of realistic sources (from pre-ictal to ictal) has been chosen to
be an eighth of the number of channels n (from 1 for 8 channels to 6 for 48 channels).



The remaining background activities are simulated randomly as sub and super gaussian
like in the previous random data set.

Dipolar mixing matrix The next step for obtaining realistic EEGs, after plausible
source generation, is the construction of a realistic mixing matrix. We obtained it using
the classical three spheres model of Rush & Driscoll and the Berg surface potential
estimation method [18]: the realistic sources generated as described in the previous
subsection were assumed to be time courses of brain dipoles. The positions and the
orientations of these dipoles (8 to 48) were randomly generated inside the inner sphere
of a the head model, representing the brain. The six parameters of the dipoles being thus
completely defined (Cartesian coordinates, angles and magnitude), one can generate the
corresponding scalp map (i.e. the electrical potentials on the outer sphere) using the so-
called Lead Field matrix corresponding to the three-spheres forward model (see for
example [22]). We used here the Berg technique [18]], which accurately and rapidly
approximates the scalp potentials generated by a dipole for a three spheres model with
the weighted sum of the potentials generated by three dipoles in a single sphere model.
The Lead Field matrix allows the computation of the scalp map (potentials) for
every point on the surface of the outer sphere. Still, in the EEG simulation context,
we are only interested by the potentials recorder by the scalp electrodes. In our sim-
ulation, we used as a basis montage the classical 10-10 EEG montage (figure [5). We
have next chosen five subsets consisting of 8, 16, 24, 32 and 48 electrodes corre-
sponding to real EEG applications (sleep studies, brain computer interfaces and clin-
ical setups for epilepsy diagnostics).For example, for the 8-electrodes montage, the
chosen electrodes were F,;, T7,C3,C;,C4, Ty, O1 and O,; for the 16-electrodes montage,
F3,E,F4,T7,C3,CZ,C4,Tg,P7,P3,PZ,P4,P3,PO7,P087OZ; and son on.

Fig. 5. Electrode placement for the 10-10 montage.



S RESULTS AND DISCUSSION

The four algorithms are first evaluated on a random data set in order to define a min-
imum data length rule ensuring accurate separation performances and to analyse the
impact of initialization step in the general toy case of unstructured randomly mixed
data. An equivalent study is then applied on a more physiologically plausible data set,
on which our minimum data length rule is validated. On the same plausible data, the re-
sults are evaluated in order to confirm or infirm the superiority of sphering initialization
over whitening initialization in the context of dipolar sources separation. For each data
set, the four algorithms are evaluated on 8, 16, 24, 32 and 48 source sizes with sample
size varying from 1s to 20s with a 1s step (at a 512 Hz sampling rate). The number of
iteration for each source size/sample size has been set to 50, a new set of data (random
data sources, plausible data sources, mixing matrices) being simulated at each iteration.

5.1 Random data set

A minimum length rule This section presents the results of the covariance estimation
accuracy vs the length of the data. In a previous work [16], the distance between co-
variance matrices was computed using from different sample sizes starting from
100 till 5000 by 100 points step, and number of channels taking values in the set
{8,10,12,14,16, 18}. The likelihood was further evaluated using . A constant thresh-
old was empirically fixed to p = 0.95 (Figure[f[(a)): likelihood values above this thresh-
old was assumed to guarantee good estimation of covariances as stated in section [3.1]
However, this previous study already outlined that this rule might be too strong, leading
in a ever decreasing Pl with the number of channels. This observation has been con-
firmed when studying this evolution of P/ on larger number of channels. Therefore,we
proposed the normalized Riemannian distance defined by (I0) with the objective to re-
fine our minimum length rule. Again, likelihood values above a threshold of 0.95 were
assumed to guarantee good estimation of second order statistics (Figure [f[a)). The nor-
malization factor k has been experimentally set to 8, taking the 8 channels mean error €
as a reference on which higher number of channels configurations are scaled.

This rule is reported on the figure[6]c). The proposed rule is rather linear, thus being
in contradiction with current literature suggestions, rather proportional to n2. Our rule
is then between the bounds given in the literature for low number of channels, but is
increasing much slower and gives lower bounds for number of channels above 24. A
possible way to interpret the figure[6{c) is to use it as a decision rule: for a given number
of channels, one can estimate the minimum number of data points necessary to have a
reliable estimate of the covariance matrix and thus a reliable whitening. This decision
rule leads to data lengths between approximately 2s (1024 data points) for 8 channels to
7s (3584 data points) for 48 channels. This range of time length is more compatible with
the stationarity hypothesis than the values obtained using the 30 rule [12/11]]. Indeed,
with this rule, we get from 1920 (3.75s) to 9720 (2min15s) data points respectively for
8 and 48 channels, which is rather contradictory (at least in a realistic EEG setup) with
the assumption of stationarity on which most of BSS/ICA algorithms are basecﬂ

5 This observation is important especially for high resolution EEGs, having a high number of
channels.
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Fig. 6. Results on the random data set: (a) Riemannian Distance, (b) normalized Riemannian
Distance and (c) Minimum length rules from literature vs proposed (linear) rule.

In order to experimentally validate this length rule, we computed the performance
index PI (T2) for the resulting data length. Mean (over 50 realizations) of the P/ as well
as its standard deviation for each algorithm (with whitening and sphering initializations)
are reported in the Table[I] As it can be seen, FastICA (with either whitening or spher-
ing) gives rather stable PI under 0.05 for this given rule (from 0.048 for § channels to
0.038 for 48 channels). It has to be noticed that PI values indicate better performances
when the number of channels is increasing with respect to our empirical rule. This could
suggest that our proposed criterion could be relaxed and the number of points could be
reduced further for FastICA. On the other hand, one must take into account that these
tests are performed on simulated stationary random data: if outliers are present, HOS
estimates are more affected than the SOS estimations used to define our threshold, thus
a higher amount of points might be needed for HOS reliable estimation.

This observation holds when it comes to AMICA and JADER for number of chan-
nels from 8 to 32, the rule being not verified for 48 channels in this particular case of
random data set. A quick look at the figure [5.1fe) (PI vs sample size for 48 channels)
shows a rupture of the JADER curves around 6s to 8s, 9s being required to get a P/
under 0.1. Such rule seems thus to be inadequate for JADER algorithm for number of
channels over 48.



Table 1. Perfomance index (PI) values for random mixtures: mean and standard deviation for the
four algorithms, with two initializations (whitening and sphering) and using the couple n/N (nb.
of channels / data length) given by the heuristic rule derived from figure[5.Ifa).

n=238 n=16 n=24 n=232 n=48
N=2x512 | N=3x512 | N=4x512 | N=5x512 | N=7x512
W S W S w S w S w S

FastICA | 0.048 | 0.049 | 0.043 | 0.043 | 0.041 | 0.040 | 0.040 | 0.040 | 0.038 | 0.038
(0.014)((0.012){(0.006){(0.007)|(0.006){(0.006){(0.005)|(0.005)|(0.004){(0.006)
AMICA | 0.024 | 0.029 | 0.018 | 0.019 | 0.021 | 0.029 | 0.036 | 0.061 | 0.113 | 0.170
(0.011)((0.031){(0.004)((0.005)|(0.021){(0.051){(0.048)|(0.056)|(0.050)|(0.060)
Extended| 0.167 | 0.199 | 0.274 | 0.326 | 0.288 | 0.334 | 0.252 | 0.300 | 0.274 | 0.310
Infomax |(0.091)[(0.124)[(0.059){(0.055)|(0.022){(0.013){(0.019)|(0.014)|(0.008){(0.007)
JADER | 0.044 | 0.044 | 0.038 | 0.038 | 0.035 | 0.035 | 0.035 | 0.035 | 0.130 | 0.132
(0.010)((0.010){(0.005){(0.005)|(0.004){(0.004)[(0.003)|(0.003)|(0.029){(0.032)

Extended Infomax is showing bad performances for these data length, requiring
much more sample size to converge, confirming the results presented in [23]]. This phe-
nomenon appears because of our choice of the simulated data. Indeed, because of the
use of subgaussian sources, the algorithm (even in the extended version) needs more
data points in order to give reliable results. Empirically, one can say that the 30n? rule
seems to be adapted for the Extended InfoMax algorithm, but apparently too strong for
the three others.

In the case of AMICA, the initialization parameter has to be considered in order to
fully understand its misadequation with our minimum data length rule in the random
data set case for 48 channels (see below the analysis for the plausible data set).

Impact of initialization Our second objective is to analyse the sensitivity of the ICA
algorithms to the initialization step with whitening or sphering. The curves of figure[5.1]
are showing evolution of PI with the data sample size for the five channel number con-
figurations considered. Whitening and sphering curves are difficult to distinguish for
FastICA and JADER, allowing to conclude that these methods are not sensitive to the
decorrelation step. This has to be explained by the optimization strategy of these meth-
ods, based respectively on a fixed point and a Jacobi technique, both techniques reputed
to have fastest convergence and being more reliable than the gradient technique [9].
AMICA is doing better than FastICA and JADER in most configurations when the
amount of data is enough. This algorithm is based on the fitting of extended Gaussian
(mixtures of scaled Gaussians) for each source time course, thus needing more data and
execution time for accurate estimation and convergence (see the note below on time
convergence). Besides, results appear to be quite deceiving for AMICA when it comes
to the 48 channels configuration, with a PI around 0.06 for lengths greater than 10s for
whitening (with a large standard deviation around 0.05), but a PI well above 0.1 for
sphering. In this case initialization shows to have a noticeable impact on AMICA. This
observation can be done also for Extended InfoMax for all five channel size cases. For
this specific data set of randomly mixed sources, whitening initialization (solid curves)
is resulting globally in better P/ than sphering initialization (dashed curves).
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As pointed out in [3]], Extended InfoMax and AMICA are based on a natural gra-
dient descent optimization scheme, initialization is then a major issue for these algo-
rithms: the farthest from the solution the initialization is, the longest will take the opti-
mization procedure. In the case of random mixing matrices, the solutions are distributed
widely over the optimization space, making it difficult to define an adequate initializa-
tion point. In this context, whitening seems to be on average more appropriate than
sphering. It has to be noticed that in our simulation no iteration or convergence criteria
parameter has been changed in the Extended InfoMax algorithm, while maximum num-
ber of iterations has been set to 300 for the AMICA procedure (some numerical issues
have been experienced with the default 100 value for short length data (<=2s)).



Note on time convergence: Due to the large amount of parameters to be estimated by
AMICA, it might be important to notice that this method is extremely time consuming
compared to JADER and FastICA, and also much slower than Extended InfoMax. To
give an idea: while FastICA is taking less than 1s on 32 channels and 20s data length
(mean time observed for 50 iterations on random data), JADER requires no more than
3s, Extended InfoMax needs up to 3 minutes, and AMICA requires almost 4 minutes.
On the other hand, AMICA is per se much more flexible than Extended InfoMax which
only try to fit a single generalized Gaussian distribution on each source, explaining the
better performances of AMICA when compared to Extended InfoMax.

5.2 Plausible data set

Minimum Length Rule validation As it can be observed by comparing the computed
(normalized) Riemannian distance, covariance estimations on this data set (figure
show to be very similar to the results obtained on the previous random data set. Thus,
plausible source time courses and mixture do not show to have high influence on these
second order statistics estimation, allowing to keep the same minimum data length rule
derived from figure [6c). Table [2] gives mean PI related to this proposed decision rule
on the plausible data set, where it can be seen that these minimum data length bounds
appear to be adequate for all the algorithms in most channel size configurations, even
for Extended InfoMax when a sphering initialization is considered. Some lower per-
formances are observed for JADER for 48 channels, confirming the observation made
in the previous section that this decision rule might be inadequate for this method for
high number of channels. Relative better performances observed on Extended InfoMax,
and over all impressive results given by AMICA with sphering for channel size over 24
(mean PI < 0.015 with minimal standard deviation of 0.001) have to be explained in
the light of the initialization parameter.
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Fig. 8. Results on the plausible data set: (a) Riemannian Distance and (b) normalized Riemannian
Distance.



Table 2. Perfomance index (PI) values for plausible EEG: mean and standard deviation for the
four algorithms, with two initializations (whitening (W) and sphering (S)) and using the couple
n/N (nb. of channels / data length) given by the heuristic rule derived from figure a).

n=2=8 n=16 n=724 n=32 n=48
N=2x512 | N=3x512 | N=4x512 | N=5x512 | N=7x512
W S W S W S w S w S
FastICA | 0.048 | 0.047 | 0.044 | 0.044 | 0.038 | 0.038 | 0.036 | 0.037 | 0.034 | 0.033
(0.014)((0.012){(0.007){(0.008)|(0.006){(0.006)|(0.004)|(0.004)|(0.004)[(0.004)
AMICA | 0.024 | 0.023 | 0.019 | 0.018 | 0.015 | 0.015 | 0.015 | 0.013 | 0.020 | 0.011
(0.012)](0.009)((0.004)((0.003){(0.001){(0.002){(0.008)|(0.001)|(0.021){(0.001)
Extended| 0.159 | 0.089 | 0.207 | 0.097 | 0.218 | 0.085 | 0.162 | 0.055 | 0.173 | 0.058
Infomax [(0.099)((0.046){(0.061){(0.038){(0.038)|(0.026)|(0.024)[(0.015){(0.017){(0.011)
JADER | 0.040 | 0.040 | 0.039 | 0.039 | 0.036 | 0.036 | 0.037 | 0.037 | 0.123 | 0.123
(0.008)((0.008){(0.006)|(0.006)|(0.004){(0.004)[(0.003)|(0.003)|(0.032){(0.032)

Sphering is better than whitening for dipolar sources separation Figure dis-
plays the evolution of PI with the data sample size for the five considered configura-
tions (channel number). A quick look at these curves let us conclude that FastICA and
JADER are unsensitive to their initialization as expected and explained in the previous
section. No major differences on the performances can be noticed between the random
data set and the plausible data set, confirming the reputation of stability and reliability
of these techniques in various situations. Concerning natural gradient descent based al-
gorithms (Extended InfoMax and AMICA), the behaviour changes radically from the
first data set to the second one. Results improve for both methods, especially when a
sphered initialization is used. Extended InfoMax show convergence with P/ under 0.1
in the five configurations when data is used. AMICA is found out to show very good
performance facing mixtures of dipolar sources, with a high robustness to low sample
sizes for high number of channels, especially when initialized with sphering: 3s appears
to be enough to get a PI under 0.03 for 48 channels, with a standard deviation of 0.01.

In this particular case of dipolar mixing, the reasons of the superiority of sphering
over whitening can be found in [S: The objective of Principal Component Analysis
(PCA E] is to lump together as much variance as possible into each successive principal
component, whose scalp maps must then be orthogonal to all the others and therefore
are not free to model a scalp source projection resembling a single dipole. In other
words, whitening initialize the algorithm far from the solution, leading to a more diffi-
cult convergence for methods based on natural gradient descent like Extended InfoMax
and AMICA. On the other hand, Delorme et al. [5] emphasize that: Sphering com-
ponents, in particular, most often have stereotyped scalp maps consisting of a focal
projection peaking at each respective data channel and thus resembling the projection
of a radial equivalent dipole.. Consequently, sphering leads to initialization point much
more closer to the solution than whitening in the dipolar case, as it is confirmed and
quantified by our results.

6 equivalent to whitening
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Fig. 9. Results on the plausible data set: performance index (PI) curves vs data length for (a) 8
channels, (b) 16 channels, (c) 24 channels, (d) 32 channels and (e) 48 channels. Initialization with
whitening (solid lines) and sphering (dashed lines).

6 Conclusions and Future work

The first goal of this paper was to define a low bound of data length for robust sepa-
ration results. Four ICA algorithms often used to analyse EEG signals were tested on
different data lengths (1 to 20 seconds at 512 Hz sampling rate) and number of sig-
nals (8, 16, 24, 32 and 48 sources/channels). A rule of minimum sample size is derived
from separation results on a random data set consisting of subgaussian and supergaus-
sian source signals mixed by random mixing matrices, and is validated on a plausible
data set in which sources were simulated by a macroscopic model of neuronal popu-
lation and mixed by dipolar mixing matrices obtained from a three layers head model.



This low bound is based on an original, normalized distance measure inspired by the
computer vision community and leads to a reasonable minimum time length. Accord-
ing to our results (Tables [T]and [2), the proposed minimal data length rule guarantees a
good source separation performance with performance indexes (PI) under 0.05 in most
configurations for FastICA, JADER and AMICA (at least in the plausible case). Ex-
tended InfoMax has to be considered separately, as this algorithm requires much more
data points. Our decision rule gives minimum data length much smaller than those rec-
ommended in literature (over 5n%) for high number of channels n, being thus more in
adequation with the short time stationarity hypothesis accepted for EEG signals and
needed for most ICA algorithms.

A second objective was to evaluate the impact of initialization on the separation per-
formances using whitening or sphering in the first step of these algorithms. Due to the
optimization strategy on which they are based, FastICA and JADER show no sensitiv-
ity to initialization (decorrelation method). Conversely, natural gradient descent based
algorithms AMICA and Extended-Infomax show high sensitivity to initialization. Due
to their optimization strategy, these algorithms are much more time consuming and less
robust facing outliers, thus requesting an adequate initialization for a reliable conver-
gence with acceptable number of iterations. In the particular case of EEG, modelled as
a mixture of dipolar sources, it is possible to initialize the algorithm “near” the solution
by sphering. Consequently, the performances of these algorithms improve and they can
be reliably applied. In particular, for dipolar mixtures and using sphering as initializa-
tion, AMICA showed impressive performances with very low data length even for high
number of channels: 3s of data length (512 Hz sampling rate) are sufficient to get an ex-
cellent PI below 0.03 for the separation of 48 sources. The main drawback of AMICA
is its time consumption: it requests more than 60 seconds for this particular example,
while FastICA converges in less than 1s to get similar P/, although needing 7s of data.

An immediate perspective to this work would be to use more realistic time-structured
data, obtained using only modelled neural sources and realistic mixtures (head models).
Besides confirming our conclusions for the studied algorithms, this type of simulation
setup would allow the evaluation of second order statistics BSS algorithms (SOBI and
similar, also widely used for EEG analysis). It might be also useful if algorithms could
be tested on more data channels, in order to asses their performances in the context of
high-resolution EEG (more than 64 channels).

An interesting perspective, for the specific case of EEG source separation, is to
consider new contrasts for BSS algorithms, balancing between dipolarity and indepen-
dence. Indeed, source independence is known to be often unrealistic for EEGs, as strong
synchrony is very likely to appear between distant areas in the brain. A relaxation of the
independence constraint might then enhance the EEG source separation performance.
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