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On the Convergence of Linear Switched Systems

Ulysse Serres, Jean-Claude Vivalda and Pierre Riedinger

Abstract—This paper investigates sufficient conditions for the previously listed references are bearing on the signalf.itse
convergence to zero of the trajectories of linear switchedystems. \We are also led to define the notion of persistent activation

We provide a collection of results that use weak dwell-timedwell-— hich ensures the convergence of the solutions of the system
time, strong dwell-time, permanent and persistent activaibn . . .
to a minimal invariant sef/.

hypothesis. The obtained results are shown to be tight by

counterexample. Finally, we apply our result to the three-ell We discuss the asymptotic properties of a switched linear

converter. systems whose matrices are only assumed to be stable (not
Index Terms—Switched systems, dwell-time, stability, omega- ﬂecessarlly asymp_totlcally stable). M_ore precisely, agifam-

limit set, three-cell converter. ily of squared matrices of the same size# = {A1,..., An}

is considered; we assume that there exists a positive a@efinit
matrix P such that for eveny; in .7,

z' (AT P+ PA;)z <0, x € R4, (1.2)

I. INTRODUCTION
A. Background

WITCHED systems have attracted a growing interest When inequality (1.2) is strict, it is well known that system

recent years [1], [2]. Such systems are common acros$ld) is globally uniformly (with respect t@) exponentially
diverse range of application areas. As an example, switchgdble GUES at the origin. Conversely, @UESlinear system
systems modeling plays a major role in the field of powexdmits a smooth common Lyapunov function (see [16]). More-
systems where interactions between continuous dynamits awer, it has been proved in [17] that the common Lyapunov
discrete events are an intrinsic part of power system dymarfiinction can be taken polynomial but that there exists no
behavior. bound on the degree of the polynomial. When inequality (1.2)

In the study of stability of equilibrium points of differéat is not strict, in the even more general framework of hybrid

systems, specific results for switched and hybrid systems haystems, some very general stability results (which gdizera
been developed: see [3], [4] for multiple Lyapunov basddaSalle’s invariance principle) are available in [13] aridi]
approach, [5] for Lie Algebra based results, [6] for an appio The class of systems (I.1) that satisfy (1.2) considerechin t
based on dynamical systems techniques, and [7] for a surggsent paper being more specific, the obtained results are
of stability criteria for switched and hybrid systems. Irethmore sharpened than the ones we could obtain by applying the
context of switched systems, recent investigations (sge [Bsults proved in the above mentioned literature (for imsta
[9], [10], [11], [12]) provide interesting contributionedding compare Proposition 111.8 with [13, Proposition 4.8], and
to extremely general results that require little structomethe Theorems 11.5 and 11.10 with [14, Corollary 4.4]).

family of solutions of the hybrid system ([13], [14]). We reformulate the switched linear system (1.1) as an affine
Typically, linear switched systems are represented by -equ@antrol system
tions of form N
B(t) = Apa(t), zERY, teR,, (1.1) B(t) = Y _a(t)Aix(t),  2(0) = o, (1-3)

i=1
where o denotes a piecewise constant signal that aCtuaU\Yherex
switches the right-hand-side of the differential equatipn The class of switching signals considered in this work is

selecting different matrices from a finite family. not equal to the whol&™(R., {1, ..., N}) but we assume

In the present paper we aim to find some tight suf“ficiergﬁat there exists a sequente,, a,:1)) of consecutive
conditions on the signat in order to insure the convergence d o Skl ) n el

of the switched system to the origin. Our aim leads us to defiffiervals 0 = ap < a1 < ay < ---) whose union is

several new notions of dwell-time (firstly introduced in JL5 eguizr;llld;())(i&ea{nld sucjf:f}thvatthfooz.egrx |1n (i:ife?,etf[lsreanIS)ts
that differ somewhat from the ones introduced in [10], [13 " oo N o

[14]. The main differences rely in the fact that our notioris Omformally, the{.“ s are the swﬁchln_g .|nstants). In this frame'
dwell-time are set for each mode while the ones used in t ork, Fhe solutlops to (I.1) are infinite products of matsce
Sken in the family{ef141 .. etNAN |ty € Ry}
Universite de Lyon, F-69622 Lyon, France; Université hyd, Vileur- The convergence of such infinite products has already been
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Moreover, we shall deal with the scalar product related for everys > 0. Hence,p;(x) is in ker A and sop;(x) must
matrix P: if =,y € R?, we put(z,y) = 2" Py; also we shall be zero ana!“x = z follows from formula (1.5). ]
denote by|| - || the related norm. We shall use the following This lemma allows us to state the following easy result.

result see [22] Proposition I.6. The elements db(x) are of the same norm,

Theorem 1.1. If A; satisfies (1.2), then we can splR? as in other words, there exists> 0 such that(z) is included
R = Vi @ V§ whereV; and V§ are orthogonal and4,- in the sphere centered at the origin Bf and with radiusr.
invariant, A; when restricted td/; has all its eigenvalues with
negative real parts and!; restricted toVy is skew-symmetric
(with respect to the scalar produgt, -)).

Proof: Since the norni|«(¢)] is a nonincreasing function
of the time,r = lim; . ||z(¢)|| exists and soQ(zg) is
included in the sphere of radiuscentered at the origin. |

In what follows, we assume that the skew-symmetric partsFinally, the following elementary result, given without
of matrices4; are zero. In other words, 8} denotes a basis proof, will be useful for the proofs of results given in the
of Vi (k = 1,2), in basisBi UB%, matrix A; has the following next section.
representation

AP0 Proposition 1.7. If matrix A is of the same type as {h4),
A= ( 61 O) , (1.4) and if x ¢ ker A, then for all7 > 0, there exists € (0,1)
such thatt > 7 implies |le! 4z|| < p||z|.
where A%, is a matrix of full rank. We denote by 1.2 the

following assumption. Il. A CONDITION FOR THE CONVERGENCE TO ZERO

Assumption 1.2. There exists a positive definite matdxsuch N this section, we deal with the problem of the convergence

that all matrices in familyZ satisfy relations (1.2) and (1.4). © 2éro of the s_oluti(])vn of system (I.3). First an easy remark:
_ _ o o if the intersection(),_, ker A; is not {0}, then, taking as
Hereafter, we give the precise definition of theimit sets an injtial condition for (1.3) a nonzero element, of this
related to system (1.3). intersection, the solutiom(t) is constant and equal tg,. So,

Definition 1.3. We shall say that’ is an w-limit point of We introduce this first assumption.

system (1.3) if there exists a sequen().cw tending to Assumption II.1. We say that system (1.3) satisfies the null
infinity such that/ = lim, . (t,). We denote by2(zo) intersection assumption ff|.", ker 4; = {0}.

the set ofw-limit points of system (1.3) issued fromy. ) .
As we shall see through the following example, Assumption

Lo L I1.1 is not sufficient to ensure the convergence to zero.
B. Preliminaries: paracontracting linear maps

We denote byp; (resp.q;) the orthogonal projection on Example 1.2. In R3, we consider the following matrices

Vi (resp. onVy); obviously p; + g¢; is the identity mapping. 0 -1 a3 0 —1 —ai3
According to Theorem I.1, we can write A = 1 0 ass]|, As=1[|1 0 —ass
) ) —a —a a a Qa a
etAI (.CC) _ etAl Opi(x) + Qz(x) (|5) 13 23 433 13 423 33
and with azs < 0 and |a13] + |a2s| # 0. Denoting by(-,-) the

A2 A 2 NTY canonical scalar product iR*, we have(A;z, z) = ass x5 <
le ™ @)II7 = lle"™ o pi(@)I” + llas(@)II°. - (1:8) (i = 1,2) for everyz € R3. Moreover the characteristic
Following [23] we introduce the notion of paracontractinggolynomials ofA; and A, are both equal to

linear maps. —X® +azsX? — (a2 4 a2+ 1)X + ass

Definition 1.4. A linear mappingf : R? — R? is said to be

paracontracting with respect to the nofim| if || f(z)|| < ||=]|
for everyz € R? and | f(z)| = ||z|| iff f(z) = =.

so, we can see thai; and A, do not have purely imaginary
eigenvalues. We can conclude that these matrices satisfy
Assumption 1.2. According to Trotter-Kato’s formula:

A family of matrices as desc_rlbed in the mtroductlon lim (eto M/n o oo N/n)n o (M) (1.1)
generates a paracontracting semi-group. More precisay, w oo :

have the following result. whereM and N are squared matrices atglis a real number.

Lemma 1.5. If matrix A is of the same type a$.4), ¢!4 is Define %he sequenc(ezk)kTeN C R® by: eg :T(l,O,O)T, er =
paracontracting for every > 0. (0,1,0)%, e = (=1,0,0)7, es = (0, —1,0)" and fork > 4,
. ) . er Will refer to vectore, wherer is the remainder in the
Proof: If ¢ = 0, the result is obvious; in what follows, Eyclidean division ofc by 4. We have

we shall assume that> 0. According to formula (1.6), one

infers that 0-2 0
A Aj+A=12 0 O
2 2 2 2
le A (@)I1* < llpi@)I* + llas (@)11* = [l]|*. 0 0 2as;
Moreover, [le!4z|| = ||z|| implies that|e!4 o p;(z)[|> = and so, forty = 7/4, we havee’o (A1+42)(¢,) = ¢, 1. Set

pi(2)||2. As |les4a]| < e “a| if s < s, we have o (st a)
es4opi(x)| = |Ipi(x)|| for everys € [0,t] and by analyticity Ro=e0 e

n
, Op = (et[) Al/n ° €t0A2/n) .



Takee > 0 andxy = e, from formula (Il.1), we know that Proof: Without loss of generality, we may assume that
there exists; such that the dwell-time assumption is satisfied for modle= 1. The

€ solution of system (1.3) at timeé € [a,,, a,,41) reads
i, (z0) = Rlwo)[| < 5 (12) R !
] t) = t—an) Ai, 4y OnAi ... 01 Aiy .
Assume now that we have built a sequenes,...,z\) z(t) =e o eree (wo)
and we have found integer@:,...,n;) such thatz, = Let ¢ € Q(x), there exists a sequende;)ren such that
©n, (xp—1) and |z, — R(zp—1)|| < €/2° for p = 1,... k. ¢ = limy_,o x(t). For everyk, t, belongs to an interval

Take ny41 such that||gn,,, () — R(zp)|| < /2" and [a,,,a,, 1) and there exists an intervéd,,, , am, +1) with
setxyy1 = ¢n,,, (z1). Consider the sequencés;)r>1 and a,,, > a,, and such thaty; (t) = 1 if ¢ € [am,, am,+1) and
(nk)k>1. Inequality (11.2) can be writtefjz; —e1|| <e¢/2and §,,, ,; > 7. Due to Assumption 1.4, the sequence of integers

we shall prove by induction that (mi — ni)ken IS bounded and so even if we have to work
€ € with a subsequence ¢t , We can assume that
loe —erll < o+ + = (11.3) ’5eq @t )eri N
2 2 « the differencem; — n; is constant (positive), we denote
By induction hypothesis and becau§g|| < 1, we have by r this difference,

« the sequence of switches framto a,,, is independent of

k1 = el < llns = Rza) | + [1R(2r) — Rlew)| k, that is to say, there exists a finite sequenge . . ., A;
< [ (@k) = R(zw)l| + loe — el of matrices taken i{ Ay, ... ,AN} such that for every:
3 3 3
<2k+1+2_k+"'+§' x(amk):euLAiTo .oe¥ ( (tk))

From (I1.3), we get||z; — ex| < e for every integerk.

: ; : « for eachm = 1,...,r, or the sequencéu]’)rcn tends
Consider the switch law = (a1, a2) defined by to zero ask tends to infinity either there exists™ > 0
_ 2 2p+1 zom .
L ifre KIH_ p >t0, <k+ D+ >t0>; §uch thatuy > v for all k
ai(t) = Nkt 1 Nkt 1 We first prove by induction om thatlimy_, o 2(am, ) = £. If
0 otherwise; r =1, we haver(a,, ) = e** 4 (z(ty,)). If limy 0 ul = 0,
as(t) =1 — oy (t); the result is obvious, if not, write
wherek andp are integers such tha@p < ny1. The switched x(ty) = pi, (£) + ¢, (€) + Ty,

system defined by matrice$; and A, and lawa is such that h
Q(ep) € R3\ B(0,1 —¢) and s00 ¢ Q(ep) if e is chosen SO W€ have

small enough. Moreovef)(e) conf[ains at least one point in - pupA a(2(te)) = e A0 (pi, (0) + qi, (£) + olk Ay (Z1),
every open balB(e;, ) and so, being connectef(ey) is an ‘ ‘
infinite set. and, asVy"* andV;* are orthogonal

Notice that in the above counter-example the switching law |, ,! 4, 2 ul A 9 9
satisfies Assumption 1ll.1 (introduced later on page 5) for e l(x(tk))nl = fle™ 11 (P (DI + g (O]
every matrix, that is to say the time elapsed on every matrix 4 2™ A (£), e A (z3,)) + [|eE A (23)]|%-
of the family is infinite. If one relaxes Assumption 1.1, ®n
could find a very simple counter-example in dimensios 2.

We state the following definition.

Suppose, to reach a contradiction, thgt(¢) # 0. Then, as
ui > vl, there existy € (0,1) such that|e®s i (p;, (0))] <

pllpi, (0)]|. Choosee > 0, since limy.Zx = 0 and
Definition 11.3. We shall say that the finite sequenc%% 4i1|| < 1, we get fork large enough

(41,...,1p) Of indices (not necessarily distinct) taken in
{1,...,N} is compatiblewith system (1:3) if there existy  [le® A1 (a(t))[I> < P2 [lpi, (O + llgiy (£)]|? + 2]|¢]| + &2
consecutive intervalg,,, an+1); - - -, [@n4p—1, Gntp) SUch that < |1)? - €2,

for everyq € {1,...,p}, o, (t) = 1 if t € [antq_1,0n+q)-
provided thate is chosen such thats? + 2¢ ||| < (1 —

p3)|lpi, (O)||?. But in this case, we could find an element
Assumption 1.4 (Dwell-time). We shall say that the mode in 2(zo) (a cluster point of the sequence(am, ))ken)
satisfies the condition of dwell-time if there exists a piwsit Whose norm is less thafi(||, which is |mp035|b|e Hence,
numberr and an integep such that for every compatiblepi, (¢) = 0 which implies? = ¢;, (¢) and e A (z(ty)) =
sequencéis, . . ., i,) there exists an index € {1,...,p} with 0+ e An (z,), since|es A || < 1 andlimy,_ o 74 = 0, we

ig = 4 and, if [an,ant1), ..., [@nip—1,antp) iS the related get the result. So, we can write

sequence of consecutive intervalg,,q — an4q—1 = 7.

We introduce now the following assumption:

2(am,) = e Air o0 Ui Aia (x(an,))

We state the following result concerning the modes satisfy- _ _ _ _
ing the dwell-time condition. with limy_, o x(an, ) = ¢, applying the induction hypothesis,
) ) o ~ we conclude thatimy_,~ z(an,, ) = ¢. Now, we have
Theorem IL.5. If Assumption 1.4 is satisfied for the mode

then Q(.’L‘o) C ker A;. «T(amkﬁ-l) = e(amk+1_amk)A1 (x(a’mk))



with a,,, +1 —am, = 7. The argument used above in the casehere we make the convention that jifis greater than 8,
where the sequende )<y does not converge to zero provesnatrix A; is equal to A, wherer is the remainder in the

thatp,(¢) =0, i.e., £ € ker A;. m Euclidean division ofj by 8 excepted whemn = 0 in which

An easy consequence of Theorem 1.5 is stated in tlvase,A; is As. We proceed as in Example 11.2. Choase 0
following corollary. andn; such that|o}, (e1) — Ri(e1)|| < /4. Then, we have
Corollary 11.6. If system(l.3) satisfies Assumption I.1 and ||eTA5 0%1Zl (e1) — €7 A5 6 R, (e1)]| < €

if every mode satisfies assumption 1.4, thén), the solution 4
of systen(1.3), tends to zero as tends to infinity. because|e < 1. Notice that, in this inequalitye™ 45 o

Proof: Accordlr)\g to Theorem I1.5 and Assumption II.1,R1(€1) = 2. Then, choose:, such that

we have()(zg) C ;2 ker A; = {0}. |

At this step, we could wonder if it were possible to
weaken the hypothesis of Theorem 11.5. Consider the foltgwi and, becaus¢R.|| < 1, we have
hypothesis which is weaker than Assumption I1.4.

)

o ™

|02, 0e™ ol (e1) — Raoe™ % opr (e1)] <

TA

len, 0 €™ oy, (e1) — es]

Assumption 1.7 (Weak dwell-time) We shall say that the 9 - As 1 - As 1
o ) s ) < 5 — 5
mode;: satisfies the weak dwell-time condition if there exists < lien, oe T ° 90"11 (e1) —Rpoe T © ¢, (€1)]]
7 > 0 such that for every,, € N, there exists1 > no with + [|[Rzoe” ™ 0, (e1) — Rz 0e” ™ o Ry(er)|
a;(t)=11if t € [an,ant1) anday+1 — an > 7. < E+§
8 4

To say that Assumption Il.7 is satisfied amounts to s
that the sequence of durations during which mads ac-
tivated does not tends to zero. As we shall see through
following example, Assumption 1.4 cannot be replaced b%
Assumption 1.7 in Theorem I1.5.

aﬁ(roceeding this way, we choose integess. . ., ng such that
tjng 1(e1) —er] <e/22+ -+ +¢/4 < /2. We then buildP,

. in the same way a$; and we choose the integers
9, M10, ... N such a way that| P.(e1) — e1]| < /2. Now
reasoning as in Example I1.2, we can build a switch law relate
Example 11.8. In the following family of eight matrices, we to the family of matricesi,, ..., Ag such thate(8k(to+7)) =
assume that the diagonal coefficieats, . . ., a4, are negative, Py o --- o Pi(e1). The w-limit set Q(e;) contains at last one
the nondiagonal coefficients; (i # j) being nonzero. point in the open balB(e;, ); this ball does not contain the
origin of R* if ¢ is chosen small enough and 8¢) does not

(1) _01 Zl?’ 8 (1) _01 :213 8 tend to zero as tends to infinity. Nevertheless, every mode
Ay = B A= 23 | of this system satisfies Assumption 11.7.
—a13 —azg3 azz 0 a3 azs azz 0
0 0 00 0 0 0 0 This example shows that in Assumption 1.4, one cannot
cancel the condition on the repartition of switches (exeejir
00 0 0 00 0 0 the two-dimensional case as we shall see in the next section)
Az = 8 (1) _01 @y, = 8 (1) _01 “%24 | Nevertheless, if we make a stronger assumption on the dwell-
434 434 times, we can free ourselves from this condition; consiter t
0 —a24 —a34 aaa 0 a4 azs aaa following assumption.
a0 —ag3 —ayy air 0 a1z aig Assumption 11.9 (Strong dwell-time) We shall say that
As = 00 0 0 , Ag= 0 000 , the modei satisfies the condition of strong dwell-time if
a3 0 0 -1 —a130 0 -1 there existst > 0 such that for everyr; € N satisfying
a1 01 0 —a14 0 10 %l{an an 1) = 1, We havea,, 1 — a,, > 7. In other words,
0 a0 —1 0 —ap2 0 —1 the sequence of durations during which the moaeactivated
A — —a1s a9y 0 —asy Ay — ajos ase 0 asy . has a positive inferior limit.
0 00 0 7 00 00 We have the following result.
1 a24 0 0 1 —a924 00

. . Theorem 11.10. If system(l.3) satisfies Assumptions II.1 and
As in Example 1.2, we can easily check that these M3 9 for every mode, the®(z,) — {0} for everyz, € RY.
trices satisfy Assumption 1.2. In this example, we denote

by ei,...,es the vectors of the canonical basis Rt and Proof: We lett, = >.;_,0k. As the solutionz(t)
by Ri,...,R, the matricesR; = eto(A2i-1+42) Taking of (1.3) is bounded, to get the result it is sufficient to
to = m/4, we cIearIy haveR;(e;) = eii1 (Wheree5 £ ¢,). prove thatQ(zo) = {0}. To this end, we have only to
Finally, for i = 1,...,4, we denote byy! the mappings prove that every cluster point of the sequer(agt,)),, .y

Q= ( (to/n)Azm 1 oe(to/n)Am)" and we notice that, fol- is equal to zero. Let! be such a point, then{ is the
lowing Trotter-Kato’s formula, we havéim,, .., ¢!, = R;. limit of a subsequencéx(t,,)),cn Of (z(tn)),cn. Write
Chooser > 0 and consider the following product of matrices:(t,, ) = e’ A" (x(t,, _1)), where A(ny) is a matrix in
8 4 family .%. There exists an indekxe {1, ..., N} such that, for

P = H o7 Azita g %:4 ° H o Azits o % infinitely many indicesu,, we haveA(n;) = A;. Even if we

s 1 have to renumber the matrices of famif§, we can suppose



that: = 1 and, even if we have to work with a subsequence ekponentials of matrices taken in famil). The determinant
(2(tn,))pery We can writez(t,,, ) = e 41 (z(t,, —1)). We  of ¢, is equal todet o, = et en(Otr Ay “where
write z(t,,—1) = £ + Zx and, in exactly the same manner as;(t) denotes the measure of the §6t< s <t | a;(s) = 1}

in the proof of Theorem 1.5, we prove that(¢) = 0. (tr A; < 0). Due to Assumption Ill.1, we hadén; ., 7;(t) =
We now make the following induction hypothesjs:(¢) = oo, and sdim;_,, det ; = 0. As, ¢, is bounded, we can find
-+ = p,_1(¢) = 0. For infinitely many indices:, we can find a sequencét,),en such thatp = lim,, . :, exists. Since
in the sequenc&x(ty,,)),cy, terms which writez(t,,,) = det¢$ = 0, there existsry # 0 such thatg(zg) = 0; for this
ek Ar o oy (x(tn, —1)) Where gy is a product of exponen- zo, we clearly have)(zq) = {0}. n
tials of matrices taken in the sdt4,,..., 4,_1}. Writing We consider now the sét/ related to family.# defined as

(tny—1) = €+ Ty, We havey(z(tn,—1)) = £ + @i(Th)
becausel € ()_; ker A;. Thus, z(t,,) = e 4 () +
e¥mr A (o (Ty)). Sincelimy_oo €2k A (pr(Zy)) = 0, if we  Fori =1,..., N, we also denote by/; the seth; = {z €
suppose thap,(¢) # 0, we are led to a contradiction in theR? | (A4;z, ) = 0}. SetM can be regarded as the intersection
same way as above. We have thus proved phét) = --- = of the sets of zeros of quadratic forms— (A4;x,x) which
pn(€) = 0, or equivalently, that ¢ ﬂfil ker A;. According are subspaces ®&“ because these quadratic forms are non
to Assumption 1.1, this set i$§0} and so¢ = 0. B positive, saM is a subspace @¢. Notice than)M can contain

To conclude this section, we shall illustrate the diﬁerej nonzero vector even if all the matrices in famify are of

concepts of dwell-time presented in this paper through Em t;IIErank. ::OIrI g\Stt:mcel, fogs'f'weT t?\; t_WO maﬁé'féﬁ aTj 642
examples. We take a family¥ reduced to two matrices and wel! EXampie 1.2, the related set 1S M = (o€ | 3 . }
The two following propositions state that the setusfimit

denote bys; 1 (resp.dq;) the lengths of the intervals on which | .
mode 1 (resp. 2) is activated. If we taig,; = 7 > 0, then points cannot avoid set;.
mode 1 satisfies the strong dwell-time assumption. Consid@foposition I1.3. Suppose that systeth3) satisfies Assump-
now a switching law such tha; 1 = 1 +i(—1)"/(i + 1); tion Ill.1 for modei, then there existd € Q(zo) such that
clearly lim inf; ., d2;41 = 0, S0 mode 1 does not satisfy the(A;¢, ¢) = 0 (in other words,/ € M,).
strong dwell-time assumption. Nevertheless, if we taker fou . -

9 P Proof: The proof is by contradiction. Assume that for

consecutive intervals of activation, on one of these, theeti . o
very ¢ € Q(xg), the scalar productA;¢, ¢) is nonzero, it is

of activation of mode 1 is greater than one, so mode 1 satisﬂt S f tive. AQ . t this implies that th
the dwell-time assumption. Finally 1&t, = n(n +1)/2 and erefore negative. AB(zo) is compact, this implies that there

consider a command law such that, B}, < i < Ty, SXSSH >0, such that{4;(, £) < —p for every L € Q(xp).
Spi11 = 14 n(—1)"(n + 1)/2. Clearly, mode 1 does not Ve denote byax,, ak,+1), [Gkys Akyt1)s -- - the intervals of

satisfy the strong dwell-time assumption but it satisfies gfimes during which the mode is activated. For the sake

weak dwell-time assumption. Now this mode does no moPé readability, we denote by,, the solution of (1.3) at time

satisfy the dwell-time assumption. Indeed, féte N*; if nis = “n+1- We have

large enough and odd, we can fiid consecutive intervals of Ty = %% Ao o (2n_1) (In.1)
activation whose indices are such thaf;,, < [i/2] < Th41
([x] denotes the integer part af); for the intervals with an
odd index, we havé,;11 = 1/(n + 1) which can be made

M={zeR?| (Ajx,x) =0, i=1,...,N}.

where ¢,, is a product of exponentials of matrices taken in
family . \ {A;}. It follows from ||¢, || < 1 that

arbitrarily small asn tends to infinity. ) ) n ) )
lzall® = lzoll® =Y (1% = s (x5-0)I1%)
I1l. SOME PROPERTIES OF THEv-LIMIT SET j=1
n
A. General considerations
_ _ _ _ _ + 3 (s (@—)1? = lzal?)
In this section, we introduce the following new assumption. j=1
n
Assumption lll.1 (Permanent activation)\We say that the < 2 2
- —_ e z5]|% = |lpj(x,— . 1.2
modei satisfies the permanent activation hypothesis{if > = ; (311" = s (g-)I) (-2)

0] aii(t) = 1} = oo, where denotes the Lebesgue measure., ' .
First, we show the result whéim,,_,, d, = 0. In this case,

We begin with proving an easy result. we consider the series whose general term is

Proposition IIl.2. A control law which satisfies Assump—Hxn|
tion .1 for every mode being given, the set of points

such that(z¢) is equal to{0} is a subspace oR? with If n is large enough, the scalar product;z,,z,) is far
dimension at least one. This implies that the set of paigts away from zero, more precisely, there exists such that
such that(z,) does not reduce tq0} is either empty or (Ai%n,zn) < —p/2 @s soon asm > ng. So, asn tends

‘Q_H(pn(xn—l)HQ = HeéknAlocpn(xn—l)”2_”9071(1'71—1)”2'

open and dense. to infinity, the ger_lera_l term of this series is e_quivalent to
_ ) ) 2(A;x,,, x, )0, Which is the general term of a divergent (to
Proof: Obviously the set of points, such that(zo) = _ ) series since the series whose general termiyjs is

{0} is a subspace d@&“; moreover, the solution of (1.3) issued
from zy can be written asp:(xzo) where¢; is a product of  la;(t) = 1 if ¢ belongs to the union of these intervals



divergent and(A;z,,x,) < —u/2. So the right-hand side we deduce from (l11.3) that

of (I1.2) can be made less thd(|? — |z if n is chosen n
large enough, which is a contradiction singe, || > ||¢|| for e (t)I? = llz)l? =D (eI = llzt)]?)
all n. k=0
In the case where we do not haliev,,_, dx, = 0, there 2 ,
existsT > 0 such that for allng, there existsn > no with + > () 1? = llz(t-)I?)
o, = 7. S0, even if we have to work with a subsequence of nkzl
(Zn)nen, in (11.1) we can assume thaf, > 7 for every index < Z (||:v(t§€)|\2 _ H«T(tk)HQ)
n and that the sequende,,(r,_1)),y iS convergent with o
limit ¢ € Q(z). But reasoning as in the proof of Theorem I1.5, < —(n+ D,

this implies that4,;£ = 0 and sof € M;.

n
. ) o
We immediately deduce from Proposition 1.6 and Propostnich leads tajz(#,)||* negative ifn is chosen large enough

tion 111.3 the following corollary. which is impossible. . ) "
We prove here a proposition announced in the previous
Corollary lll.4. Suppose that there exists a madeith A/; = section and stating a result of convergence to zero in the two

{0} and which satisfies Assumption III.1, th&fz,) = {0}. dimensional case.

The next proposition tells us that eacHimit point belongs Proposition 111.6. In the two-dimensional casel (= 2), if
to at least one set/;. every mode of syste(th3) satisfies Assumptions 11.1 and II.7,
thenQ(zq) = {0} for everyz, € R2.
Proposition l11.5. We assume that Assumption Ill.1 is satisfied _ ) L o
by every mode. Then, for evetyg Q(z), there exists a mode . ]Pvroof. Takezo € R”, the w-limit set }(zo) is included
i € {1,...,N} such that¢ € M;. In other words,Q(zo) is in Ui:1 M;. Due to Assumption .2, the sefdl; are zero or
included in the uniorUN M one-dimensional subspaces &f, so their intersection with
i=1 i

S1 gives a set of isolated points. Assume tkHtry) # {0},

Proof: If Q(zo) is a singleton, the result is given bythen it is included on a circle with center the origin and uadi
Proposition 111.3. If Q(zp) is not a singleton, let € Q(zp) = > 0; moreover due to Assumption I1.1, it is also included in
and takee > 0 such thatQ(z,) contains at least a pointthe unionUfilMi. Thereforef)(x) is included in a finite set
outside of the open ballB(¢,¢). From the definition of of points located on the circle. AQ(xy) is a connected set,
Q(xo), there exists a sequence of timés,),en such that we deduce tha®(xy) is a single point that we shall denote by
lim,,_, o x(t,) = ¢ and we can assume thaft,,) € B(¢,e) (. Takeip € {1,..., N}, due to Assumption 1.7, we can find
for every n € N. Denote byt! the number defined by a sequencét, ),cn tending to infinity such that we can write
t' = inf{t > t, | =(t) € dB({,¢)}. We claim that there z(t,) = e™ 4o (z(t, — 7,)) with 7, > 7 > 0. Reasoning
existsT > 0 such that, for every:, t/, — t,, > 7. The proof as in the proof of Theorem I1.5, we deduce that the limit of
of the existence ofr is by contradiction, suppose that forz(¢,, — 7,,) asn tends to infinity belongs tder A;, but this
everyr > 0, there exist:: such thatt), — ¢,, < 7, then there limit is equal to/. So we proved that ¢ ﬂf\;l ker A; = {0}

exists an increasing sequence of indi¢es)ren such that (due to Assumption 11.1). ]
th,, — tn, <1/k. As z(s) is bounded and;, — ., tends t0 Remark. One could wonder if Assumption 1.7 could be
0, we have replaced by Assumption IIl.1 in the above proposition. We
Ny do not know the answer to this question.
t . . L .
I(t;zk) () = / k Z () Asz(s)ds — 0, In order to give a more precise description ofd:hdiml_t se_t,
t k—o00 we shall assume that the different modes are well distrébute

nE  g=1

Roughly speaking, this means that the contribution of argive
which implies thatz(#/, ) tends to¢, which contradicts the mode cannot be neglectgd with respect to _thg contributiéns o
definition of the sequena@’, ),.c. Assume now that for every the other modes. Below is the precise definition.
i€{l,...,N}, we have(4,(, ) <0, then there exists > 0 Assumption 11.7 (Persistent activation)We shall say that
such that(A(,£) < —u and, if ¢ is chosen small enough,the mode; satisfies the “persistent activation” assumption if,
we have<Aia:I(t),a:(t)> < —u/2 for everyt in the union of for every sequence of interval&,,, t’.]),en such that
intervals|t,, t;,). Hence, « the limit of ¢,, asn tends to infinity is equal to infinity;

« there exists > 0, such that/, —t,, > 7 for everyn > 0;

v, N - : i
n « the limit of the number of commutations occurring in the
7\(12 2 _ . .
()" = () = /t 22al(t)<‘41x(t)’x(t)>dt interval [t,,, ] tends to infinity as: tends to infinity,
n 1= . . / . _
<l — 1) we haveliminf, oo Mt € [tn,t,] | a;(t) =1} > 0.
< —ur. (I11.3) Proposition 111.8. Assume that Assumptions Ill.1 and Ill.7

are satisfied by the mode thenQ(xy) C M;.

Up to a subsequence dfc(t,)),cy. We can assume that Proof: Let ¢ € Q(xo), if Q(zo) reduces to/, the result
th—1 < t,_, < t,. In this case/|z(tx)|] < |lz(t),_;)|| and follows from Proposition 1II.3; if not, we shall argue by



contradiction. So, we suppose that there eXists2(x,) such A positive numbere being given, proceeding as in Exam-
that (A;¢,¢) < —u < 0. As in the proof of Proposition 1I.5, ple 11.2, one can prove that it is possible to choose the ereg
we take a sequenc@,).ecn such thatlim, ,. z(t,) = ¢, n1,...,n4 in such a way tha|©,,,n,nsn, (€0) — eol < /2;
we chooses > 0 and we define the sequenc#,),cn by more generally, we can find a sequerieg);>1 such that

t, =inf{t > t, | ||z(t},) — £|| = €}. The positive number is

k1
chosen small enough to hayé, z(t), z(t)) < —u/2 for every o eo) —eoll < St S a6
t € [tn,t,] and, up to a subsequence (@f ),cn, We assume g massnasanassansia (€0) = €0l S 2 2k (11-6)

that the limit, denoted by, of the sequencec(t),))nen EXists.
As in the proof of Proposition Il.5, we can show that ther
existsT > 0 with t/, — ¢, > 7.

Moreover, the number of commutations occurring in the 1o
interval [t,,t,] cannot be bounded. If it were the case, up I(ﬁkto + Z ;) = H Onassinaipanairanaisa (€0)-
to a subsequence offt,,t,]|)nen, We could assume that =1 =0
there exists a finite sequen¢a, ...,4,.) of indices taken in For this switch law, inequality (111.6) shows that there sisi
{1,...,N} such thate(t,) = e o---0e nAirg(t,), with anw-limit point £ in the open ballB(e, ¢) and, if is chosen
ul u” > 0. As in the proof of Theorem 1.5, in this case,small enough this limit point is such thats¢, ¢) # 0.

ny ey Uy

we could show thatim,,_, . x(t/,) = ¢ which is impossible

since ||’ — £] = . So, we can suppose that the limit, 8 B \what happens whef(z) is a singleton

tends to infinity, of the number of commutations occurring in

the interval[t,, t/,] is infinite. Therefore, denoting by,, the

setJ, = {t € [tn,1}] | a;(t) = 1}, from Assumption I11.7,

we haveliminf,_,. A(J,) = 7 > 0. Now we have Lemma Ill.11. Let (p,)nen be a sequence iL>® (R, B)
whereB is a bounded subset &V . If p,, = ¢, theny takes

t, N i
2 (£ )12 = ()% = Q/t ZOZJ'(S)<Aj«r(S),I(S)>dS almost surely values ino(B) (the closed convex hull d3).

\We choose now a switch law such that the solution of (1.3)
Twith 2 = o) is such that

k—1

The following result is well known, but for the convenience
of the reader we shall supply a simple proof.

voa=l Proof: Let 2 denote the set of affine forms & with
< 2/ (A;x(s), z(s))ds rational coefficients. Set = {L € 2 | L(B) C Ry}. We
n haveco(B) = N, co L' (Ry). TakeL € Z. Sincey, takes
< —pA(Jyn). (I1.4)  values inB, [, L(¢n(t))dt > 0, for any measurable subset
But A(J,,) > /2 if n is large enough and so from (l11.4), wet € R+. Sincep, — ¢ andL is continuous, we get for any
get measurable setl C R,
ANTP 2 Tift
la(t)I1? = llo(ea)|? < ~ 72 (111.5) / L) dt— L ( / o) dt) s < / ot dt)
for n large enough. Passing to the limit in (I1l.5), we get”4 A e A
12117 = 1€]]*> < —7ip/2. A contradiction since|¢’|| = ||¢]|. m = lim [ L(pn(t))dt >0,
From Proposition 111.8 we deduce the following easy con- n=eoJA
sequence. which implies thatl o ¢ is almost surely nonnegative. In other

words, the sef;, = {¢t > 0| Lo p(t) < 0} has zero measure

Corollary 111.9. If Assumptions IIl.1 and Ill.7 are satisfied y . .
y P for every L € .Z. Using the countability of?, it follows that

and if M = {0}, thenx(¢), the solution of systerfi.3), tends
to zero ast tends to infinity.
Mtz 0l ¢B)} =1 {J I | <Y A(n) =0,

Proof: If Assumption 111.7 is satisfied, thefi(x() reduces Lew lew

to {0}. .
. ._or, equivalently thatp(t) € co(B) almost surely. [ |
Remark.We may wonder if we could weaken the hypothesis in The next proposition is a consequence of Lemma 111.11 to

Proposition 111.8 by assuming only the permanent acti\nattiqinear switched systems. Define the séts, and A by
(Assumption 1l1.1). The following example gives a negative -

answer to this question. Aso={aeRY |y + - +ay=1},

Example 111.10. In this example, we take the matricely and

and A, from Example 11.2 as well as the following matri
¥ P g s A>0={CM€A>0|O¢Z‘>O, VZ:1,7N}

defined as
A _01 8 8 Proposition 111.12. If Q(xz¢) = ¢, then there exista: € A
3= N Ay
0 00 such that) ;" a; A;¢ = 0.
b0 Avn e to As/n - to Ag/nyn B Proof: Let B = {e1,...,en} denote the canonical basis
EUW? = (el j ¢ :0 (Zlﬁé)o (; ) _V\f['th to = m/4. We of RV, Let (¢, )nen be a sequence of positive numbers tending
s:;/e Min—oo Pn = € - GNVEN INegersny, ..., M, 4 infinity. Put3(t) = e; if o(t) = i, and setp,, (t) = B(t,+1).

For all n > 0, we havey, € L*(R,,B). It follows
Onynansns = Pns 0043 00, 0@, 04 0, . from Alaoglu’s theorem and Lemma I11.11 that, admits a



converging subsequenss,, — ¢ € L>*(R,,(B)). Thus, + g”(pnk —¢lleo < &
o(t) = fo:l a;(t)e;, where thew;’s are non negative mea- p
surable functions. To each,,, corresponds a nonautonomugrom which the uniform convergence (111.8) follows. [ ]

vector field X;* defined by Definition 1ll.14. We shall say that a subsétc {1,..., N}

. N is ¢-minimal if there exists a uniquea® in A-( such that
X (@) =) (n, (1), €5) A, (7)) ¥, a4 =0.
i=1
. . N The next result shows that Assumption 11l.7 (and thus
ConsequentlyX ™ (r)=X.(z) = >_;_ ai(-)A;x for every agsumption I11.1) is necessary ffL, ..., N} is -minimal.

x € R?, ask goes to infinity. In particular, for every> 0,
Theorem I1.15. Assume thaf)(z¢) = {¢}. If {1,...,N}is

t t
/ X (x)ds — X(x)ds. (1.8) ¢-minimal, then Assumption 111.7 is satisfied.
0 k—o0 Jo )

. _ o . Proof: Let o¥ be the unique element ak-, such that
It is easy to see that this convergence is indeed uniforan a0 A :ao According ?0 Lemma. Il 12>0there exists
with respect to(t,z) on every compact subset &, x R¢ ZglA ! ;uch tr;atZN A= 0 It foIIoWs ’from the (-
(we prove this fact in Lemma 111.13 after the present proof&mim;& of {1 ]{7}1 thzatza B ab In particular a: > 0
and because th&}'* are linear (inz), the same property of y RN —o.inp T

) R ; for all i € {1,...,N}. Keeping the same notation as in the
uniform convergence holds for all derivatives with respect. roof of Lemma 11112, we thus have proved that all the (weak
Let P and P* denote the flows of(;"* and X, respectively. P U P

N o0,
Thus, according to [24, Lemma 8.1QP;(z) goes toP!(x) sctar) convertic;entijbse]zvquegcge;pgf co?velrge toZi_Zlgi “
ask — oo, uniformly with respect td¢, z) on every compact onsequentlyp, = 37, afe;. In particular,{pn, e;) = o

K2
subset ofR, x R?. In particular, for every > 0, there exists foralli € {1,...,N}. Hence, for any sequence of intervals
ko € N such that for every: > kg

[tn,t)] satisfying the hypothesis of Assumption 111.7, we have,

¢

[P (tn,)) = 2(t + )| = | P*(@(tn) = Phx(ta ) At € [ta, 1] | oi(t) = 1} = / " (B(s), ei) ds
<e, tn
which, ask goes to infinity, shows thatP!(¢) — ¢|| < e, for Z /0 {pns i) ds — Tal >0,

everye > 0 and everyt > 0. Hence,P!(¢) = ¢, which, upon ) . ) L
differentiating with respect to, gives the result. m Which proves that Assumption 111.7 is satisfied. [ ]

Lemma IIl.13. The convergence in relation (l11.8) is uniform

with respect to(t, ) on every compact subset Bf, x R, C. Further remarks
; . f relati db h In subsection IlI-A, we have seen that, under Assump-
Proof: In view of relation (I1I.7), and because the MaPtions 111.1, the sef)(xp) is included inUfV:1 M;; moreover in

pingsz — A;x are linear, it is §ufﬂmept to show that thesubsection IIIl-B, we have seen that, in the case wiike,)
convergence (which holds true singg, — o)

reduces to an unigue poiftthere exists a convex combination

t t of the vectors4;¢ which vanishes. In this subsection, we shall
/O Pn (s)ds e o p(s)ds see what we can say of the convex combinations oftj#s in

_ _ ) _ the general case. Hereafter, we denotd bthe set of indices

is uniform with respect ta on [0,7]. Fixe > 0 andp € N j4fined byl, = {i € {1,...,N} | f € M,).

such that5/27 < e. Setl! = [¢T/p,(¢ + 1)T'/p). Since

©n, — ¢, there existsko(p, ¢) such that Definition 111.16. We shall say that is an ordinary point of
* . Ufil M, if, whenever we havé; andi, in Iy, eitherM,;, C
1 M;, or M;, C M;,. We shall say that e |J, M; is an
n, — ds| < ——, VY k=ko(p,q). b2 s A ; =177
/0 XIZ (5)(n, = @)(s)ds k2t 0(p;q) extraordinary point if it is not ordinary.

Let kg = max{ko(p,1),...,ko(p,p)}. Denote byy; the index  Notice that if/ € Uf\;l M; is an ordinary point, there exists
for which ¢t I3 For all k > ko, we have, an indexi, such thatUiele M; = M;,. Clearly, the set of
ordinary points is open and dense @filMi. Moreover,

t =1, .t . . . . N .
_ _ f ¢ is an ordinary point ofl J._, M;, there exists an open
P — P)(s)ds| <D / X 14 (8)(@ni — )(s)ds " i=1
’/o ( s a=0 170 IP( ( ) neighborhood’ of ¢ such that/ NJ;*, M; = UNUer, M.

The following proposition gives an additional conditionkie
satisfied by a point in order it belongs td(z).

-5

q#‘h
/ (e — ©)(s)ds
0

p—1

T
Z A X]g (5)(%0% - (P)(S)ds

q=0

T
| x @), = o)s

Proposition 111.17. Assume that € Q(z(). There existsy €
As( such that
1) if ¢ is an ordinary point > a; Al € Uier, Mi,
2) if ¢ is an extraordinary point, there exist§ C I, such
that 30,0, i Ail € Mg yy M.

+

<




Proof: Assume first that is an ordinary point of2(x,). Proposition I.18. Let¢ € M\ {0}. Assume that there exists
Assume that, for everyx € Asg, the sum vazlaiAié a € Asg such thath\;1 a; A4 = 0. Then, there exists a
does not belong tq J;.;, M;, then there exists a vector trajectory satisfying Assumption I11.7 which does not cage
orthogonal t‘Uieu M, = M;, and a positive constant such to zero.
that (A;¢,u) > ¢ for everyi € I,. ChooseU = ]%73(6, r)a Proof: Let a € A be such thab™" | a; A:¢ = 0. For
small enough open ball arourfdsuch thatU N J;,_, M; = t_ tanAn 7k .

, , anyt € [0,1], set®’ = e o---0e . The mapping
UNU;er, Mi and(A;',u) > c/2 foreveryt’ € UNU,¢;, M. t > @(¢) has Taylor expansion
There exists a sequencg,).cn tending to infinity such that
lim,, 0 2(t,) = ¢ andz(t,) € B(¢,r/2) for everyn € N. N

If Q(x0) reduces tof, putr, = 1. Sincelim, .o z(t, + U(0) =L+ tZaiAié + Py = 0+ Py,
Tn) = £, x(t,+7,) € B(¢,7/2) if the indexn is large enough. =1
If Q(z0) does not reduce té, there exists am-limit point with v, = O(1) (since |0, 1] is compact), which implies that
outside of the ballB(¢,r) if r is chosen small enough. In thisthere existsc, > 0 such that||v|| < ¢, for all ¢ € [0,1]. Let
last case, we choose, = inf{t > t, | 2(t) € dB(f,r/2)} (tn)nen be a sequence ift, 1] such thafy~> ¢2 converges.
which is well defined for every index. In any case, the Since||®!(v)|| < ||v]|, we get
_sequencéx(tm_trn))neN being bounded, we can assume that Bt 41 0 Bt () — £ = || Bt (€ + 20, ) — £
it converges t € U. We have ) D,
Stnpallve, o [+ 8127 (v, )|

tnt7n N 2 2
(2t + Tn) — 2(tn), u) = / 3" ai(s)(Aia(s), u)ds < (tngr +tn)co.
b i=1 Put®,, = ®% o--. o ®'. By induction, we get, fog > p,
> ETm (I1.9)  [|®p,q(€) — L] < co 31—, t7, and lettingg go to infinity leads

% t0 limg o0 [[@pq(£) — €]l < co X202, tn. As the d, ;s are
if n is large enough. IZ = ¢, put, = 1 for every indexn. equibounded, we can select a converging subsequepge
If ¢+ ¢, as we cannot havBm inf,,_,., 7, = 0, there exists SetV, = limy_,» P, 4, . FoOr p sufficiently large, we have
7 > 0 such thatr,, > 7 as soon as index is large enough, Ves0 dp. | Vpzp |00 - < (1112)

so from (111.9), we deduce
c which shows thatl,(¢) # 0. Moreover, because € A,
57 < (a(tn +7m0) — 2(tn), u). (1.10)  the constructed trajectory satisfies Assumption IIl.7. m

As /€ Uielz M;, the limit of the right-hand side of (111.10) Proposition III.1J?. Assume that there exists € A~ such
is 0, which leads to a contradiction. that M C ker) ."; a; A;. Then, for every € M, there exists

Assume now that is an extraordinary point i'Uf-V:l M;, atrajectory that satisfies Assumptions Ill.1 and I11.7, auth
if ¢ is the limit of a sequencé/y)ren of ordinary points, we that? € Q(zo).
can assume that the sets of inQid@§ are all equ?l to a set Proof: Let a € A~ be such that\l C ker ZZN:l A,
Ip € {1,...,N}. So, there exists a sequenge”)ren Of gpq et ¥, be defined as in the proof of Theorem II1.18
elements ofA, such that according to which it remains to show that for evérg M,

N there exists a trajectory whose-limit set contains{. As
Zakaifk c U M. (1.11) M Cker YV, a; A, relation (111.12) holds for every € M.
i=1 iclp To get the result it is sufficient to show that there exists a

Now, asA s, is compact, we can suppose that the sequen%léCh that the image by,, of an open ball inV/ centered at the

/ . . -2 origin contains an open ball. Léty, be the unit sphere af/
(a}\’;)keNAccznverges tze IfA'?hO and e_qijallty (n.11) |rr_1prl1lss that is the boundary of the open unit bah,. Let0 < ¢ < 1.
im0 Ail € Ui, Mi- ere exists an open neighborgi,ce all mapping®! are Lipschitzian with constant one, all

N . .
hood U of £ such thatU N |J,_, M; is constituted by eX- mappings arew, Lipschitzian with constant one. Thus the
tra_ordlnary pomts, let)ren be a sequence of extraordlnar}fam“y (U,)pen is equicontinuous. Relation (II1.12) (which
points tending to/, we can assume that all the subsets ¢fo|ds for everys € M) indicates that ap goes to infinity,
indices I, are equal tolp and we can also assume that a”l/p—>1d|1\4, pointwise, thus uniformly. Consequently, there
the /5 as well as€_be|ong. toa same |ntersect|_on of subspac%,g(istsp0 such that||W,, (¢) — £]| < ¢ holds for all¢ € Sy
(ies, Mi, reasoning as in the first part of this proof, we 9&{om which it follows thatBy; (0,1 —¢) C W,(By) (see [25,
the result stated in the proposition. ® | emma 7.23]). This completes the proof. n

D. Nonconvergence to zero of the switched system under some!V. APPLICATION TO THE THREECELL CONVERTER

weak hypothesis In this section we apply our theoretical result to the
otontinuous-time model of the multilevel converter. Duefteit
.%a}rticular importance for high-power industrial applioas,
multilevel converters have attracted increasing attestio the
last decades. Seeing that our present aim is to discus®neith

The next two results show that Assumption IIl.7 is n
sufficient to ensure the convergence to zero of system (I
when the spacé/ is not reduced to zero.



10

modeling nor goals of such electronic devices, we refer thteis easy to show that the gain matricés can be chosen in

reader to [26], [27], [28] for a detailed discussion uponsthe such a way that family# = {4,, ..

issues.

For simplicity, we limit ourselves to the case of the three-

cell converter although all our results are true focell con-

verters withp > 3. Some particularity of the two-cell converter
which follows from Proposition 111.6 will be explained ateh

end of present section.

A. Description of the system

., Ag} satisfies Assump-
tion 1.2. Straightforward calculations show that necelgar

p1ps O 00¢&
psp2 0|, ATP+PA,=(00¢|,
0 0 pg & G S

with ¢; < 0 for i = 1,...,8. The spectrum ofAT P + PA,,

1
sp(Af P+ PA;) = {07 3 (9' + \/M) }

The circuit topology of the three-cell converter is repreS @ subset of nonpositive numbers if and only;if= ¢; = 0.

sented in Figure 1.

Uz

us
L R
E Co=—= |V, Cr==|Ve,
=

Sketch of the three-cell converter

Uy

Figure 1.

In particular, we havell = ﬂle M; = {z € R® | 23 = 0}
Take P and the gain matriced; such that Assumption 1.2
holds. We have

0 0 (ug —ur)p1 — (ug — u2)pt3
A== 0 0 (ug —u2)po — (ug —ur)ps | ,

Uy — Uz Uz — U3 —R;

with B; > 0 andu; = p;p3/det P (i = 1,...,8, j =1,2,3).

We want to know under which condition solutions to (IV.1)
converge to zero. All results from Section IV leading to
convergence to zero being dwell-time based, we may wonder
which type of dwell-time hypothesis are satisfied by the mult

Our main goal is to estimate the voltage of the capacitogell chopper. Unfortunately, the different modes of theséar

in the case where only the current in the load is measure@i| converter do not admit any dwell-time, only the switshe
Defining . = (w1,22,23) = (Vo,,Ve,, i) as the state do have one. In other words, one may switch from made
vector, wherelc,, Ve, are the voltages of the correspondingo mode A, (i # j) in an arbitrarily small time, but one has
capacitorsj.y, is the load current ang = i., is the output, to wait a positive minimum time between two switches of the
the model can be represented by a unique state equation: same the switch. We thus consider the following assumption.

&= F(u)x + EG(u) Assumption V.1 (Switch dwell-time) The time elapsed

y = Cu, between two commutations of the same switch has a positive
inferior limit.

whereF is the input voltagey = (u1, uz, uz) € {0,1}3 is the

control vector and the matrice(u), G(u) andC are given Notice that Assumption IV.1 implies that there exists astea

one mode which satisfies the weak dwell-time Assumption

by [1.7, but it turns out that its does not imply stronger assump
0 0 Uz — w1 tions on modes.
u3(/11u2 0 One may naturally wonder if As_sumption IV.1 implies the
F(u) = 0 0 |- G(u) = 193 , convergence to_zero of the solutlo_n to system (I\_/.l). The
uy —uy us — us ]2% T answer is negative as we shall see |8n the next section.
—7 1 I Notice moreover that althougter > ., A;/8 = M (which
shows that the three-cell converter satisfies the hypathafsi
C=(0,0,1). Proposition 111.19), the counter example given by Proposit

. . . II&.19 is no more valid since the dwell-time on switches has
In order to achieve our goal, we build a Luenberger switche ;
not been taken into account.
observer based on the load current measurement (other ap-
proaches are possible see for instance [29], [30], [31]xhSu

an observer takes the form B. The w-limit set of a trajectory of the 3-cell converter

observer is not necessarily a singleton

&= F(u)i — L(u)(CE —y) + G(u), L(u) € R¥*,

In the present section, we construct a trajectory of3tuell
converter observer (1V.1) whoselimit set is not a singleton.
Moreover, we shall see that the trajectory can be constiucte
in such a way that Assumptions I1.7, 1ll.1, Ill.7 and IV.1 are
satisfied.

and the dynamics of the errer= & — x reads

é(t) = A(u)e(t), A(u)= F(u)— L(u)C,

which, puttingi = Z;’?:l u;27~1, can be rewritten as

8 First of all, let us rewrite system (IV.1) in a simpler way.
ai(t) € (0,1}, Y au(t) = 1. (IV.1) Notice that up to the change of coordinates> P'/*z and
P the time reparametrization— Lt (two transformations that

8
é= Z (673 (t)Aie,
i=1
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do not change the topology af-limit sets), we may assume Construction of the eo-forward motion from 6, to 6,

that all theA;’s have the form According to (IV.2)-(IV.4), and for everyA; in family .#,
0 0 a the projection ontd#, ») of the pushforward by the diffeo-
A =10 o aé morphismz — z of the field A; is a well-defined nonlinear

autonomous vector field in the variablég, ©) which we
o _ denote byA;. Let ¢*4: denote the flow ofAd; and K the
with (aj,a3) € {0,+1}*\ {£(1,1)} and aj > 0. We projection ofK onto (4, ).

now rewrite the system (IV.1) using spherical coordinates Set >, = (r0,60,0) to be the initial condition and, = 0
z = (r,0, ) defined by: to be the initial time. We begin with following the modé.
Definer; = inf{t > 0 | e!4%(6y,0) ¢ K}. Necessarily;; <
oo; if not, we would haved(t) < 65 for all positive time,

i i i
—aj —ay —ay

21 =rcosfcosp, x9=rsinfcosp, x3=rsinep.

It is easy to check that: which, according to (IV.7) and (IV.6), would imply that
. i .2
7 = —agrsin® ¢ (IV.2) s af
0 = () cos — a’ sin 0) tan ¢ (IV.3) w(t) 2 (®) e a3 >0,

= —agcospsing — (aj cosd + aysinf),  (IV.4) which is impossible sincéim;_, . ¢(t) = 0.

which shows in particular that = o(#) ast goes to infinity
since c_p(t) goes to zero as goes to_ |nf_|n|fty.. Heunsycally haveinf{t > 0 | e~t44(6;,0) ¢ K} < oo, which implies
speaking, this means that, approaching infinity, a trajgad . 514

. : o that there must exist;, d2 > 0 such thate® s (6,,0) =
system (IV.1) looses less in norm than it can win in angular’y, 7, (8,,0), i.e., such that®=4s o 0145 (g, 0) = (4, 0)
positiond, which encourages us to believe that we can builda AR e 0,5 = W H
trajectory of system (IV.1) whose-limit set is not a singleton. Second casef(r1) < O5. Definer, = inf{t > 0 | etAs o

Before beginning the construction of the trajectory, let yg:4s (60,0) ¢ K}. For the same reason as for, we have
fix the setkC in which the trajectory will lie and some notation., < ~o. As in the first case, if(r2) = 6, there must exist

First case: 8(m) = 6¢. For the same reason as for, we

We set: 81, 02 > 0 such thae®45 (6, 0) = e~%244(¢;, 0). Indeed, the
o K=10,r0] x [00,0f] x[0,e0] C {2]cosf >sinf >0}, nonexistence of suchy, 5, would imply that
o _ f ) /. i 9 P 9 , B B B
« ml rzex, i#7,8} {|QO(Z,Z)|, |a2 COS ap s |} {etA4 (91"70) | t < O} ﬂ{etA4 o 6T1A5 (90’0) | > O} 7& m’

o B=supcx, izrsy 1190, 2)|, |abcos§ — af sinfl},
e af = infex {—ai cosf — absin b}, which contradicts the uniqueness theorem for solutions to
ODEs. If (1) < 6f, we seté; = 7 and definers =
inf{t > 0 | et4s o0 e™41 0 en145(0,,0) ¢ K}. Then, as for

o If (vn)nen is @ sequence we denote W ).cn the - we go back to the distinction between first and second

o ab =sup,cc {m(—al cosd — a}sin)/2},

_ sequence of its partial sums, i.65 = 2o Uk- case and so on. Step by step, we iteratively construct a
Fix m/4 > €0 > 0 so small that we have: > 0, 8 > 0 and sequencet, ) en = (S%)nen Of switching times such that
o # 0 for everyj € {1,2} and everyi # 7,8. O(tn) € [00,0;] and p(t,) € [0,e0] for all n. We next show

1°t step: Construction of the switching trajectory that this process must stop. That is, we reéglafter finitely

We shall construct here a trajectory of system (IV.1) whiek | Many commutations. To show this let us first gvaluate the time
in K for all positive timet. In order to choose an order forélapsed between two consecutive commutations.

the concateng‘gion_of the modes, consider the following sighy,5uation of tny1 —tn
table of velocities ink. According to the mean value theorem, for every (t,,, t,,11],
signs inkC |1]2(3[4(5(6|7|8 there exists: € (t,,£) such thatp(&) — o(t,)| = |o(c)| (€ —
0 +|—=|—|+|+|—]0]0 (IV.5) t,). Consequently, according to the definition@fand 3,
B +|-]+]-[+[-]0]0 |
p(§) — p(tn)l
According to the sign table (IV.5), one sees that the forward O<as E—t, <P VEE (tastun]  (IV.8)

and backward motions ifi are given by the modes, 4, 5 o o

and?2, 3, 6 respectively. For simplicity, we shall only use the>UPPOSe to reach a contradiction thgt,) < ¢ for infinitely

modes 2, 3, 4 and 5 for the construction of the trajectory. Manyn. In this case, we havie(ty+1) — ¢(tn)| = £0. At this
From (IV.4), one infers that-aip + of < ¢ < 2(—alp + point, integrating (IV.3) we can evaluate the covered dista

ab)/m. Hence, as long a8(t) stays in[fy, 0], we have in 6. According to (IV.3), (IV.8), and a9}, » > 0, and
o(tar) = 0, we have

yi(t) < (t) < yh(2t/m), (IV.6) .
Wherey;-(t) is the s_olution of the Cauchy problejn= —a’y+ 10(tans1) — O] = Z/ + é(g)dg
o, y(to) = p(to), i€, — /.
; al ) 2n tht1
yi(t) = e p(to) + =L (1= 7)) - v7) = / ap(€)dg
as 0 th
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> Z/ ap(€) — o (tap)] dé \t/ivr:ir:nc I: aroC/a. Consequently, the loss in norm up to
Nn

tok+1
2 2 —t d n - Y
ZL;wf%m ro =1 (0%,) = D_[r(h) = r(vk,)[ <D e,
— k=0

n k=0
- — % (tak1 — tak)’ and, passing to the limit as tends to infinity, we get
= na25(2) - o0 (IV.9) —k T n o
282 nieo ro tirgor(t) =7 nh%rrolor (an) < CZE"’
k=0

which contradicts the fact th&i¢,,) < 6+ for infinitely many

n. Let Ny denote the number of switching times during th&hich can be made strictly less thag. In such a case,
constructed:,-forward motion. Notice thafVy is even if the lim; ... r(t) = ry > 0 and by construction(zy) =
initial time (t, = 0) is counted as the first switching time.{rs} x [0, 8] x {0} which is not a singleton.

Onced; has been reached, in the same manner as fosghe o )

forward motion, we use the flows#> ande! to constructan 4" and last step: fulfilling Assumption V.1 _
e1-backward motion (withe; < o) to go back tof,. Step by The C(_)nstructed trajectory violates Assum_pﬂon V.1 _(sW|t_
step, we iteratively construct a switching trajectory ofteyn dwell-time). We show here that we can slightly modify this
(IV.1) which is a concatenation af,-motions wheree,),cy ~ FIECIOry SO thgt it will respect the dwell-time on ;wnshe
is a chosen sequence of positive numbers decreasing to z&l@fice that during a forward motion the commutation from
Let N, denote the number of commutations during & As to A4 involves only the use of switch;. Thus, at every

motion. By construction, for every € N, we have switching timetyg, instead of switching back tel; we can
. H(tSN ) _ (tSN) —0; — by, switch to Ag using the switchug. Sincez(toy) € ker Ag, we
nt1 " ' havee” 48 (x(tay,)) = x(t21) for every positiver. Choosingr
o ¢(tar) =0, VkeN, greater than the switch dwell-time shows that any forwayd

o |lo(thr1) —@(ty) =en, VYke{SN,+1,8¥-2}; motion can be made respecting Assumption IV.1. The reader

. o (tsgy) —p (L‘s;y—l)’ =, With 0 < 7, < £n. can easily check that the same can also be done for every

backwardk,, 1-motion. Consequently, we can assume that the
constructed trajectory satisfies Assumption IV.1. Evenemor
by complicating somewhat the way we construct the trajgctor
270 step: evaluation of the number of switching times each matrix of familyZ can be employed in such a way that
during an e,-motion Assumption I11.7 (persistent activation) is satisfied.

One easily repeats on the time interval of anrmotion a
computation similar to (1V.9) to conclude that

In the last equalityy,, corresponds to the value of at the
last switching time of the,,-motion.

Final remarks. It is easy to see that one can construct trajec-
tories of system (IV.1) whose-limit sets do not reduce to

a? a singleton, and which satisfy both the weak dwell-time and
) 232 the switch dwell-time assumptions. Such trajectories can b
constructed as soon as the number of cells in the converter is
greater or equal to three. When the number of cells is smaller

N, —
b5 0= 0 (tsy ) ~ 0 (1) > (5222 422

from which it follows that

2 2 2 iy
N, < 20— o) | 2en— )  C (IV.10) Or equal to two, Proposition 111.6 shows that the weak dwell-
a’el 2 e2 time (Assumption I1.7) is sufficient to insure the convergen
with ¢ = (452(9f —0) + 204%3) /a2, of the_trajector!es to z_er_o. N .
d _ ) A signal which satisfies the condition of dwell-time for
3" step: evaluation of the loss in norm every mode (Assumption 11.4) is contained in the set denoted

The last thing we have to do is to evaluate the loss in NOTBY S, verage [TD No] in [10], [13], [14]. Notice that the signal
along thg whole traje_ctory. Let us first estimat(_a tht_a loss R the above example can be adapted in such a way that it
norm during are,,-motion. Denote byby, bfji,n] the time inter- belongs to the S&S.yerage|Tn, NoJ. SO the dwell-time notion

vals corresponding to this motion. Set= max{a3, ..., a3}. introduced in [10], [13], [14] is weaker than ours but it does
According to (IV.2), (IV.8) and (IV.10), one infers that not imply the convergence of the state to the origin.
bR, b3
P - () = [ @lde< [ anagt(eag
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