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timization, Multivariable Control loop system is less than or equal to some specified positive
level~. By hybrid strategy we mean to find the switching time
Abstract sequence, the corresponding mode (vector field) sequence as

well as state feedback controllers such that the influence of
In this paper, a disturbance attenuation problem for a classsoime exogeneous disturbane€), is to be minimized in the
hybrid control systems is posed when the switching from a vegorst case. To this end, we use the equivalence between a
tor field (also called mode) to another is controlled. Using tieisturbance hybrid attenuation problem and a linear-quadratic
equivalence between this problem and a linear-quadratic difféifferential game with piecewise deterministic dynamics. In
ential game with piecewise deterministic dynamics, a solutidiis contribution, we essentially focus on the determination of
is proposed to this problem. the switching time sequence, the corresponding vector field

sequence as well as the state feedback controllers.

1 Introduction

) o ) Recently, a problem of finding a switching rule that minimizes
Recently, there has been an increasing interest in syste§erformance index has been formulated in [9]. Given a
where both continuous and discrete variables influence g tinuous plant, a collection of output feedback non-linear
dynamic behaviour [1], [2], [3], [4], [5]. Such hybrid systemgqnroliers and a time peridf, the authors look for a strategy
include a fairly large class of physical systems in contrgh; switching from one basic controller to another to achieve
engineering applications. One of the reasons that justifig§eye| of performance index. The results are based on the
the study of this class of systems is its ability for addressingisience of suitable solutions to a Riccati algebraic equation
problems related to the hybn_d nature of physpal Processgaq a dynamic programming equation. In [10], piecewise
Some of them are not new like those arising in continuogerministic differential games with hybrid controls has been
systems including relays with hysteresis. Today, one has alfsidered. The changes from one vector field (mode) to
to deal with hybrid phenomena due to the fact that most gfqther are governed by a finite-state Markov process. One of
the physical plants are now controlled via computers andy@, associated difficulties is that the corresponding dynamic
considerable interest in looking for a theoritical framework f%rogramming equations cannot be solved explicitly, and may

hybrid systems emerged recently in the control engineeriggen not admit continuously-differentiable value functions.
literature [6], [7], [8]. Relevant results on the existence and uniqueness of viscosity

solutions associated with the dynamic programming equations

A general description of hybrid systems uses differenti@f€ Proposed. Analytical solutions are obtained only when
equations to describe the continuous dynamics and a discté continuous state has dimension one and a computation
event system to model the discrete dynamics. The discrélgorithm is proposed for the general case.
dynamics plays generally the role of a supervisor of the
contin_uous pa_\rt. A_ strong intgraction between these two tyRfie outline of the paper is as follows: In section 2, differential
of variables gives rise to hybrid phenomena. In [7], a relevaghme with piecewise deterministic dynamics is presented. The
description of some representative hybrid phenomena is givRiyyid disturbance attenuation problem which is the main point
Usually, when a discrete event occurs, it can lead to a changene paper is introduced. In the third section, to get a solution,
in the continuous dynamics. Indeed, discontinuities in thgs ,se the link between the disturbance attenuation problem
vector field and/or in the continuous state may appear. and the corresponding differential game with piecewise deter-
ministic dynamics. The switching time sequence determination
In this paper, we consider hybrid systems described Kydiscussed inthe case of controlled switching phenomena. An
piecewise linear vector fields where controlled switchinustrative example is proposed in section 4 before a general
phenomena are allowed [7]. The problem considered is to fig@nclusion.



2 Hybrid differential games Define the Hamiltonian function associated to each nmiokg:

By hybrid differential games, we mean games where the dyf (t,z, A, k, up, w) = AT f(t, z, k, up, w) + L(t, z, k, up, w)

namics are described by piecewise deterministic vector fields _ N _
of the form The following proposition follows from dynamic game theory

and dynamic programing arguments. The proof uses similar
i) = f(t, z(t), k(t),un(t),w(t)), x(te) =z¢ (1) arguments as in the proof of Theorem 4.3. in [11].

wherez ¢ R™ is the continuous state. The indéxe K = proposition 1 If there exists a piecewis® functionV (¢, z, k)
{1,..., K} is the discrete state (also called the mdde In  gych thatl}, = V(.,.,k) € C* for all k € K and satisfying the
general, its dynamic is given by a transition function following Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation
MO = 60,20 K 0), K =k @) e k) @
8t ) Uk 3 ) 9 ) )
where d(t) € D = {1,..,D} is a discrete input.
(up(t),d(t)) € U, x D is the hybrid control associated Vity,z, k) =0 ®)

to the first player andv(t) € W is the control associatedith the following transversality conditions satisified at time
to the second playetf;, and)V are assumed to be compact setgorresponding to a controlled switching time from the méde
to the modg:

Here, we are interested in controlled switching hybrid phenom- A= )
ena [7] and the discrete stdtés now given by J k

Hf = H (7)
k) = o(t,z(t), k(t7),d(t)) = d(t _ _ _
() = é(t, =(t), k(7). (1)) ®) then the hybrid zero-sum dynamic game has a saddle point so-
The transition functions(., ., ., .) is of no use in our problem lution. Moreover, the hybrid control law given by
since the discrete control ¥s itself and we do not deal with Vi
autonomous jumps. This means that we are allowed to switcH ¢y (¢, z(t)),k*(t)) € Arg miIgH(t, z, —a—t', kyug, ")
from an operating mode to another one at any time. There e 8)
are several theoretical and practical interesting problems . Vi
concerning the use of such a hybrid strategy. For example, P (t,2(t)) € Arg m3XH(t’zv ot
giv<_an a collec_tion of p_os_sible system configurations, one MYontimal.
be interested in associating a control law to each configuration
and providing an optimal switch fashion between them ensur- L )
ing a performance improvement over a fixed control law. o Hybrid disturbance attenuation

The main contribution of this paper deals with hybrid systems
Consider a fixed time; and let[0, 71, ..., 74, ..., tf] be the se- described by:
quence of switching time anfko, k1, ..., ki, ..., kg (ki € K) )
the corresponding mode sequence. The following criteria isT(t) = Apa(t) + Brux(t) + Epw(t),  2(0) = 210)
associated with the hybrid dynamic system (1)-(2) z(t) = Cra(t) + Dyur(t), k(0) = ko (11)

k" e, w) - (9)

Tit1 where z(t) € R” is the state vectory, € R™* is the
J = Z/ L(t,x(t), ki, ug, (1), w(t))dt continuous controlw € R' is the disturbancez(t) € R”
2077 is the controlled output and the indéx denotes the mode

Hence, different criteria are allowed with respect to each modﬂe.E K={l.. K}

The functionsf and L are assumed to be of Caratidory

type, that is measurable iy Lipschitz-continuous inc and  The hybrid control law(uy, k) is composed of a discrete con-
continuous in(ug, w). trol k£ and a continuous contral,. The discrete part allows
to select which mode is active during a period formed by two
gwitching times. The continuous part is the continuous control
Belative to that mode during this period. Consider a fixed time

(3) and where(uy, k) is the minimizer ands the maximizer ty, the disturbance attenuation hybrid control synthesis prob-

We consider games where feedback strategies are aIIoweéeg? addressed in this paper consists in finding a switching time
the form sequence

Let a hybrid zero-sum differential game with state feedback i
formation defined for the hybrid system (1)-(2) with the criteri

[0,7’1,7’2, cees Tiy ...,ﬁf]

up(t) = er(t, (), with @ [0,t7] x R" = Uy, the corresponding mode sequence

w(t) :Q/J(f,l‘(t)), with ’(/) : [O,tf] X R" — W [ko,kl,...,]{}i,...,]{iq], kj e K, 7=0,1,...;%,...q



and the relative state feedback continuous controls At the final time, asc(¢y) is free, the following must hold
uk, (t) = ox, (L, 2(t) 75 <E<Tin Py(ty)z(ty) =0

such that the resulting closed loop system hds, ajain less Now, solving the hybrid disturbance attenuation problem con-
than or equal to some specified level Our aim is to get a sists in finding the discret contré| namely the switching time
hybrid control law that minimizes the effect of the disturbancgequencé0, 71, 7o, ..., 74, ..., t 7], and the corresponding mode
w in the worst case. This naturally leads us to consider a hybseguence

differential game with a criterid, , indexed by the real positive

numbery, defined by: ko, k1, .oy kiy o kg),  kj €K, 7=0,1,...,4,....q

tf ) ) ) such that
Jw(t,x»kauk,wb/ (2O =y llwl*)dt — (12)
0

e (14), (15), (16) and (17) are satisfied for &} on

To simplify the exposition, the following assumption is made (75, Tj+1)s
/ o (18)-(19) are satisfied at the switching timg.;.
V(o ppy=( % 0
D!, 0 Ry

The switching time sequence is determined as follows. Assume
whereQ, > 0 and R, > 0 are assumed to be matrices ofhat the operating mode is, which means that
appropriate dimensions. The results presented in this paper
can be adapted to the caSéD # 0. Hy, < Hy k€ K,k # ki (20)
A switch time will occur at the first instant where a mode

The performance index, reduces to kiis € K, kiiy # ki leads to

Ti+1
Iy = Z/ (" Qrz + ui Ryug — v’ wTw)dt  (13)

i>0 Y Ti

ki kisn = Hi, — Hi;(y =0
Hence, in the case of controlled switching, the discrete part of

) _ _ ) ~ the hybrid control law is obtained using the following theorem.
A solution to the disturbance attenuation problem is obtained

applying Proposition 1. In fact, a modeg operating during a
time interval[r;, 7,11 ), belongs to an optimal hybrid strategy if_I_

VE € K, k 2 ky: heorem 1 The functionvy, r,, = Hy, — Hy, ., satisfies an

homogeneous linear ODE with constant coefficients defined by
H(t,z, Ak up,, w) < H(t, A\ Ky ug, w) (14) the chargcteristic polynon."niaSk.i where S, is the minimal
polynomial of My, & M., with

Satisfying the HIBI equation (4) consists in findiRg, (¢) so- Ay, BuR:'BT —+2El E
lution of the following differential Riccati equation My, = ( le» o ng fa )

Py, + Py, Ay, + AL P, — Py, (Bi, R, BL - (15) _ - -
,Y—QE]ZZEM)P]% +Qp, =0, Prgof. Thg hgmﬂltonlan system corresponding to the saddle
point solution is given by
In this case, the optimal continuous control law is given by @] _( Ax B R,;lB,fi —1’E}, Ey, z
A Qk, —Afi A

o (t,x) = _Rl;lBlz;sz‘ (Hx(t), 7 <t<mqy (16) Thefunctiony, s, . (t) becomes

which corresponds to the worst case disturbance action v(t) = <[ i } A { f\ ]>
VH(ta) =y 2EL Py (Da(t), m<t<my (17) Where
oo A — ka-u - Qki Q
Attime 7,1, the following limit conditions have to be satisfied: Ag, = Apyy A
Pip (ris))2(ri1) = Po(mip)a(nien)  (18) Wi
H’fi+1 = Hki (19) A= BkiR;ilBlz;_Bki+1Rl;ilBIZ;+1 _'VQ(E/Z;EM _E/Z;+1Ekz‘+1)



Differentiating vy, .., () successively with respect to fol-
lowing the same developments in [12], one gets:

o= O o
= o oo
o= O o
[ ==}

d"v x z n
o={5]e| 5| 0 o)
V}{e consider a disturbance attenuation problem with

Using the Caley-Hamilton theorem allows to state the resu
given in Theorem 1m t; — +oo

Theorem 1 helps in the determination of the switching timéthe two modes are considered separately, that is to solve in-
sequence. In fact, starting with some given intial conditions dependently two state feeedback linear time invariant optimal
andFy, the modeék is the one satisfying the inequality H_, control problems associated with the two LTI systems

Hy, < Hg, Vke K,k # ko i(t) = Agz(t) + Bu(t) + Bsw(t), i=1,2
A switch to a modek; will occur at the instant = 7; where  the corresponding optimal attenuation level values are

Vg (71) = 0 v =0.7545, 5 = 0.6519

with k; € K, ki # ko. According to Theorem 1 this instantqing Theorem 1, we apply the following algorithm for a given
can be easily determined since one knows the initial conditiofs ;o of+ to find a periodic switching sequence.

as well as the roots of the homogenous linear ODE. The next
switching times and modes are determined by reproducing the ]

. . i Fixxg, Py, i =0.
previous operations.

i Evaluater o(1;) = Hy — Ha. If 11 2(7;) > 0 thenk; = 2
elsek; = 1.
Remark 1 To satisfy the transversality condition (18), at the. .

switching timet = 7341, one has to choos&,, , such that "" Find the time7;, such thatv(r;;1) = 0 by solving
v € Ker(P, : o the homogenous linear ODE of Theorem 1. Compute

... — Pg,). One may choosé,, = P, :
i1 i i i1 o ] : o )
even if P, is not unique at this time. In fact, if there are gzﬁér:ngjégﬂ) and P, = P(r;41) and switch to the

two candidates;,,, and P?  after the switching time;,
x(t) € Ker(P}, — P}, ) since the solution of the hamilto- iv: Normalizex;, and leti — i + 1. Go to step iii until one
nian system Is unique. gets a periodic sequen€e; 1, Pi+1)i>k-

Remark 2 One can see that in the previous the control goal igsing this algorithm, we look for a periodic solution which
to attenuate the disturbances in a finite time and not necessarigy not exit in general. For the proposed example, we get the
to transfer the state to zero. Lettiig — oo one can follow following sequence

the same steps to solve the disturbance attenuation problem for

the infinite time horizon. To, Ti, e Tiy  Tigly oo TigTs  TigT+1,
Lo, T1, e Ly Titly e TidTy  Ti4T+1,

. PO; P17 Pi7 Pi+17 Pi+T7 Pi+T+17

4 lllustrative example kos ki, e kiy o kigt, e Kipr,  Kirris

To illustrate the proposed hybrid disturbance attenuation cQprich means that from the rank+ 1 to the ranki + T, the

trol, we consider a hybrid system given by (10)-(11) with WQa\yesy, . |, ;. o, ..., z:,+ define lines in the state space which

operating modesi{ = 2) characterized by indicate where a switch from a mode to another mode has to
occur. Moreover, each modg is active during a time

-1 4 -1 1 1.7 0
Al:{-:). 2}’ A2:{—1 —1}’ Bl:{o 2}’ th, = Tig1 — Ti
after which one has to swich the mobg ;.
10 1.4 0 095 0
BQ:[U 1}’ El:{o 14}’ EQ:{ 0 07|’
Applying this algorithm fory = 0.7, we get a periodic solution
leading to the state trajectory depicted in figure 1. The line
0.707  0.707 1.414  0.354 L, indicates where to switch from the mode 1 to the mode
Cy = 8 0'307 , Co = 8 O'%35 , 2. The corresponding time durationtis= 1.6009s. The line

0 0 0 0 Lo, indicates where to switch from the mode 2 to the mode 1.



durations are

t1 = 1.7400s, to = 0.3252s

Figure 1: State trajectory = 0.7

The corresponding time durationtis = 0.4529s. Figure 3: State trajectory = 0.60874

Our goal is to find a controlled switching sequence and the C@¥t can consider other values foless tharD.60874. How-
responding mode sequence such that the closed loop SYSIGR} nymerical problems arise under this critical value
has al, gain less than or equal to some specified levebet-

ter thanv; and~;. Decreasing the value of the performance

level toy = 0.6089 and using the previous algorithm the ob- v = 0.60874
tained solution leads to the state trajectory depicted in figure 2.

The corresponding time durations are 5 Conclusion

In this paper, a disturbance attenuation problem for a class of
hybrid systems where controlled switching phenomena may
occur has been considered. The proposed solution uses the
Stable behavior for gamma = 0.6089 equivalence between this problem and a linear-quadratic dif-
ferential game with piecewise deterministic dynamics. The re-
sults are proposed in the fixed finite time case but still hold for
the infinite time horizon case. In general, the proposed solution
depends on the initial hybrid stateq(ko), and its main draw-
back is that there is no systematic algorithm in the general case.
Development of efficient and reliable numerical algorithms is
the purpose of future work.

t;1 = 1.7327s, and t, = 0.3366s
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