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Abstract

In this paper, a disturbance attenuation problem for a class of
hybrid control systems is posed when the switching from a vec-
tor field (also called mode) to another is controlled. Using the
equivalence between this problem and a linear-quadratic differ-
ential game with piecewise deterministic dynamics, a solution
is proposed to this problem.

1 Introduction

Recently, there has been an increasing interest in systems
where both continuous and discrete variables influence the
dynamic behaviour [1], [2], [3], [4], [5]. Such hybrid systems
include a fairly large class of physical systems in control
engineering applications. One of the reasons that justifies
the study of this class of systems is its ability for addressing
problems related to the hybrid nature of physical processes.
Some of them are not new like those arising in continuous
systems including relays with hysteresis. Today, one has also
to deal with hybrid phenomena due to the fact that most of
the physical plants are now controlled via computers and a
considerable interest in looking for a theoritical framework for
hybrid systems emerged recently in the control engineering
literature [6], [7], [8].

A general description of hybrid systems uses differential
equations to describe the continuous dynamics and a discrete
event system to model the discrete dynamics. The discrete
dynamics plays generally the role of a supervisor of the
continuous part. A strong interaction between these two type
of variables gives rise to hybrid phenomena. In [7], a relevant
description of some representative hybrid phenomena is given.
Usually, when a discrete event occurs, it can lead to a change
in the continuous dynamics. Indeed, discontinuities in the
vector field and/or in the continuous state may appear.

In this paper, we consider hybrid systems described by
piecewise linear vector fields where controlled switching
phenomena are allowed [7]. The problem considered is to find

a hybrid control strategy such that aL2 gain of the closed
loop system is less than or equal to some specified positive
levelγ. By hybrid strategy we mean to find the switching time
sequence, the corresponding mode (vector field) sequence as
well as state feedback controllers such that the influence of
some exogeneous disturbancew(t), is to be minimized in the
worst case. To this end, we use the equivalence between a
disturbance hybrid attenuation problem and a linear-quadratic
differential game with piecewise deterministic dynamics. In
this contribution, we essentially focus on the determination of
the switching time sequence, the corresponding vector field
sequence as well as the state feedback controllers.

Recently, a problem of finding a switching rule that minimizes
a performance index has been formulated in [9]. Given a
continuous plant, a collection of output feedback non-linear
controllers and a time periodT , the authors look for a strategy
for switching from one basic controller to another to achieve
a level of performance index. The results are based on the
existence of suitable solutions to a Riccati algebraic equation
and a dynamic programming equation. In [10], piecewise
deterministic differential games with hybrid controls has been
considered. The changes from one vector field (mode) to
another are governed by a finite-state Markov process. One of
the associated difficulties is that the corresponding dynamic
programming equations cannot be solved explicitly, and may
even not admit continuously-differentiable value functions.
Relevant results on the existence and uniqueness of viscosity
solutions associated with the dynamic programming equations
are proposed. Analytical solutions are obtained only when
the continuous state has dimension one and a computation
algorithm is proposed for the general case.

The outline of the paper is as follows: In section 2, differential
game with piecewise deterministic dynamics is presented. The
hybrid disturbance attenuation problem which is the main point
of the paper is introduced. In the third section, to get a solution,
we use the link between the disturbance attenuation problem
and the corresponding differential game with piecewise deter-
ministic dynamics. The switching time sequence determination
is discussed in the case of controlled switching phenomena. An
illustrative example is proposed in section 4 before a general
conclusion.



2 Hybrid differential games

By hybrid differential games, we mean games where the dy-
namics are described by piecewise deterministic vector fields
of the form

ẋ(t) = f(t, x(t), k(t), uk(t), w(t)), x(t0) = x0 (1)

wherex ∈ Rn is the continuous state. The indexk ∈ K =
{1, ..., K} is the discrete state (also called the modek). In
general, its dynamic is given by a transition function

k(t) = φ(t, x(t), k(t−), d(t)), k(t0) = k0 (2)

where d(t) ∈ D = {1, ..., D} is a discrete input.
(uk(t), d(t)) ∈ Uk × D is the hybrid control associated
to the first player andw(t) ∈ W is the control associated
to the second player.Uk andW are assumed to be compact sets.

Here, we are interested in controlled switching hybrid phenom-
ena [7] and the discrete statek is now given by

k(t) = φ(t, x(t), k(t−), d(t)) ≡ d(t)

The transition functionφ(., ., ., .) is of no use in our problem
since the discrete control isk itself and we do not deal with
autonomous jumps. This means that we are allowed to switch
from an operating mode to another one at any time. There
are several theoretical and practical interesting problems
concerning the use of such a hybrid strategy. For example,
given a collection of possible system configurations, one may
be interested in associating a control law to each configuration
and providing an optimal switch fashion between them ensur-
ing a performance improvement over a fixed control law.

Consider a fixed timetf and let[0, τ1, ..., τi, ..., tf ] be the se-
quence of switching time and[k0, k1, ..., ki, ..., kq] (ki ∈ K)
the corresponding mode sequence. The following criteria is
associated with the hybrid dynamic system (1)-(2)

J =
∑

i≥0

∫ τi+1

τi

L
(
t, x(t), ki, uki(t), w(t)

)
dt (3)

Hence, different criteria are allowed with respect to each mode.
The functionsf and L are assumed to be of Carathéodory
type, that is measurable int, Lipschitz-continuous inx and
continuous in(uk, w).

Let a hybrid zero-sum differential game with state feedback in-
formation defined for the hybrid system (1)-(2) with the criteria
(3) and where(uk, k) is the minimizer andw the maximizer.
We consider games where feedback strategies are allowed of
the form

uk(t) = ϕk(t, x(t)), with ϕk : [0, tf ]× Rn 7→ Uk

w(t) = ψ(t, x(t)), with ψ : [0, tf ]× Rn 7→ W

Define the Hamiltonian function associated to each modek by:

H(t, x, λ, k, uk, w) = λT f(t, x, k, uk, w) + L(t, x, k, uk, w)

The following proposition follows from dynamic game theory
and dynamic programing arguments. The proof uses similar
arguments as in the proof of Theorem 4.3. in [11].

Proposition 1 If there exists a piecewiseC1 functionV (t, x, k)
such thatVk = V (., ., k) ∈ C1 for all k ∈ K and satisfying the
following Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation

−∂Vk

∂t
= max

w
min
uk

H(t, x, λ, k, uk, w) (4)

V (tf , x, k) = 0 (5)

with the following transversality conditions satisified at time
corresponding to a controlled switching time from the modek
to the modej:

λ+
j = λ−k (6)

H+
j = H−

k (7)

then the hybrid zero-sum dynamic game has a saddle point so-
lution. Moreover, the hybrid control law given by

(ϕ∗k(t, x(t)), k∗(t)) ∈ Arg min
uk,k

H(t, x,−∂Vk

∂t
, k, uk, ψ∗)

(8)

ψ∗(t, x(t)) ∈ Arg max
w

H(t, x,−∂Vk

∂t
, k∗, ϕ∗k, w) (9)

is optimal.

3 Hybrid disturbance attenuation

The main contribution of this paper deals with hybrid systems
described by:

ẋ(t) = Akx(t) + Bkuk(t) + Ekw(t), x(0) = x0(10)

z(t) = Ckx(t) + Dkuk(t), k(0) = k0 (11)

where x(t) ∈ Rn is the state vector,uk ∈ Rmk is the
continuous control,w ∈ Rl is the disturbance,z(t) ∈ Rr

is the controlled output and the indexk denotes the mode
k ∈ K = {1, ..., K}.

The hybrid control law(uk, k) is composed of a discrete con-
trol k and a continuous controluk. The discrete part allows
to select which mode is active during a period formed by two
switching times. The continuous part is the continuous control
relative to that mode during this period. Consider a fixed time
tf , the disturbance attenuation hybrid control synthesis prob-
lem addressed in this paper consists in finding a switching time
sequence

[0, τ1, τ2, ..., τi, ..., tf ]

the corresponding mode sequence

[k0, k1, ..., ki, ..., kq], kj ∈ K, j = 0, 1, ..., i, ...q



and the relative state feedback continuous controls

ukj
(t) = ϕkj

(t, x(t)) τj ≤ t < τj+1

such that the resulting closed loop system has aL2 gain less
than or equal to some specified levelγ. Our aim is to get a
hybrid control law that minimizes the effect of the disturbance
w in the worst case. This naturally leads us to consider a hybrid
differential game with a criteriaJγ , indexed by the real positive
numberγ, defined by:

Jγ(t, x, k, uk, w) =
∫ tf

0

(‖z(t)‖2 − γ2‖w‖2)dt (12)

To simplify the exposition, the following assumption is made
(

C ′k
D′

k

) (
Ck Dk

)
=

(
Qk 0
0 Rk

)

whereQk ≥ 0 andRk > 0 are assumed to be matrices of
appropriate dimensions. The results presented in this paper
can be adapted to the caseC ′D 6= 0.

The performance indexJγ reduces to

Jγ =
∑

i≥0

∫ τi+1

τi

(
xT Qkx + uT

k Rkuk − γ2wT w
)
dt (13)

A solution to the disturbance attenuation problem is obtained
applying Proposition 1. In fact, a modeki operating during a
time interval[τi, τi+1), belongs to an optimal hybrid strategy if
∀k ∈ K, k 6= ki:

H(t, x, λ, ki, uki , w) < H(t, x, λ, k, uk, w) (14)

Satisfying the HJBI equation (4) consists in findingPki(t) so-
lution of the following differential Riccati equation

˙Pki + PkiAki + AT
ki

Pki − Pki(BkiR
−1
ki

BT
ki
−

γ−2ET
ki

Eki)Pki + Qki = 0,
(15)

In this case, the optimal continuous control law is given by

ϕ∗ki
(t, x) = −R−1

ki
BT

ki
Pki(t)x(t), τi ≤ t < τi+1 (16)

which corresponds to the worst case disturbance action

ψ∗(t, x) = γ−2ET
ki

Pki(t)x(t), τi ≤ t < τi+1 (17)

At time τi+1, the following limit conditions have to be satisfied:

Pki+1(τi+1)x(τi+1) = Pki(τi+1)x(τi+1) (18)

Hki+1 = Hki (19)

At the final time, asx(tf ) is free, the following must hold

Pk(tf )x(tf ) = 0

Now, solving the hybrid disturbance attenuation problem con-
sists in finding the discret controlk, namely the switching time
sequence[0, τ1, τ2, ..., τi, ..., tf ], and the corresponding mode
sequence

[k0, k1, ..., ki, ...kq], kj ∈ K, j = 0, 1, ..., i, ..., q

such that

• (14), (15), (16) and (17) are satisfied for allkj on
[τj , τj+1),

• (18)-(19) are satisfied at the switching timeτj+1.

The switching time sequence is determined as follows. Assume
that the operating mode iski, which means that

Hki < Hk ∀k ∈ K, k 6= ki (20)

A switch time will occur at the first instant where a mode
ki+1 ∈ K, ki+1 6= ki leads to

νki,ki+1 = Hki −Hki+1 = 0

Hence, in the case of controlled switching, the discrete part of
the hybrid control law is obtained using the following theorem.

Theorem 1 The functionνki,ki+1 = Hki −Hki+1 satisfies an
homogeneous linear ODE with constant coefficients defined by
the characteristic polynomialSki whereSki is the minimal
polynomial ofMki ⊕Mki with

Mki =
(

Aki BkiR
−1
ki

BT
ki
− γ2E′

ki
Eki

Qki −AT
ki

)

Proof: The hamiltonian system corresponding to the saddle
point solution is given by

[
ẋ

λ̇

]
=

(
Aki BkiR

−1
ki

BT
ki
− γ2E′

ki
Eki

Qki −AT
ki

)[
x
λ

]

The functionνki,ki+1(t) becomes

ν(t) =
〈[

x
λ

]
, ∆

[
x
λ

]〉

where

∆ =
(

Qki+1 −Qki 0
Aki −Aki+1 ∆̃

)

with

∆̃ = BkiR
−1
ki

BT
ki
−Bki+1R−1

ki+1
BT

ki+1−γ2(ET
ki

Eki−ET
ki+1Eki+1)



Differentiatingνki,ki+1(t) successively with respect tot, fol-
lowing the same developments in [12], one gets:

dnν

dtn
(t) =

〈[
x
λ

]
⊗

[
x
λ

]
, (MT

ki
⊕Mki)

n col(∆)
〉

Using the Caley-Hamilton theorem allows to state the result
given in Theorem 1.�

Theorem 1 helps in the determination of the switching time
sequence. In fact, starting with some given intial conditionsx0

andP0, the modek0 is the one satisfying the inequality

Hk0 < Hk, ∀k ∈ K, k 6= k0

A switch to a modek1 will occur at the instantt = τ1 where

νk0,k1(τ1) = 0

with k1 ∈ K, k1 6= k0. According to Theorem 1 this instant
can be easily determined since one knows the initial conditions
as well as the roots of the homogenous linear ODE. The next
switching times and modes are determined by reproducing the
previous operations.

Remark 1 To satisfy the transversality condition (18), at the
switching timet = τi+1, one has to choosePki+1 such that
x ∈ Ker(Pki+1 − Pki). One may choosePki = Pki+1

even ifPi+1 is not unique at this time. In fact, if there are
two candidatesP 1

ki+1
and P 2

ki+1
after the switching timeτi,

x(t) ∈ Ker(P 1
ki+1

− P 2
ki+1

) since the solution of the hamilto-
nian system is unique.

Remark 2 One can see that in the previous the control goal is
to attenuate the disturbances in a finite time and not necessarly
to transfer the state to zero. Lettingtf → +∞ one can follow
the same steps to solve the disturbance attenuation problem for
the infinite time horizon.

4 Illustrative example

To illustrate the proposed hybrid disturbance attenuation con-
trol, we consider a hybrid system given by (10)-(11) with two
operating modes (K = 2) characterized by

A1 =

� −1 4
−3 2

�
, A2 =

� −1 1
−1 −1

�
, B1 =

�
1.7 0
0 2

�
,

B2 =

�
1 0
0 1

�
, E1 =

�
1.4 0
0 1.4

�
, E2 =

�
0.95 0
0 0.7

�
,

C1 =

2664 0.707 0.707
0 0.707
0 0
0 0

3775 , C2 =

2664 1.414 0.354
0 0.935
0 0
0 0

3775 ,

D1 =

2664 0 0
0 0
1 0
0 1

3775 , D2 =

2664 0 0
0 0
1 0
0 1

3775
We consider a disturbance attenuation problem with

tf → +∞

If the two modes are considered separately, that is to solve in-
dependently two state feeedback linear time invariant optimal
H∞ control problems associated with the two LTI systems

ẋ(t) = Aix(t) + Biu(t) + Eiw(t), i = 1, 2

the corresponding optimal attenuation level values are

γ∗1 = 0.7545, γ∗2 = 0.6519

Using Theorem 1, we apply the following algorithm for a given
value ofγ to find a periodic switching sequence.

i: Fix x0, P0, i = 0.

ii: Evaluateν1,2(τi) = H1−H2. If ν1,2(τi) > 0 thenki = 2
elseki = 1.

iii: Find the timeτi+1 such thatν(τi+1) = 0 by solving
the homogenous linear ODE of Theorem 1. Compute
xi+1 = x(τi+1) andPi+1 = P (τi+1) and switch to the
other mode.

iv: Normalizexi+1 and leti ← i + 1. Go to step iii until one
gets a periodic sequence(xi+1, Pi+1)i>k.

Using this algorithm, we look for a periodic solution which
may not exit in general. For the proposed example, we get the
following sequence

τ0, τ1, .... τi, τi+1, .... τi+T , τi+T+1, ....
x0, x1, .... xi, xi+1, .... xi+T , xi+T+1, ....
P0, P1, .... Pi, Pi+1, .... Pi+T , Pi+T+1, ....
k0, k1, .... ki, ki+1, .... ki+T , ki+T+1, ....

which means that from the ranki + 1 to the ranki + T , the
valuesxi+1, xi+2, ...,xi+T define lines in the state space which
indicate where a switch from a mode to another mode has to
occur. Moreover, each modeki is active during a time

tki = τi+1 − τi

after which one has to swich the modeki+1.

Applying this algorithm forγ = 0.7, we get a periodic solution
leading to the state trajectory depicted in figure 1. The line
L12 indicates where to switch from the mode 1 to the mode
2. The corresponding time duration ist1 = 1.6009s. The line
L21 indicates where to switch from the mode 2 to the mode 1.
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Figure 1: State trajectoryγ = 0.7

The corresponding time duration ist2 = 0.4529s.

Our goal is to find a controlled switching sequence and the cor-
responding mode sequence such that the closed loop system
has aL2 gain less than or equal to some specified levelγ∗ bet-
ter thanγ∗1 andγ∗2 . Decreasing the value of the performance
level toγ = 0.6089 and using the previous algorithm the ob-
tained solution leads to the state trajectory depicted in figure 2.
The corresponding time durations are

t1 = 1.7327s, and t2 = 0.3366s
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Figure 2: State trajectoryγ = 0.6089

A limit cycle behaviour is obtained using the previous algo-
rithm for γ∗ = 0.60874 (Figure 3). The corresponding time

durations are

t1 = 1.7400s, t2 = 0.3252s
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Figure 3: State trajectoryγ = 0.60874

One can consider other values forγ less than0.60874. How-
ever, numerical problems arise under this critical value

γ = 0.60874

5 Conclusion

In this paper, a disturbance attenuation problem for a class of
hybrid systems where controlled switching phenomena may
occur has been considered. The proposed solution uses the
equivalence between this problem and a linear-quadratic dif-
ferential game with piecewise deterministic dynamics. The re-
sults are proposed in the fixed finite time case but still hold for
the infinite time horizon case. In general, the proposed solution
depends on the initial hybrid state (x0,k0), and its main draw-
back is that there is no systematic algorithm in the general case.
Development of efficient and reliable numerical algorithms is
the purpose of future work.
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