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Abstract— In this paper suboptimal control in the case of
hybrid systems is addressed. After a brief recall of necessary
conditions on the optimal hybrid trajectory, it is shown that
many hybrid optimal problem cannot have an hybrid solution.
Nevertheless, we show in context of switched systems that there
is some possibility to take advantage of the study of a convex
embedding problem for which a solution exists. Indeed the
presence of singular arcs in this solution explains why the
original switched system has no solution and how suboptimal
chattering solutions can be found.

I. INTRODUCTION

In the last years, necessary conditions for optimal control
of hybrid system have been addressed [1], [2], [3]. These
results melt both discrete and continuous classical necessary
conditions on the optimal control. The discrete dynamic
corresponding to the switching times leads to a dynamic
programming type approach [4]. In the other hand, between
these a priori unknown discrete values of time, optimization
of the continuous dynamic is performed using the maximum
principle [5], [6] or Hamilton Jacobi Bellmann equations [7].
In addition at the switching instants the link between the dif-
ferent continuous subsystems is ensured by the tranversality
conditions.

Today, there are extensive efforts to develop efficient
method to solves such problems [8], [9], [10], [11], [12],
... In the more simple cases as hybrid systems with a vector
field depending on a fixed partition of the state space or linear
switched systems (at any time any discrete state is available),
some results on state or output feedback have been obtained
(see [13], [14], [15] [16], [17], [18], ) but in general, when
the continuous dynamics really affects the discrete dynamics
the problem seems reasonably not tractable in term of com-
putational efforts. In this paper we show for a very simple
time optimal control problem (a two linear modes switched
system) that despite the existence of trajectories from an
initial state to a final state the optimal one doesn’t exist. So,
in order to understand this basic fact, we define an embedding
convex problem for which classical existence theorem works.
In this situation the optimal solution includes singular arcs
and this explains why such a problem doesn’t have a solution.
Nevertheless, we propose to build a suboptimal control by
chattering on singular arcs. A theorem shows that we can
approach near at will to the optimal solution if an average
condition is respected.

II. SWITCHED-HYBRID OPTIMAL CONTROL

A. A Class of hybrid systems

The class of hybrid systems under consideration in this
paper is defined as follows :

For a given finite set of discrete state Q = {1, ..., Q}, there
is an associated collection of continuous dynamics defined by
differential equations

ẋ(t) = fq(x(t), u(t), t) (II.1)

where q ∈ Q, the continuous state x(.) takes its values in
R

nq (nq ∈ N), the continuous control u(.) takes its values in
a control set Uq included in R

mq (mq ∈ N), the vector fields
fq are supposed defined on R

nq × R
mq × [a, b], ∀q ∈ Q.

Here, fq , q ∈ Q meet classical hypothesis that guarantee
the existence and uniqueness of the solution (i.e. fq is
globally lipschitz continuous). Note that the state space as
well as the control space depend on the discrete state q and
have variable dimensions with respect to it.

The discrete dynamic is defined using a transition function
ν of the form:

q(t+) = ν(x(t−), q(t−), d(t), t) (II.2)

with q(.) the discrete state (q(t) ∈ Q) and d(.) the discrete
control (d : [a, b] → D where D = {1, ..., D} is a finite set).
ν is a map from X × Q × D × [a, b] to Q where X is a
subset of R

n1+...+nQ . More precisely, the set X takes the

form: X =
Q⋃

j=1

{0}

j−1∑
k=1

nk

×R
nj ×{0}

Q∑
k=j+1

nk

⊂ R
n1+...+nQ .

For convenience, we should replace x(t) in (II.2) by x̃(t) =
(0, . . . , 0, x(t), 0, . . . , 0) ∈ X with x(t) ∈ R

nq .
The discrete variable q(.) is a piecewise constant function

of the time. This is indicated by t− and t+ in (II.2) meaning
just before and just after time t.

The value of the transition function ν depends on two
kinds of discrete phenomena which can affect the evolution
of q(.): changes in the discrete control d(.) and boundary
conditions on (x, t) of the form C(q,q′)(x, t) = 0 which
modify the set of attainable discrete states. These boundary
conditions can represent thresholds, hysteresis, saturations,
time delay between two switches, ... and refer to the manner
the continuous dynamic interacts with the discrete part.



A set of jump functions Φ(q,q′) : R
nq × [a, b] → R

nq′

∀(q, q′) ∈ Q2 such that

x(t+) = Φ(q,q′)(x(t−), t) (II.3)

which resets the continuous state when a discrete transition
occurs from q to q′ is also considered.

Now starting from a position (x0, q0), the continuous state
x(.) evolves in R

nq0 according to the continuous control u(.)
and the state equation ẋ(t) = fq0

(x(t), u(t), t). If at time t1,

x(.) reaches the boundary condition C(q0,q1)(x(t1), t1) = 0
and/or a change in the discrete control d(.) is produced which
leads to a new discrete state q1 = ν(x(t−1 ), q0, d(t1), t1)
then the continuous state jumps in R

nq1 to x(t+1 ) =
Φ(q0,q1)(x(t−1 ), t1) and evolves with a new vector field
fq1

(x(t), u(t), t). And so on. Then, a hybrid trajectory on
time interval [a, b] can be viewed as the data of a piecewise
constant function q(.) and a piecewise continuous function
x̃(.) in X ⊂ R

n1+...+nQ obtained according to equations
(II.1)(II.2) and (II.3).

Equations (II.1)(II.2) and (II.3) denote a hybrid system
and must be understood as a causal and consistent dynamical
system. So, we do not deal with the well-posedness of the
problem [19]. And we assume that the system is designed in
such a way that it neither tolerates several discrete transitions
at a given time nor zeno phenomena i.e. an infinite switching
accumulation points. This hybrid model covers a very large
class of hybrid phenomena such as systems with switched
dynamics, jumps on the states and variable continuous state
space dimension. It takes into account autonomous and/or
controlled events.

B. Problem formulation

Consider a hybrid system (II.1)(II.2) and (II.3) under the
following assumptions :

1) For each q, the control domain Uq is a bounded subset
of R

mq .
2) For each q, the vector fields fq(x, u, t) and Lq(x, u, t)

are continuous functions on the direct product R
nq ×

U q × [a, b] and continuously differentiable with respect
to the state variable and the time variable (U denotes
the closure of the set U ).

3) ∀(q, q′) ∈ Q2 the jump functions Φ(q,q′)(., .) and
the boundary constraint C(q,q′)(., .) are continuous and
continuously differentiable.

4) (x0, q0) is chosen within a given set S0

Let [t0 = a, t1, ..., ti, ..., tm = b] and [q0, q1, ..., qi, ..., qm]
(recall that qi ∈ Q and b can be infinite as well as m in
this case, obviously accumulation of switchings, i.e. Zeno
phenomenon are not allowed) be the sequence of switching
times and the associated mode sequence corresponding to the
control (u, d)(.) on the time interval [a, b].

Moreover, a hybrid criterion is introduced as:

J(u, d) =

∫ b

a

Lq(t)(x(t), u(t), t)dt

=
m∑

i=0

∫ ti+1

ti

Lqi
(x(t), u(t), t)dt (II.4)

where qi ∈ Q. For all q ∈ Q, we assume that Lq is
defined and continuous on the direct product R

nq ×Ūq×[a, b]
and continuously differentiable in the state variable and in
time. Lq depends on the discrete state. So, different criteria
associated with each mode are possible.

The optimal control (u, d)(.) is the control that minimizes
the cost function J over the time interval [a, b] subject to the
condition that the final state (x, q)(b) lies in a given set S1.

C. Necessary conditions
Our formulation (II.1), (II.2), (II.3) and (II.4) allow a direct

use of a smooth version of MP [5],[6] with an additional
dynamic programming argument in order to consider discrete
transitions. To this purpose, let us define the Hamiltonian
function associated to each mode q as:

Hq(p, p0, x, u, t) = pT fq(x, u, t) − p0Lq(x, u, t) (II.5)

and the Hamiltonian system as

ẋ =
∂Hq

∂p
ṗ = −

∂Hq

∂x
(II.6)

where p0 is a positive constant (p0 ≥ 0).
Now ,we have the following theorem:
Theorem 2.1: If (u∗, d∗)(.) and (x∗, q∗)(.) are respec-

tively an admissible optimal control and the corresponding
trajectory for the problem (II.1), (II.2), (II.3) and (II.4), then
there exists a piecewise absolutely continuous curve p∗(.)
and a constant p∗0 ≥ 0, (p∗0, p

∗(t)) 6= (0,0) on [a, b], so that:
1. the sextuplet (p∗, p∗0, x

∗, q∗, u∗, d∗)(.) satisfies the as-
sociated Hamiltonian system (II.6) almost everywhere (a.e.)

2. at any time t, the following maximum condition holds
for (p∗, p∗0, x

∗, q∗)(t):

Hq∗(p∗, p∗0, x
∗, u∗, t) = sup

u∈Uq∗

Hq∗(p
∗, p∗0, x

∗, u, t) (II.7)

3. at switching time ti, i = 0, . . . ,m, the following
transversality conditions are satisfied: there exist a vector π∗

i

such that

p∗(t−i ) =
[

[
∂Φ(q∗

i−1
,q∗

i
)(x

∗(t−
i

),ti)

∂x
]T 0

]
∇Vq∗

i

+[
∂C(q∗

i−1,q∗

i
)(x

∗(t−i ), ti)

∂x
]T π∗

i (II.8)

H∗(t−i ) = −
[

[
∂Φ(q∗

i−1
,q∗

i
)(x

∗(t−
i

),ti)

∂t
]T 1

]
∇Vq∗

i

− [
∂C(q∗

i−1,q∗

i
)(x

∗(t−i ), ti)

∂t
]T π∗

i (II.9)



with ∇Vq∗

i
=

[
p∗T (t+i ) −Hq∗

i
(ω)

]T
and ω =

(p∗(t+i ), p∗0, x
∗(t+i ), u∗(t+i ), t+i )

Proof: See [2]
Remark 2.2: Equations (II.8) and (II.9) must be obviously

adapted according to the final and initial constraints under
the state (x, q) at time t = a and t = b (not specified in our
case).

Remark 2.3: The notations (II.8), (II.9) imply that π∗
i must

be equal to zero if ti is a controlled switching time without
boundary conditions.

Remark 2.4: As for the state x(.), the costate p(.) should
also be of different dimensions for different subsystems.

Remark 2.5: In practice many problems only require op-
timal solutions under fixed number of switchings and/or
fixed order of active subsystems. As the above necessary
conditions deal with a very large formulation of the optimal
control problem, the total number of switchings and the order
of active subsystems seem to be a priori unknown. However,
it is possible to impose them as well as the switching time :
it only depends on how the discrete transition function ν is
specified. For example if one wants to impose the order of
the active subsystems, the automata should be written in such
a way that there is only the expected sequence. To specify
the number of switchings, one has to write a tree with the
good degree of depth. Moreover the boundary constraints can
be used to impose the switching times.

Remark 2.6: In a classical optimal control problem, one
may need to solve Boundary Value Problem (BVP). At
this stage, it can be observed that the above necessary
conditions may lead to a multi stage BVP corresponding to
the discrete transitions. Transversality conditions give just a
relation between initial and final values of the Hamiltonian
and of the costate at each switching times without any
information about when these switches occur. In fact due to
discrete dynamic, the key to compute the solution is dynamic
programming. But the task can be very hard to practice since
bifurcation in the trajectory must be taken into account each
time a discrete transition is allowed i.e. in the regions of the
state space and time space for each subsystems. In addition
the degree of freedom in the trajectory at each switching time
due to the choice of πi yields also to bifurcations.

Remark 2.7: In the case of switched system, when the
dynamics can be described using a single system:

ẋ(t) =

Q∑

q=1

αq(t)fq(x(t), u(t), t) ∈ R
n

with αq(t) ∈ {0, 1} and
Q∑

q=1
αq(t) = 1,∀t. At any time,

the active subsystem is selected via the values of the αq’s.
Then the discrete transition function (II.2) is degenerated to
q(t+) = ν(x(t−), q(t−), d(t), t) ≡ d(t) with the discrete
control set D = Q. In which case, the switching strategy
must satisfy the following condition: at any time t, the

following maximum condition holds for (p∗, p∗0, x
∗, q∗)(t):

Hq∗(p∗, p∗0, x
∗, u∗, t) = max

q∈Q
sup
u∈Uq

Hq(p
∗, p∗0, x

∗, u, t)

(II.10)
It means that the active subsystem at any time is the one
which has the largest Hamiltonian function. This situation
has been studied in [13], [20].

Remark 2.8: Note that we can take into account jump
costs:

Ψ(q,q′)(x, t)

every time a discrete transition occurs in a straightforward
way. To do this, we need only to add the cost Ψ in (II.4) in
order to determine new transversality conditions.

III. EXISTENCE AND SUFFICIENT CONDITIONS

In the sequel, only switched systems are considered.
Switched systems are the most simple hybrid systems : the
only hybrid phenomena are controlled switching. So, such
systems can also be expressed using a single vector field

meaning, ẋ(t) = F (x, u, α) =
Q∑

q=1
αq(t)fq(x(t), uq(t)) with

x ∈ R
n, u(t) = [u1(t) · · ·uQ(t)] ∈ R

m1 × · · · × R
mQ , α(t)

is a Boolean vector ( α(t) ∈ {0, 1}
Q) and αq(t) refers to

the qth-component of α(t) so that there is one and only
one component of α(t) equal to 1 i.e. α(t) ∈ D where

D = {α ∈ {0, 1}
Q

:
Q∑

q=1
αq = 1}.

Here and by switching beetwen the different values of D,
the function α plays the role of the discrete control d.

Now as it is mentioned in [21], [22], the existence of a
solution for such systems is closely related to the existence
of a bang-bang solution to the embedding problem (EP) for
which the discrete control set D is extended to its convex

hull Dc = co(D) = {α ∈ [0, 1]
Q

:
Q∑

q=1
αq = 1}.

Classical theorems [6] p.61 or [23]p. 222 which state
sufficient conditions for the existence of an optimal solution
under convexity assumptions can be easily applied to the
embedding problem.

The main assumption in both theorems is related to con-
vexity and stated as follows :

for all (x, t), the set
{[f(x, u, t), L(x, u, t) + δ] : u ∈ U, δ ≥ 0} is convex.

The existence question fails in the context of switched
(hybrid) systems due to the non-convexity of the control
domain D. In fact, it is clear that if the optimal control α∗(t)
for the EP is of bang bang type then it is an optimal solution
for the corresponding switched system.

It is appealing in this situation to study the EP. In this
case however it must not be forgotten that the solutions
found for the EP may not be realizable for the physical
system. Indeed, physical signification disappears with regard



to hybrid phenomena. For example this is the case for a
switch in an electrical circuit which can only be on or off.

From the necessary condition of the MP, the only situations
where the control α∗ is not of bang bang type occur when
the maximum condition (II.10) is obtained simultaneously
for a subset Q̃ of Q on a set of time > ⊂ [a, b] of nonzero
measure. This situation refers to singular trajectories.

A. The singular case
Here is given a procedure to examine if a no hybrid

solution exists.
Let us consider for simplicity a time optimal control

problem. The switched system is formed by two free modes,
we write, ẋ(t) = α(t)f1(x(t))+(1−α(t))f0(x(t)) , α(t) ∈
{0, 1} with f0, f1 ∈ C∞(Rn). The Hamiltonian function H

is given by, H(p, x, α) = 〈p, α(f1(x) − f0(x)) + f0(x)〉 −
p0. For given x and p, it can be seen that H is an affine
function of the control α. Thus the maximum is therefore
reached for the following bang bang control law:

α(t) = 0 if 〈p, f1(x) − f0(x)〉 < 0 (III.1)
α(t) = 1 if 〈p, f1(x) − f0(x)〉 > 0 (III.2)

Now if 〈p, f1(x) − f0(x)〉 = 0 then the control is a priori
undefined. The question is : Is there a control α(.) (candidate
to the optimality) for which 〈p, f1(x) − f0(x)〉 ≡ 0 on a
nonzero measure set of time ?

Differentiating the last expression, we get:

dm

dtm
〈p, f1(x) − f0(x)〉 =

〈
p,adm

f+αgg
〉

where f(t) = f0(x(t)) and g(t) = f1(x(t)) − f0(x(t))
Recall that [f, g] (t) = ∂g

∂x
(t)f(t) − ∂f

∂x
(t)g(t) and

adk
fg(t) = [f, adk−1

f g](t) with ad0
fg(t) = g(t).

For 0 ≤ m ≤ 2, we obtain 〈p, g〉 = 0, d
dt

〈p, g〉 =

〈p, [f, g]〉 = 0, d2

dt2
〈p, g〉 = 〈p, [f, [f, g]] + α[g, [f, g]]〉 = 0.

Next derivative is not tractable since there is a priori no
information about the regularity of α.

Nevertheless, these equalities lead to:
1) if 〈p, [g, [f, g]]〉 6= 0 then the control α is defined

uniquely by : α = − 〈p,[f,[f,g]]〉
〈p,[g,[f,g]]〉

furthermore , α is analytic and satisfies : α̇ =

− 〈p,[f,[f,[f,g]]]〉+α〈p,[g,[f,[f,g]]]+[f,[g,[f,g]]]〉+α2〈p,[g,[g,[f,g]]]〉
〈p,[g,[f,g]]〉

2) if 〈p, [g, [f, g]]〉 ≡ 0 on a nonzero measure set of
time then 〈p, [f, [f, g]]〉 ≡ 0 and we can derive
these identities to obtain high order conditions on
α, that is:〈λ, [f, [f, [f, g]]] + α [g, [f, [f, g]]]〉 = 0 and
〈λ, [f, [g, [f, g]]] + α [g, [g, [f, g]]]〉 = 0. See [24] for
more details on this situation.

Example: For example, if f0(x) = A0x and f1 = A1x

with A0 =

(
0.4 0.3
−1.3 1.1

)
and A1 =

(
0.2 −1.4
0.8 −0.7

)
,

then two singular arcs are found (using (??)) corresponding
to the lines D1 and D2 (see figure 1) and the associated
controls are α1(t) ∼= 0.2654 and α2(t) ∼= 0.5127. It can

be mentioned that line D1 and D2 correspond respectively
to the eigenvectors which have the largest and the smallest
eigenvalues of the pencil A0 + α(A1 − A0). The problem
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Fig. 1. A one switch trajectory

is to find the optimal time transfer from the initial position
x0 = (−1.1,−0.2) to the final position x1 = (−0.8,−0.4).
In figure 1 an arbitrary trajectory has been plotted which
connects (x0 , x1) with one switch and a time T1 = 1.4985.
Is there a better one ?

In figure 2, all extremal trajectories (i.e. satisfying equation
II.7) finishing to the final position x1 with a transfer time
equal to T1 are depicted. Therefore, if there is an optimal
solution it is included in this set of extremal trajectories.
As the initial position is not reached by this set, it can be
argued that optimal control for this switched system does
not exist. It is known however, that EP has a solution (see
the preceding section) and it is obtained with the particular
control mentioned above. Indeed, in figure 1 when line D2

was reached from initial position with control α(t) = 1,
the control α2(t) leads to a sliding motion on D2 until
the second intersect point s2 where the control switch to
α(t) = 0, is reached. This control gives an optimal transfer
time T∞ = 1.4304. Now, sub-optimal trajectories can be
obtained by chattering as in figure 3 with transfer time versus
the number of switch, equal to T1 = 1.4985, T3 = 1.4383,
T5 = 1.4333, T17 = 1.4313, T∞ = 1.4304. What does
this example point out? First, extremal trajectories for the
original switched system cannot help us to solve the problem
without existence assumptions. Indeed, as it has been shown,
it is possible to have a non empty set of candidates without
solution. Second, it would be better to solve the embedding
problem and to derive optimal or sub-optimal solution for
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Fig. 2. Extremal attainable set for x1 in time t < T1
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hybrid problem.

B. Sub-optimality

As it has been pointed out in the previous section and
in [21], existence questions are clearly relevant to the EP
formulation. There may be an optimal control for EP without
a hybrid solution. Nevertheless, in this case sub-optimal
control can be sought after. This purpose is emphasized in the
following section. For simplicity, we deal with a two mode
switched system but the same results could be obtained with
more discrete states.

Consider now an EP defined by two modes

ẋ(t) = α(t)f1(x(t), u1(t)) + (1 − α(t))f0(x(t), u0(t))

Consider an interval [t1, t2] and an optimal trajectory x̂(.)
obtained by a control α̂ such that α̂(t) ∈ [0, 1], ∀t ∈ [t1, t2]
and given controls û0(.) and û1(.) for t ∈ [t1, t2].

Under the conditions of theorem 3.1., we prove that there
exist bang bang control α which give a solution x(.) near at
will from solution x̂(.)

Indeed, this trajectory may be approximated using a
bang bang control α(t) ∈ {0, 1} ∀t ∈ [t1, t2] and the
same controls û0(.) and û1(.) as stated in the following
theorem. Let f+(x(t), t) = f1(x(t), u1(t)), f

−(x(t), t) =
f0(x(t), u0(t)), f̂(x(t), t) = α̂(t)f+(x(t), t) + (1 −
α̂(t))f−(x(t), t)

Theorem 3.1: If there are positive numbers ε, C1, C2 such
that:

i. the initial condition verifies ‖x̂(t1) − x(t1)‖ ≤ C1ε,

ii. the average ‖
∫ t

t1
(1{α=1}(α̂(τ) −

1)+1{α=0}α̂(τ))(f+ − f−)(x(τ), τ)dτ‖ ≤ C2ε,
where symbol 1{.} defines the characteristic function

iii. f̂ satisfies a Lipschitz condition i.e. ∃B >

0,∀x,∀y,
∥∥∥f̂(x(t), t) − f̂(y(t), t)

∥∥∥ ≤ B ‖x(t) − y(t)‖

then there is a positive constant C such that ‖x̂(t) − x(t)‖ <

Cε , for all t ∈ [t1, t2]
Proof: The proof is obtained by writing the integral

equations of x̂(t) and x(t),

x(t) = x(t1) +

∫ t

t1

1{α=1}f
+(x(τ), τ)+1{α=0}f

−(x(τ), τ)dτ

x̂(t) = x̂(t1) +

∫ t

t1

f̂(x̂(τ), τ)dτ

So, the norm of the difference between x(t) and x̂(t) can
be estimated. For clarity explicit time dependency is not
mentioned in the sequel.

‖x̂(t) − x(t)‖ ≤ ‖x̂(t1) − x(t1)‖+

∫ t

t1

∥∥∥f̂(x̂) − f̂(x)
∥∥∥ dτ

+

∥∥∥∥
∫ t

t1

f̂(x) − 1{α=1}f
+(x)−1{α=0}f

−(x)dτ

∥∥∥∥

As f̂ is Lipschitz, there is a constant B such that

‖x̂(t) − x(t)‖ ≤ ‖x̂(t1) − x(t1)‖ +

∫ t

t1

B ‖x̂ − x‖ dτ+

∥∥∥∥
∫ t

t1

(
1{α=1}(α̂ − 1)+1{α=0}α̂

)
(f+ − f−)(x)dτ

∥∥∥∥

‖x̂(t) − x(t)‖ ≤ C3ε +

∫ t

t1

B ‖x̂ − x‖ dτ

with C3 = C1 +C2. Applying the Bellman-Gronwall lemma
to the last inequality we get

‖x̂(t) − x(t)‖ ≤ Cε, (III.3)



with C = C3e
Bt2

Note that the third condition can be replaced with a weak
condition: there is a positive and integrable function B(.)

such that ∀x,∀y,∀t,
∥∥∥f̂(x, t) − f̂(y, t)

∥∥∥ ≤ B(t) ‖x − y‖.
Corollary 3.2: If optimal control for the EP is not bang

bang then we can always define a sub-optimal control for
switched systems.

Proof: This holds true if the dimension of the problem
is increased by defining the (n+1)-vector: x̃ = [xT , xn+1]

T

with ẋn+1 = L(x, u). Thus, the average has the additional
term

∫ t

t1
(1{α=1}(α̂ − 1)(L+ − L−)(x) + 1{α=0}α̂(L+ −

L−)(x))dτ and the conclusion of above theorem implies that
the cost functional differs from a number as small as desired.

First, if there is bang bang control leading to a cost
which differs about some ε from the optimal of the EP
then this control is chosen as sub-optimal. On the other
hand, chattering control can be chosen yielding the average
condition. So, the reader is referred to sliding modes control
[25].

IV. CONCLUSION

In this paper, after a brief recall on the maximum principle
in context of a fairly general hybrid system, we have focussed
our attention on the existence of a solution for switched sys-
tems. Due to the non convexity of the problem formulation,
classical results fail in providing a solution. So, we have pro-
posed to study an embedding problem for which the existence
of an optimal control can be assumed. From this solution, it
is shown that the presence of singular control explain why the
original problem have no solution. Nevertheless, we proposed
to derived from the optimal embedding solution a suboptimal
one for the switched system.
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