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Abstract

In this paper, we address the problem of numerical implementation of optimal
control for switched input affine nonlinear systems subject to path constraint.
In order to properly solve the problem, a relaxed system is introduced and the
connection between the solution of this system and the solution of the initial
one is established. One of the main difficulties is then related to the fact that
the optimal solution can be singular. We show that, using slack variables, a set
of complementarity constraints can be used to take into account the singular
nature of the solution. The optimal control problem is then reformulated as a
constraint optimization problem over the Hamiltonian systems and solved via
a direct method. This formulation does not require a priori knowledge on the
structure (regular/singular) of the solution. In addition, state path constraints
are included. Numerical simulations for boost, buck-boost and Flying Capacitor
converters, both in continuous and discontinuous conduction mode, illustrate
the effectiveness of the proposed methodology.

Key words: Singular optimal control, switched systems, complementarity
systems, numerical method

1. Introduction

Most of the results related to the optimal control of hybrid systems deal
with subsystems sharing zero as common equilibrium. In this paper, we treat
the case of switched input affine non linear systems for which generally no
common equilibrium can be defined. In this context, the referred targets, named
operating points, are defined as the equilibria of a relaxed system - obtained by
expanding the control domain to its convex hull. As a result of the applied
control strategy, the average value of the state variables computed on a sliding
window coincides with the target [16].
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It is worth noting that the optimal solution of the relaxed system can be
singular as deduced from the Pontryagin Maximum Principle (PMP). Precisely,
the necessary conditions provided by PMP are inconclusive on the control value
when Hu = 0, ∀u. This is a well known [32, 19, 23, 4] difficulty encountered in
optimal control field.

The search of analytic solutions is pervasive even for low dimensional systems
[27]. In this context only few methods have been proposed to numerically solve
such control problems. Indirect shooting method requires a priori knowledge
on the structure (regular/singular) of the trajectory [3]. This information can
be achieved using direct methods [2, 31] but the determination of the control
lacks of accuracy. Once the information on the structure of the optimal solution
is available, an accurate solution can be obtained if singular arc conditions are
imposed for the singular part of the trajectory; see for example the Goddard
Rocket Problem in [30].

In order to overcome this inconvenient, we propose to reformulate the con-
trol set inclusion deduced from the necessary conditions of PMP as a set of
complementarity constraints and to add them to the Hamiltonian system to
form a complementarity system [12]. The multivalued part of the control (cor-
responding precisely to the singular cases) is then concisely expressed in these
complementarity constraints. At this stage, one may view the problem as a
Boundary Value Problem (BVP) and try to use a shooting method. Unfortu-
nately, such shooting methods are not appropriate to solve this BVP because
of the non uniqueness of the solution.

In this paper we propose to use a direct method [2] to minimize the cost
function subject to some complementarity constraints. This approach can be
classified as mixed direct-indirect method since it uses both the necessary con-
dition of PMP and a large-scale nonlinear programming problem (NLP) arising
from the discretization of the cost and of the resulting complementarity systems.
The main advantage of this formulation is that no information on the structure
(regular/singular) of the trajectories is a priori required since this feature is im-
plicitly captured by the values of the state and the co-state through a switching
function and the set of complementarity constraints.

To improve the accuracy of numerical results, additional constraints con-
cerning the order of the singularity are taken into account. Finally, the method
is extended to path constraints case.

The paper is organized as follows. In Section 2 one gives the system de-
scription and defines the operating points. Section 3 formulates the optimal
control problem derived from PMP. The singular nature of the solution is also
detailed and discussed. The complementarity formalism is used to reformulate
the optimal control problem in Section 4. To increase the accuracy of the con-
trol determination we add constrains related to the order of the singularities.
Section 5 contains numerical simulation illustrating the results of the proposed
methodology on a variety of power converters.
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2. System Description

The class of constraint switched input affine nonlinear systems under con-
sideration can be described by:

ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t)) (1)

x(0) = x0 (2)
c(x(t)) ≤ 0 (3)

where u(t) = (u1(t), . . . , um(t)) ∈ Rm is the control law and x(t) ∈ Rn represents
the state value at time t. The maps f(·) : Rn 7→ Rn, c(·) : Rn 7→ Rr and
gi(·) : Rn 7→ Rn, i = 1, . . . ,m are supposed sufficiently smooth. A vector is
considered positive/negative if all its components are positive/negative. We
note that (3) defines the unilateral r-dimension state-path constraints .

When u(t) ∈ U = {0, 1}m equation (1) describes a class of Switched System
(SS) largely used to express the dynamics of nonsmooth mechanical systems
(see [24, 25] and the reference there in) or electric circuits ([9]). On the other
hand when u(t) ∈ co(U) = [0, 1]m where co(U) stands for the convex hull,
equation (1) describes a Relaxed System (RS). The (SS) belongs to the class of
nonsmooth systems for which the notion of solution can be properly defined and
generalized in the sense of Fillipov [13]. The link between the solutions of (SS)
and (RS) is established by a density theorem in infinite time [17]. Let us denote
L∞([0,+∞), U) the set of all essentially bounded measurable functions mapping
[0,∞) to U . Then L∞([0,+∞), U) equipped with the essential supremum norm
(i.e. ‖f‖∞ = ess sup|f |) becomes a Banach space. In [17] is proven that there
exists a switching law u ∈ L∞([0,+∞), U) such that the trajectory of (RS) is
approached as close as desired by the one of (SS). For this reason, the operating
points set of (SS) denoted by Xref , is defined as the set of equilibrium points of
(RS):

Xref =
{
xref ∈ Rn : f(xref ) + (4)

m∑
i=1

ui,refgi(xref ) = 0, ui,ref ∈ [0, 1]
}
. (5)

This set defines the control targets for the state of (SS).
It is worth noting that none of the controls uref ∈ co(U)\U from (5) cor-

responding to an equilibrium xref , is admissible for (SS). The outcome is that
(SS) state x cannot be maintained on xref by a control taking its values in U
(unless the time duration between switchings tends towards 0). Consequently,
if the target for (SS) is an operating point xref , the asymptotic behavior of the
trajectories is characterized either by a cycle near xref if a dwell time condi-
tion is applied on the switchings (i.e. a lower limit exists for the time duration
between switchings) or by an infinite switching sequence with a vanishing time
duration between switches as t→∞.
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3. Optimal control problem formulation

In the sequel, we propose a methodology to numerically solve the following
optimal control problem for the system defined by equations (1)-(3):

min
u(.)

∫ T

0

L(x(t), xref )dt (6)

where L is the continuously differentiable performance function, xref stands for
a chosen equilibrium point in Xref and T refers to the strictly positive final
time and is fixed (T ∈ R+).

When the (RS) has a bang-bang solution (i.e. ∀t, u(t) ∈ {0, 1}m), (SS) is
also solved. Otherwise, it exists a non zero measure set (in the Lebesgue sense)
T such that the optimal solution takes values u(t) ∈ co(U)\U for all t ∈ T .
Although these solutions are not admissible for (SS), Pulse Wise Modulation
(PWM), for example, yields an average approximation by high switching fre-
quency [17]. Consequently we relax the optimal control problem for (SS) by
searching the optimal solutions of (RS) from which suboptimal solutions for
(SS) can be derived.

Suppose in a first time that no constraint are taken into account and let
inspect the necessary conditions defined by the Pontryagin Maximum Principle
(PMP). The Hamiltonian function H is given by (abnormal case is not taken
into account):

H(t) = λ>(t)(f(x) + g(x)u(t)) + L(x(t), xref ) (7)

where λ(t) ∈ Rn depicts the co-state whose dynamic is given by the Hamiltonian
system λ̇(t) = −Hx(t) (ẋ(t) = Hλ(t)).

Optimality condition of PMP that u minimizes the Hamiltonian function
leads to the following inclusion,

ui(t) ∈


0 if φi(t) > 0
[0 1] if φi(t) = 0
1 if φi(t) < 0

∀ i = 1, ...,m (8)

where φ(t) = Hu(t) = λT (t)g(x(t)) defines the switching function. When
ui(t) = 0 or 1, the control is called regular. A singularity arises when a compo-
nent of φi(t) vanishes identically on a time interval [a, b], b > a. In this case, the
PMP is inconclusive concerning the control value ui(·) on [a, b]. This situation
is referred to as singular control [32, 8, 4] and it corresponds here to the case
where u(t) takes values in co(U)\U, t ∈ [a, b]. We can conclude that solution
segments for (RS), which are not admissible for (SS), involve a singular control.

Nevertheless, there exist generic cases where the necessity to take into ac-
count singular arcs can be avoided when a generic property, as defined in [10],
is satisfied by the control-affine system. Indeed, if the system is generic and if
m ≥ 2, it is proved that the control system (1) does not admit any singular
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trajectory. However our paper is focussing on systems that do not satisfy the
generic property.

In the sequel, in order to simplify the notation we shall often avoid to em-
phasize the time dependency of the variables and controller.

Definition 1. For a single control (m=1), if φ vanishes identically on the time
interval [a, b], b > a we say that x belongs to a singular arc for all t ∈ [a, b].
These arcs are characterized by:

Hu(x, λ, u) = 0, ∀u ∈ co(U), ∀t ∈ (a, b). (9)

To determine these arcs, successive time differentiations:

dq

dtq
Hu(x, λ, u) = 0, (10)

are required. The differentiation has to be done until at least a component of
the control appears. The smallest positive integer q∗ which is always even, such
that

∂

∂u
(
dq

∗

dtq∗
Hu(x, λ, u)) 6= 0, (11)

if it exists, is called the order of singularity [23] (or index of the DAE). As we have
shown in [27], for low dimensional systems (i.e. n ≤ 3), the analytic expression
of u can be explicitly determined by using the set of algebraic equations (10) and
a second order necessary condition given by the Generalized Legendre-Clebsh
Condition [32, 23, 19]:

(−1)
q∗
2
∂

∂u
(
dq

∗

dtq∗
Hu(x, λ, u)) ≥ 0. (12)

On one hand, to determine analytically the optimal solutions including singu-
lar arcs is a particularly hard problem and only low dimensional systems (i.e.
n=2,3) have been treated [27]. Moreover, knowledge on the singular arcs are
of few help in determination of the junction time between singular and regular
arcs. On the other hand, standard indirect numerical methods such as multiple
shooting methods are not appropriate to deal with singular arcs without a priori
information on the structure of the trajectories (see [14], [22] and [28] to apply
multiple shooting methods in this context). This information can be achieved
using regularization techniques such as the continuation method used in [26],
[18], [21]. In this paper, we propose to use direct method and an ad hoc formu-
lation that takes implicitly into account the singular arcs and do not require a
priori information on the solution structure.

4. Optimal control using complementarity system formalism

Complementarity is a useful concept that can be used to describe properly
the behavior of nonsmooth systems. Complementarity systems have been largely
employed in the analysis and control of mechanical systems [5, 7, 25] and recently
they are used to describe the dynamics of electric circuits [9, 34, 1].
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Definition 2. A Linear Complementarity Problem (LCP) is a system given by: y ≥ 0
Ay + b ≥ 0
yT (Ay + b) = 0

(13)

which is compactly rewritten as

0 ≤ y ⊥ Ay + b ≥ 0 (14)

Such an LCP has a unique solution for all b if and only if A is a P-matrix, i.e.
all its principal minors are positive [12].

Combining complementarity conditions with differential equations we get
what usually in the literature is referred to as complementarity systems (see [6]
and the references therein): 

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))
0 ≤ y(t) ⊥ u(t) ≥ 0

(15)

We also note that in some applications, the complementarity system may contain
an external input (forcing term) or the adjoint variable [33]. In the sequel, we
propose to reformulate the Hamiltonian system and the necessary condition (8)
as a complementarity system.

4.1. Relay inclusion as a complementarity constraint
Let us recall (see [33]) that the relay-type function (8) can be rewritten as

a complementarity constraint and an algebraic equation as follows:

0 ≤ s1 ⊥ u ≥ 0 (16)
0 ≤ s2 ⊥ (1− u) ≥ 0 (17)

0 = s1 − s2 − φ (18)

where s1 and s2 are m-dimensional vectors and define the positive and the
negative part of φ(x, λ). In other words, the components of the two vectors s1
and s2 are defined by:

s1i(t) =

{
0 if φi(t) < 0
φi(t) if φi(t) ≥ 0

∀ i = 1, . . . ,m

s2i(t) =

{
−φi(t) if φi(t) < 0
0 if φi(t) ≥ 0

It is important to note that as long as s1i > 0 or s2i > 0 the component
ui of the control law u is uniquely determined. When s1i = 0 & s2i = 0 the
uniqueness of ui is lost and the choice of its value is a matter of optimization.
We also observe that the situation s1i · s2i > 0 cannot occur since this will
contradict either (16) or (17).
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4.2. Path constraints
Until now, no consideration has been made on the path constraints (3).

Like for singular controls, the index q̂ of the state constraint is the first time
where u appears explicitly in the successive time differentiation of c along the
trajectories. This index allows to define the mixed control-state path constraints
occurring on the boundary c(x) = 0:

p(x, u) =
dq̂

dtq̂
c(x) ≤ 0. (19)

and the Lagrangian function:

L(x, u, λ, µ) = H(x, u, λ) + µT p(x, u) (20)

where µ ≥ 0 represents the r-dimensional vector of Lagrange multipliers.

Assumption 1. We assume in the sequel, that q̂ = 1.

When it is not the case, the co-state might be only a measure and the given
version of PMP does not apply [11].

Theorem 1. If u∗ is the optimal control for the state constraint system (1-
3) when the cost is defined by (6) then u∗ satisfies the following constraint
optimization problem:

COP : min
u(·)

∫ T

0

L(x(t), xref )dt (21)

s.t. ẋ = Lλ λ̇ = −Lx (22)
x(0) = x0 λ(T ) = 0 (23)

0 ≤ s1 ⊥ u ≥ 0 (24)
0 ≤ s2 ⊥ (1− u) ≥ 0 (25)
0 = s1 − s2 − Lu(x, λ, µ) (26)
0 ≤ µi ⊥ (s1 + s2)j ≥ 0, i = 1, · · · , r j = 1, · · · ,m (27)
0 ≤ µ ⊥ −c(x) ≥ 0 (28)

Proof. These necessary conditions are directly deduced from PMP in case of
state constraint (Chap.6; [29]) and in presence of complementary constraints as
explained in the following comments:

• Generally when path constraints are considered, jumps occur on the co-
state at junction time τ . They are characterized by λ+(τ) = λ−(τ) +
α∇c(x(τ)). In fact, α can be taken equal to zero when the motion follows
the border c(x) = 0 for t ≥ τ as proven in the pioneer work (Chap.6; [29]).

• When µ equals zero, (20) allows us to retrieve the unconstraint version
of PMP. Note that when µ = 0, (26) is equivalent to (18). The comple-
mentarity relation (28) assures that µ = 0 when c(x) is not active (i.e.
c(x) > 0).
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• The constraint ci(x) is activated (i.e. ci(x) = 0) when µi becomes positive
and modifies the co-state dynamics as it is required (Chap.6; [29]).

• The complementarity conditions 0 ≤ µi ⊥ (s1 + s2)j ≥ 0 are necessary
for any i = 1, · · · , r and for any j = 1, · · · ,m to ensure the necessary
condition Lu = 0 when some components of the path constraints are
active. Indeed, if at least one of the constraints is strongly active, says
the ith, then µi > 0 and s1 = s2 = 0 and all components of u ∈ [0 1]m

are subject to Lu = 0 as required by the minimization of the Lagrangian
L (augmented Hamiltonian).

It has to be mentioned here two important features of the above formal-
ism. Firstly, this formulation clearly takes into account both singular arcs and
path constraints. Secondly, no assumption is made on the structure (singu-
lar/regular) of the trajectories. This is implicitly captured by the values of x
and λ through the switching function φ and the complementarity constraints.
Consequently, we do not require any initial information on the existence of sin-
gular arcs entering in the optimal trajectory.

The optimization problem (COP) can be solved using direct method i.e.
by minimizing the cost function (21) subject to the complementarity system
(22-28). Of course, in order to determine accurate solution, recall that it is
important to scale the problem and to use code that use multiple phase for-
mulation to reduce the sensitivity and that enable grid refinement procedure.
Among the possible alternatives, for all the examples given in the next section,
we have used the beta version GPOPS Toolbox for Matlab. This toolbox solves
multiphase optimal control problems [2] and is based on Radau pseudo spectral
methods to parametrize the solution. In this orthogonal collocation method, the
collocation points are the Legendre-Gauss-Radau points [15] and an interesting
feature is that it is a Gaussian quadrature implicit integration scheme. From a
practical point of view, complementary constraints is achieved by penalization
terms in the cost of the form ρyw if 0 ≤ y ⊥ w ≥ 0, with weight ρ > 0 and
chosen sufficiently large.

Remark 1. The proposed numerical framework does not catch Fuller or zeno
phenomena [20]. These phenomena characterized by an infinite number of
switchings in finite time which can occur when the trajectories hits the path
constraint or the singular surfaces, are not taken into account by the proposed
numerical method. In fact, these phenomena is avoided by the discretization of
the problem and is ultimately approximated.

A practical and significant improvement in minimizing the cost function (21)
subject to the complementarity system (22-28) can be obtained by including the
algebraic constraints (10) for q = 1, · · · , q∗. The last constraint when q = q∗

is particularly beneficial since the control appears in it explicitly. Of course,
as these constraints correspond to the case where the control is singular, these
additions are only possible when path constraints are not active (that is when
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µ = 0 and λ̇ = −Hx = −Lx). If the path constraints are active, they are
unnecessary since u appears this time in the path constraints.

Theorem 2. If u∗ is the optimal control of problem defined by cost (6) and state
constraint system (1-3) then u∗ satisfies COP of Theorem 1 and the following
additional constraints related to the order of the singularity (10):

0 = s2q+1 − s2q+2 −
dq

dtq
φ, q = 1, · · · , q∗ (29)

0 ≤
r∏
i=1

ci(x)u(1− u) ⊥ (s2q+1 + s2q+2) ≥ 0 (30)

0 ≤ s2q+1 ⊥ s2q+2 ≥ 0 (31)

where s2q+1, s2q+2 q = 1, · · · , q∗ are additional m-dimension slack variables.

Proof. It is easy to show from equation (29) and (31) that s2q+1 and s2q+2 are
respectively the positive and the negative part of dq

dtq φ. Then, (30) imposes
that the ith component of | d

q

dtq φ| equals zero when ui is singular and the state
x does not satisfy one of the constraints given by (3). Following singular arc
definition, these relations are fulfilled and their inclusion in (COP) improves the
numerical solution notably in the control determination as we will show in the
next section.

5. Application to power converters

DC-DC converters such as buck, boost, buck-boost, flying capacitor con-
verters enter clearly in the class of constraint switched affine systems. We have
applied our numerical approach for all these converters and we present in the
sequel two selected cases to illustrate the effectiveness of the proposed procedure.

5.1. FCC converter
In the case of a few megawatt industrial power applications, the classical

power converters have a very high voltage in the switching components (several
kilovolts). To compensate this, a new class of power converters called Flying
Capacitor Converters (FCC) appeared (or multicellular converter). The struc-
ture of the FCC converter reduces the voltage throughout the switches. It is
composed of serial connections between semiconductor switching devices and
passive storage elements to achieve the target operating voltage as illustrated
in Figure 1.

Three switching cells can be isolated, each of them being able to operate
in two complementary mode. The behavior of each cell can be described using
only one boolean control variable ui ∈ {0, 1} with i = 1, 2, 3. ui = 1 means that
the upper switch is closed and the lower switch is open whereas ui = 0 means
that the upper switch is open and the lower switch is closed (Figure 1).
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Figure 1: Fying capacitor converter

The state equations of the converter have an affine form given byẋ1

ẋ2

ẋ3

 =

 0
0

−RLx3

+

− x3
C1

x3
C1

0
0 − x3

C2

x3
C2

x1
L

x2−x1
L

E−x2
L

u1

u2

u3

 (32)

where x1, x2 are the voltage on each capacitor and x3 the load current. The
chosen parameters are E = 30 V , R = 10 Ω, C1 = C2 = 40µF and L = 10 mF .

The capacitor voltages must be balanced to 2E/3 and E/3, while the de-
manding load current is fixed to 2 A. Then, xref =

[
E/3 2E/3 2

]T .
The optimization problem consists in minimizing the quadratic criteria:

min
u(·)

∫ T

0

(x− xref )′Q(x− xref )dt.

The weight matrix Q is taken to: Q =

 0.2 −0.1 0
−0.1 0.1 0

0 0 200


Figure 2 and 3 show the control and state trajectories starting from the

origin. The objective value is J = 0.129. As expected, the control are totally
singular and are properly determined using the proposed formulation. In com-
parison, a direct transcription of equation (6) and (1-2) using the same GPOPS
toolbox, yields the results provided in Figure 4 and Figure 5. The solver re-
turns a flag indicating that the optimization has finished successfully and that
the optimality conditions are satisfied. In fact, we can observe that the trajec-
tories are similar but the control is far from being accurate due to Hamiltonian
singularities. All these simulations have been done with the same parameters:
3 phases formulations, 3 mesh iterations, analytic derivative provided and the
same mesh tolerance (1e-3), see [2], [15] and website dedicated to GPOPS for
more explanation. For this example, there is no path constraint. So, the differ-
ences in the numerical results are determined by the adopted formulation. In
view of the results, the Karush-Kuhn-Tucker conditions used to solve directly
the problem (6) and (1-2) does not allow to determine properly the control in
singular cases while the additional algebraic constraints given by Theorem 1
and 2 force this determination.
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Figure 2: Optimal singular controls using Hamiltonian and complementarity constraints
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Figure 3: Optimal state trajectories using Hamiltonian and complementarity constraints
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Figure 4: Numerical results in a naive transcription : optimal controls
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Figure 5: Numerical results in a naive transcription : state trajectories
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Figure 6: Boost converter

5.2. Boost converter
The topology of a boost converter is given in Figure (6). In continuous

conduction mode, following the position of the switch u, two subsystems ẋ =

Aix + Bi, i = 1, 2 can be considered with matrices A1 =
( −R

L 0
0 −1

R0C

)
,

A2 =
( −R

L
−1
L

1
C

−1
R0C

)
, B1 =

(
E
L
0

)
and B2 = B1. Generally the control

strategies proposed in the literature do not take into account the discontinuous
mode that may appears when the demanding current in the load is low. In this
case, the current in the diode vanishes and produces an autonomous switch.
Few results concerning optimal control of hybrid systems are related to the case
of autonomous switches. The third subsystem is then described by

A3 =
(

0 0
0 −1

R0C

)
, and B3 =

(
0
0

)
.

In fact, it is not necessary to add this last subsystem when x1 = 0 since
there exists an equivalent control ueq(x) ∈ [0 1] which forces ẋ1 = 0 and such
that the dynamics of ẋ = ueq(A1x + B1) + (1 − ueq)(A2x + B2) matches the
one of the third subsystem. So, the optimal control problem is solved with path
constraint corresponding to x1 ≥ 0.

The parameters are chosen as follow: E = 20V , R0 = 50 Ω, R = 1 Ω,
L = 2 mH and C = 100 µF .

The optimization problem consists in minimizing, for a given equilibrium
xref , the quadratic criteria:

min
u(.)

∫ T

0

(x− xref )′Q(x− xref )dt.

We have applied the following scenario: Starting from zero initial condition, the
state is steered to equilibrium xref = (2.2, 44.4) obtained for uref = 0.6 then,
after 5ms a new reference xref = (0.78, 27.46) corresponding to uref = 0.3 is
applied.

Figures 8 and 7 show the state trajectories and the optimal control as well
as the Lagrange multiplier obtained for the weight matrix Q = diag(1, 10). The
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Figure 7: Boost converter: Optimal controls
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Figure 8: Boost converter : State trajectories
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time scale is expressed in ms. The numerical results show that just at the
beginning of the simulation the control switches from 1 to 0 before the optimal
trajectory reaches the singular arc which happens after approximatively 1ms.
When a new reference is applied at time t = 5ms, control switches to zero and
the system enters in discontinuous conduction mode when the current vanishes.
The value of the Lagrangien multiplier clearly indicates this while the control
values allow to meet the constraint ẋ1 = 0. The system returns in continuous
conduction mode with a short activation of mode 2 at time t = 7.5ms. The
control becomes singular once the reference is reached.

Now, Figure 9 compares the precision with which the optimal control is
determined according to the formulation adopted to solve the optimal control
problem. Starting from the origin, the cost function consists to minimize the
quadratic criteria minu(.)

∫ T
0

(x−xref )′Q(x−xref )dt where xref corresponds to
the equilibrium given by uref = 0.5.

At the bottom (c), a direct transcription into a NLP leads to poor results
as expected when the control is singular. A gap in the accuracy is obtained
with a complementarity formulation like in Theorem 1 as it is shown in the
(b) part of the Figure 9. A full improvement is reached in the top of Figure 9
(a) when additional constraints associated to the order of the singularity (10)
are taken into account (Theorem 2). Thus, this example reflects the ability of
the formulation given in Theorem 2 to determine properly the optimal control
without any information on the structure of the solution.

5.3. buckboost converter
The last example concerns a buck-boost converter and it is chosen to show

that this numerical approach can be useful not only to compute optimal open-
loop control (in case of predictive control for example) but also to design robust
close-loop controller.

In Figure 10 the red circle is the reference and the optimal trajectories start-
ing from different initial conditions are plotted in blue. We can observe that
discontinuous conduction mode appears along the negative part of x2−axis and
that all the trajectories reach the target xref following a singular arcs. As Fig-
ure 10 shows, the state space is partitioned following the control to be used.
It can be observed that the singular trajectories, at the junction between the
different parts, defined optimal sliding surfaces.

Clearly, there is a partition that defines u as a state feedback u(x). We
think that this partition can be achieved using learning machines such as neural
networks.

The parameters used in the simulations above are: E = R = L = C = 1,

A1 =
(

0 0
0 −1

RC

)
A2 =

(
0 1

L−1
C

−1
RC

)
B1 =

(
E
L
0

)
B2 =

(
0
0

)
weight

matrice Q = diag(q1, q2) with q1 = 1 and q2 = 10.

5.4. How to implement suboptimal switched control law ?
The optimal controls determined in this paper take their values in co(U) and

are generally (when singular) not admissible for the original switched systems

15



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b) using Constraint Hamiltonian system

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
(a) using full constarint Hamiltonia systems

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1
(c) Trivial Formulation

Figure 9: Boost converter: Improvement in the numerical control determination; c: direct
transcription, b: Hamiltonian like a Complementarity Problem; a: Full Constraint formulation
using order of the singularity
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Figure 10: BuckBoost converter: Optimal trajectories in state space. xref : red circle

(SS). The density theorem given in [17] shows that all trajectories of the relaxed
system (RS) can be approached as close as desired by the one of the switched
systems (SS). So, the optimal one, too. In order to approach an optimal tra-
jectory of (RS) by the one of (SS) can be simply obtained using a Pulsewise
Modulation technic (PWM) to generate the switching law as it is well known
in the field of power electronic. In the ideal case, higher switching frequency
fs leads to better approximations of the optimal trajectory. This fact explains
also why (SS) has only suboptimal solutions when the optimal solution of (RS)
possesses singular arcs. The limit of the switching law sequence u(t, fs) ∈ U
obtained by increasing fs → +∞, is the singular control almost everywhere.

6. Conclusion

In this paper we have proposed a numerical framework to solve optimal
control problem for switched input affine nonlinear systems. One specific feature
of this class is that singular controls have to be considered in order to obtain the
optimal solution. As singular controls are determined by an inclusion depending
on the state and the co-state, we have reformulated the optimization problem
using the augmented (in case of path constraints) Hamiltonian system and a set
of slack variables defining a set of complementarity constraints. This constraint
augmented optimization problem is then solved with a direct method dedicated
to optimal control.

The contribution of the proposed methodology is twofold: an accurate op-
timal control is determined without any additional information concerning the

17



existence and the number of the singular arcs belonging to the optimal trajec-
tory and, the optimal control is determined even in the presence of autonomous
switches. The first contribution is an important relaxation since generally in
the provided singular control examples in the literature, an a priori knowledge
of the number of singular arcs is required (see for example the Godart Rocket
example). The second contribution allows to complete the simulation of electric
circuits containing switching elements, including the discontinuous conduction
mode.

It is noteworthy that a direct transcription of the optimal control problem
as a non linear program leads to poor results as the FCC converter example has
shown. The effectiveness of our method has been illustrated in several examples.
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