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Abstract—This paper address the continuous state estimation on a flying capacitor converter. The originality of the prepd
of a class of switched systems having modes in which the Stateapproach y|e|ds to a Comp|ete characterization of invhgats
is not or partially observable. Using a relevant LaSalle priciple 5,4 associated control laws for which the estimator doesn't
for switched systems, a characterization of invariant setsand . o
associated control laws for which the state cannot be estimed, ~CONVErGe. This character_lzz’?\tlop dP not d_epend on of thearhos
is given. This result is app“ed on a f|y|ng Capacitor convemr to SW|tChed Obsel’ver a.nd IS IntrInSIca”y I|nked to the stunet
prove convergency of the estimation error under suitable cotrol ~ of the system.
laws. This work is also used to explain why rate of the estim&  |n the next section, the problem statement is given and it is
error decreases with high switching frequency scheme. shown that that the state estimation of the flying capacitor
Index Terms—Observer design, invariance principle, power relies in the stability of a linear switched systems having
converter non positive definite matrices. The section Il is devoted to
the characterization of invariant set and associated ebntr
I. INTRODUCTION laws. A discuss is_ introduged z_slt the beginning of sect_ion I\_/
) ) o ) on how to determine the invariant set. Then an algorithm is
In the case of industrial applications with power of a fewqnnsed to solve this problem. Switched observer design wi
megawatts, the switching components voltage becomes VBgye placement is illustrated in section V. Then the profose
high (several kilovolts). Therefore, the switching freqog  cnaracterization is used to explain why the rate of converge

must be maintained to a low value and bulky filters args ihe observer is decreasing with the switching frequency.
needed for obtaining an appropriated output [1]. To palliat

this drawback, a new class of power electronic converters

has appeared, called multicell converters. These stregtur

consist of a series connection of switching devices witlspas

storage elements, which are used to generate intermediat

voltage levels [2]. The control law for these structuresdsee ‘ ‘ )
vC2 ¢t __ 1 vci1

Il. PROBLEM STATEMENT

to maintain the intermediate voltage levels at some cohstan—* e L

values and to regulate the voltage or the load current. The

main advantages of the multilevel converter is that the tsalec

quality of the output signal is improved by a high switching L

frequency between the intermediate voltage levels [3]. The

downside is that, excepting simpler DC-DC converters, thdg. 1. Multilevel converter. The state variables are thpacior voltages

control of multilevel converters is more complex [4], [5]. and the current load. The control is the switch positiorUef Uz and Us.
Emerging control techniques such as stabilizing contrpl [6 ) )

predictive control [7] [8], flat control [9] are based on obss _The state equations of the converter have an affine form

technics. Moreover, the robustness of the proposed schieme&ven by

also improved and er?sured with parameters est|ma§|on$,Thu (1) = Agx(t) + Zleui(t)(A»x(t) +B) 1)

there are a demanding for state or parameter estimations to

improve algorithms and to reduce the number of sensors. TRgh a three dimensional state = [:101 To x3]T, a three

recursive filter such as Extended or Unscented Kalman Filigifnensional boolean control vector= [U1 Us u3] e {0,

are efficients and the most frequently used techniques [1@],3, the matricesd4;, i = 0, 1,2, 3, defined by

[11]. But proof of the convergency are generally omitted or

1
intractable due to nonlinearity of the control system anel th 00 0 0 0 -7
dependency of the observability property w.r.t. the indi#][ Ag=10 0 OR A= (1) 0 0 |,
Promising approaches for hybrid systems may be linking to 00 = - 00
algebraic observability [13]. 1
. . . 0o 0 = 0 0 0
In this paper, for the class of affine switched systems, a t-lo o = A 0 o 1
switched observer is proposed as state estimator and dpplie >~ | | _OC_z P T 0 _1 % ’
T T I
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The controlu refers to the switches position and we codht ~ Theorem 1. Let o € R"™ and o(-) be a switching law
modes following the values ai. defined on[0, +o0). Let = be the solution of the switched
The aim is to estimate the voltage of the capacitors in tlsgstem corresponding te(-) and with initial conditionz.

case where only the current in the load is measured. The butphen thew-limit set Q(z) is included in a level set oV

y is defined by the equation= Cz with C = [0 0 1]. and for allyy € (z), there exists an absolutely continuous
Notice that the state components are only partially obserfuinction y which satisfies

able for every fixed configuration of the switches. For examnpl

if the switch value isu = [L 0 0], then the voltage in the y=4Aay forae.t=0
capacitorC; cannot be estimated since it is disconnected or if y(0) = yo
the switch value ist = [1 0 1] then only the sum of the y(t) € Q(z) for everyt >0,

voltages in capacitor§’; and C, can be estimated. Thus, it _ ) _ I
is not possible to consider an observer for arbitrary sviigh @nd where the time variant matrix, = >_;_, «; A;x evolves

law. A question of interest is then how to characterize tHgllowing a control lawa(t) = (a1 (?), ..., a:(t)) taking its
switching law for which it is impossible to observe the statevalues in the set

Here such characterization will be illustrated ip the cake @, _ {a = (ou,...,a7) | Zz{zlai 1L, >0i=1,.. .,I}.
a Luenberger switched observer. The purpose is to study the
behavior of a switched observer of the form: In particular,

V(y(t) =0

&= Aot + Lo(y — §) + Yi_qui(Aid + Bi + Li(y — 1))
. L . ) for everyt > 0, where, with a standard abuse of notations,
Defining the estimation errar = = — Z, its dynamics are V(y(t)) denotes the derivative df— V (y(t))

given by: - s g ) Roughly speaking, th&(z) limit set is made with Fillipov
e = Aoe + 3o uidie, () solution of the switched systems included in a level set and
with 4; = A, — L;C, i =0,1,2,3. given by the differential inclusion:

In view of equation (2), the problem statement consists in i€ F() (4)
studying the stability of a linear switched system

I
. — =S 4 A
b= (0 = Ay, o) (L TE @ Ny o oed M ) = S e e
where the state(t) € R", A;, i € {1,...,1} are non positive ~ Define, for everyz € R" and everyi = 1,... N the
definite matrices 4; < 0) and the switching laws(-) is a directional derivative ofV’ in the directionA;z as V;(z) =
measurable function of timedefined on[0, +o0). a7 (AT P + PA;)z < 0. Therefore, for every € F(z) the
directional derivative ofl” in the directionv is given by

[1l. CHARACTERIZATION OF INVARIANT SETS V(z;v) = 2T (ALP + PAu)x

As it is well known in the continuous time case [14], a I T, AT
sufficient condition guaranteeing the global asymptota:- st o Zflal(.x (A7 P+ PA;)z)
bility of the continuous-time switched systems (3) is the =2 iiVi(z) <0
existence of a common Lyapu_nov funq'uon._ When we conS|d§thce thea!s are positive.
weak common Lyapunov functions, which differ from standar

Lyapunov _ones_in having jushonpos_itive dg_rivativg along Then, the directional derivative df along any direction in
system trajectories, global asymptotic stability pro@srtan e setr(z) is nonpositive. Then, the solutions of (4) included
still be guaranteed using additional conditions such as, fﬁ’]to a level set ofi” satisfy the following control problem:

instance, a dwell time assumption on the switchings [18],[1  pgpiem 2: Find the controlsa® € L®([0, +00), A) and
[17], [18]. In this paper, no such assumptions are used aad "the associated trajectoriessatisfying ’ ’

only supposed that the switching law is a Lebesgue measurabl
function. An interesting question is to characterize ¢himit = A2 ae (5)
sets and its associated controls in presencevedak common subject to>>_, a1 Vi(z) = 0.
Lyapunov functions. =t
Assume that there exists a symmetric positive definite

matrix P (P > 0, PT = P ) such that for all: € R", By homogeneity, solving Problem 2 amounts to finding the
- trajectories of (4) that are included in a given level sef/of
x" Pr>0 and the associated control functions. Notice thatifand«
zT(ATP + PA)z <0,Vie{1,....1}. satisfy Problem 2, then
The function o € argmax a;V;(z).
V(z) = 2" Px acs

is a weak common Lyapunov function. What could be said penote byInv the union of all supports of trajectories
about the asymptotic behavior of the trajectories? An answgrresponding to a solution of Problem 2 and @y,, the
is given in the following theorem. union of all theirsw-limit sets. It follows from Theorem 1 that



Inv contains botH),, and the sef?, defined as the union of for all i¢ € Ij.
all w-limit sets associated to (3). We see the former as a linear relation between control
components, and we notice that either at least one coefficien
Therefore, Problem 2 may be useful to characterize.the C;, A;x is a non-vanishing function (giving an algebraic con-
limit set and the associated control for the switched systedition on «) or they all vanish, providing us with/,| extra
(3). An important question is: “What is the relative size(df algebraic conditions om that can again be differentiated. In
with respect tolnv and Qr,,,?” The answer can be obtainedhe case in which some coefficients are vanishing and some
using the following density result. other are not, we are given an algebraic conditionaoand
Theorem 3: (See [19, Theorem 1].) The Carathéodory sollsome algebraic conditions arthat can again be differentiated.
tions of (3) are dense among the solutions:af F'(z) in the We obtain in this way a recurrent procedure. Notice that we
following sense: Letr a global solution of (4) starting from do not need to require additional regularity assumptions on
xo and lete : [0, +00) — (0, +00) be continuous. Then therein order to consider all these subsequent differentiatisinse
exists a solutiorf of (3) starting from&, € B(zg,£(0)) such at each step only the differentiability af is required.

that ||{(t) — z(t)|| < e(t) for all t € [0, +00). We are therefore justified to define, for evepye I,
In other words, all global solution of (4) could be ap- o dk
proached arbitrarily close by global solutions of (3). Di, = Min {k | 3 € I, %Wcﬁ)x # 0 on (a, b)} ,

In view of this density theorem the-limit set of any
trajectory of (4) is thew-limit set of a trajectory of (3). thatis,p;, is the minimal number of time derivatives 6f,,x
Therefore Qv C Q C Inv. guaranteeing the appearance of at least one component of the

Assume now that we get a trajectory solving Problem gontrol with a nonzero coefficient.
which is not entirely anw-limit set. Since this solution is By eventually restricting the intervak, b), we will assume
included in a level set of/, it is clear, that itsw-limit set that all such non-vanishing coefficients are nonzero every-

remains in the same level set. where in(a, b).

IV. ALGORITHM TO COMPUTE INVARIANT SET For eachiy € I, the following conditions are fulfilled on

a,b),
The simplest situation occurs when on a time intefuab), (a,0)
a < b, there exists one indexsuch that Ciyx =0
. Ci A x =0, i1 € Iy
Vi(z) =2TCFCiz =0 o
. . . io—1
and‘/J(x)}éOforj#Z C'oAhAiz"'Aipio,lx =0, (11’... 7’Lpi0*1) 6]50
The control is then given by;(t) = 8;; for all ¢ € (a,b). (8)
In this situation, since:” C'C;z = 0 vanishes identically, by and
successive differentiations we get the set of equations: . ,
9 a ZikeloaikCiOAilAiz"'Aipioxzo’ (21,"- ’Zpio) EI(Z;O.
A Even if the the last equation can be differentiated once
CiA;x =0 ) . ; "
again (this depends on the regularity @, no additional
: information concerning the values of the control composent
CoA 1y — 0 can be obtained since their derivatives will appear.

The system of equations (7), (8), (9) provides us, at every
and the trajectory: is therefore contained in the unobservinstant of time, with a set of algebraic relations between th
able subspace associated to the palr, 4;), denoted in the controla and the pointz.
following by Ker(O(C;, A;)). The set of solution of (8), denote,, is monotone non
increasing w.r.tp;,. Then, assume that for every gt there
Assume now that there exists a subset of indiggsC exists a finite maximum number;, ... beyond which (that

{1,...,I} of cardinality |Io| > 1 such that for alliy € Iy, is for all p;, > pi, max) the solution set of (8) is constant.
As the numberp,, is a priori unknown, the following
Cipr =0 (6) algorithm may be used to try to determine a solution.
on(a,b) andCjz(t) # 0 if j & Iy andt € (a,b). In particular )
z, restricted to the intervah, b), evolvesin () Ker(C;,)and  Algorithm 4: for all subsetl, = {s1,82,..., 511} Of
io€lo 1,...,1} for eachiy € I
the associated control law (see Problem 2) takes its values i setp;, = 1 and S = {0}
the subset step 1: check if the solution set of (8) is constant
_ L Spiy = Spig—1
Ay ={a € A3 e =1} (7). e o if not setp,, := p;, + 1 and return to step 1
By differentiating (6) and replacing by ;. a;A;z, we end if
get Setpi, max 1= Di; — 1

> icr, @iCigAiz =0 end for



for all p = (ps;sPsss---,Psp,,) With 1 < pg, <

100
pskmaxfork:1,2,...,|jo| , -
compute the solution set of (8) taking = sy, — V,“
for k = 1,...,|Iy| and check if the intersection of all such ~ ~*| c2
solution sets reduces to the singlet{i} 0% 0z 04 o8 08 1 1z 14 15 18 2
if not solve the algebraic system of equations (7 Vey Yo time x10”
(8), (9) 200
end if 0 Vp ——
end for -zoo\/f Ve, ]
end for 74000 012 014 016 018 i 1‘.2 1.‘4 1.‘6 1.‘8 2
V__ vstime x10°
V. APPLICATION TO THE FLYING CAPACITOR CONVERTER ) B
It is easy to show that if a matri¥ > 0 satisfiesA? P + 0 — 1
PA; <0, for i =0,1,2,3, thenP must be of the type —2[ — .
p1 ps O o 02 04 05 08 _ i 12 14 16 18 2
P — p4 p2 O IL vs time X10-3
0 0 pP3
Moreover, in order to avoid a positive eigenvalue/iﬁP + Fig. 2. Example of a singular control making unobservable Eying
PA,;, the gainsL; and P must be such that Capacitor Converter
o1 (ug;lul B Ll(u)> 4 ps <u3;1u2 B L2(u)> . uq ;ug 0
U2 —uj u3z — ul u2 —ug . . .
P4 (T - Ll“”) +p2 (T - L2<u)) tryg——0— =0 choice ofuz does not necessarily belong|ta 1], but it is not

difficult to show that there exist values 6fi1, us, €1, e2) for

where Ly (u) and Ly(u) are respec'uvely the first and the € vhich this is the case.

second component df(u) = Lo + Yo, u;L; - B
As mention above, for a given mode, the subsystem is not" (he case where, = 0, we getu, = u, andus free.

or partially observable. The dynamic of such a system is fast':bc:r alldcontrlol laws blu'lt Im t:nsf ;/t\:ay, zﬁ’tf"lh(z)f_ IS Just
and the smallest eigenvalues is p=-3000. Choosing a p ; € and evolves on a Ievel set of the matrixin the figure
for example, we have applied the singular contrgl=

placement afpole = —10000 for each observable subspace™ = .5 ° " ~
of A; = A, — L;C, the matrix gain are given by ——marza—we | |t can be observed that once the eregr
is in or near 0 (that i in or nearInv) the errors in the

Lo = 10[0,0,5.7] estimation of the voltage values remain constant.
L1 =105[8.975,4.5, —0.0]
Ly = 10°[—4.475,4.475, 0] B. Observability of the operating point
L3 = 10°[—4.5,—8.975,0] Generally, the goal of the control applied on the flying

capacitor converter is to regulate the load current and to
maintain in average the voltage in each capacitor to a fixed
p1 =p2 =90 value of2F/3 in capacitorC, and E'//3 in capacitorC;. The

pa = —45 operating points of the flying capacitor converter may tf[gse

p3 = 6.075 x 10°. be defined in average value by, = [2E/3 E/3 z'mf]

with the matrix P having the following coefficients

A Characterization of the invariant set and ciated con- It. is _mterestlng to npuce that the only control value thr_alt
maintains the current in average around a nonzero value is a

trols
singular law. Indeed, for systems exhibiting a cyclic bebgv
A simple computation using algorithm 4 provides an invari,e gesired operating point is the mean value oh the cycle.

ant set and the associated generic singular control laws: To find the admissible operating point set, one can study
Inv = {e | e3 =0} (10) the evolution of the average stategiven by the convolution
product
Unv - S O 1 3 . — 1 t
1 {ue[01]: equz —uie; () = N, + a(t) = _/ 2(r)dr (12)
+uger —ugey = 0}, (11) ! Ty Ji-m,
which do not depend oih. whereT), is the cycle period andiz, is a rectangular window

For example, an error trajectory starting from a poirfunction.
e € Inv and corresponding to a contral whose first two ~ The dynamical model of is obtained differentiating (12).
components are arbitrarily chosen and the third one is setHowever, the derivative is generally hard to use becauses of i
uz = —%’;‘61‘“252 remains inInv. Notice that such nonlinear form.



A solution consists in defining the average state model
200 T

= Aok + L0 w0 (A1) + B), me[01]  (13) e
0 V(:1 —
which gives an approximation of the dynamicsaofu is the
aVerage Value Oﬁ on the CyC|e' It has been prOVen t%is _2000 0.601 O.(;OZ 0‘603 0‘(;04 0.605 0.606 0.607 0.608 0.609 0.01
close toz andz whenT, is small with respect to the system 200 ‘ Vey Vs time ‘
dynamics (see [20]). — Ve,
The operating points are then defined as the equilibria 100 —V| ]
the average state model, that is, the elements of the set 0
100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
chf _ {Ircf c Rn | onrcf+z:?:1ui_’rcf(Aierf‘i-Bi) _ O, 10 0.001 0.002 0.003 0.004vci).\?5015imeo.006 0.007 0.008 0.009 0.01
uirer € [0,1]}.  (14) :
- L
Since no mode allows to hold the given referengg; as -l — i
urer € (0,1), the only possibility for the switched system is . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
to enter into a Cyclic behavior around the referemcﬁe. 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Here, equatioMyz + Z?Zlui(Ai$+Bi) =0 has a unique Lot
solutionwu; = uy = ug leading to the equilibrium = %’LLg #+
0. This law corresponds to a singular law of the type seen at tfig 4. Convergence rate vs the switching frequengy=f30 kHz)
beginning of the section, rendering the system unobsesvabl
Consequently, a better approximation of the singular law
u; = us = ug by the switching law leads to a smallerC. Toward a separation principle
convergence rate of the observer. For example, if we consideknown as a Principle of separation of estimation and

two periodic switching laws, one obtained from the other by @ntrol, it has been proved that if a stable observer andestab
uniform time-rescaling, which realize, = uy = us in aver-  gtate feedback are designed for a linear time-invariartesys
age, we can see in Figures 3 and 4 that the convergence ratggf, the combined observer and feedback will be stable. The
system (2) decreases when the switching frequency inseasgsparation principle does not hold in general for nonlinear
For this example the observer convergence is achieved at ti§9/stems and in particular for switched systems. Neversele
t = 2 x 10~7s for a switching frequency off; = 10 kHz 4 version for discrete time linear switched systems is move
while it only happens at time= 1.0 x 10~2s for a switching jn [21]. But its continuous version remains to write. On the
frequency off, = 30 kHz. figure 5, an optimal state feedback law [6] is used jointlyhwit
the proposed observer.

The defined operating point ig:10 = 3 E, vo20 = 2E and

100 i, = 1A (here R = 10 ohm). We can see that the control

0 — — target is clearly achieved.
c1
—lOOf * N
Vo
-200 L L . L L Output optimal state feedback
0 0.5 1 15 2 25 3 40 T T T
200 ‘ Vc1 v‘s time x10° - 3%"\ il
S 20| B
v Ve g
100 A £
Veo
0 — 10
1 2 3 4 5 6 7 8
_100 L L L L L x10
0 0.5 1 15 2 25 3 60
V_, vs time -3 M
1 c2 x 10 aop--| |

Voltages in C,
~
5
9

x10°

. . . .
0.5 1 15 2 25 3 15
i, vs time %107

Currents

05 -

Fig. 3. Convergence rate vs the switching frequengy=£f10 kHz)

The method presented in this article has been validatedlgig 5. Output feedback law
simulation with the nominal parameter valué€s = Cy = o
40uF, L = 0.01H, R = 309.



VI. CONCLUSION

[15] J. P. Hespanha. Uniform stability of switched lineasteyns: extensions

of lasalle’s invariance principlelEEE Trans. on Automatic Control, 49

In this paper, a pole placement design of a switched observer (4):470-482, 2004.
is proposed and applied on a flying capacitor converter. A-cof#6] L. Mazzi A. Bacciotti. An invariance principle for ndnkar switched

plete characterization of invariant set and associatedraion
laws for the estimate error dynamic systems explains in kwvhic

case the system state cannot be estimated. A contrary, the 384, 2005. _ _
[18] Andrew R. Teel Rafal Goebel, Ricardo G. Sanfelice.

result proves the asymptotic convergency of the obserwgmun
suitable control laws (i.e. for switching law not assodiate

to an invariant set). An amazing consequence is that tlél

operating points of the flying capacitor are associated to an
invariant set making unobservable the system. Fortundtesy

points are defined by mean values remaining observable th&8
system in a neighborhood. In view of these results, it isrcle@ll

that asymptotic stability property are not sufficient and an
important question concerns the estimation of the observer
rate convergency.
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