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On the observability of the flying capacitor
converter

P. Riedinger1, M. Sigalotti2, J. Daafouz1

Abstract—This paper address the continuous state estimation
of a class of switched systems having modes in which the state
is not or partially observable. Using a relevant LaSalle principle
for switched systems, a characterization of invariant setsand
associated control laws for which the state cannot be estimated,
is given. This result is applied on a flying capacitor converter to
prove convergency of the estimation error under suitable control
laws. This work is also used to explain why rate of the estimate
error decreases with high switching frequency scheme.

Index Terms—Observer design, invariance principle, power
converter

I. I NTRODUCTION

In the case of industrial applications with power of a few
megawatts, the switching components voltage becomes very
high (several kilovolts). Therefore, the switching frequency
must be maintained to a low value and bulky filters are
needed for obtaining an appropriated output [1]. To palliate
this drawback, a new class of power electronic converters
has appeared, called multicell converters. These structures
consist of a series connection of switching devices with passive
storage elements, which are used to generate intermediate
voltage levels [2]. The control law for these structures needs
to maintain the intermediate voltage levels at some constant
values and to regulate the voltage or the load current. The
main advantages of the multilevel converter is that the spectral
quality of the output signal is improved by a high switching
frequency between the intermediate voltage levels [3]. The
downside is that, excepting simpler DC-DC converters, the
control of multilevel converters is more complex [4], [5].

Emerging control techniques such as stabilizing control [6],
predictive control [7] [8], flat control [9] are based on observer
technics. Moreover, the robustness of the proposed schemesis
also improved and ensured with parameters estimations. Thus,
there are a demanding for state or parameter estimations to
improve algorithms and to reduce the number of sensors. The
recursive filter such as Extended or Unscented Kalman Filter
are efficients and the most frequently used techniques [10],
[11]. But proof of the convergency are generally omitted or
intractable due to nonlinearity of the control system and the
dependency of the observability property w.r.t. the input [12].
Promising approaches for hybrid systems may be linking to
algebraic observability [13].

In this paper, for the class of affine switched systems, a
switched observer is proposed as state estimator and applied
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on a flying capacitor converter. The originality of the proposed
approach yields to a complete characterization of invariant sets
and associated control laws for which the estimator doesn’t
converge. This characterization do not depend on of the chosen
switched observer and is intrinsically linked to the structure
of the system.

In the next section, the problem statement is given and it is
shown that that the state estimation of the flying capacitor
relies in the stability of a linear switched systems having
non positive definite matrices. The section III is devoted to
the characterization of invariant set and associated control
laws. A discuss is introduced at the beginning of section IV
on how to determine the invariant set. Then an algorithm is
proposed to solve this problem. Switched observer design with
pole placement is illustrated in section V. Then the proposed
characterization is used to explain why the rate of convergency
of the observer is decreasing with the switching frequency.

II. PROBLEM STATEMENT

Fig. 1. Multilevel converter. The state variables are the capacitor voltages
and the current load. The control is the switch position ofU1, U2 andU3.

The state equations of the converter have an affine form
given by

ẋ(t) = A0x(t) +
∑3

i=1ui(t)(Aix(t) + Bi) (1)

with a three dimensional statex =
[
x1 x2 x3

]T
, a three

dimensional boolean control vectoru =
[
u1 u2 u3

]
∈ {0,

1}3, the matricesAi, i = 0, 1, 2, 3, defined by

A0 =



0 0 0
0 0 0
0 0 −R

L


 , A1 =




0 0 − 1
C1

0 0 0
1
L

0 0


 ,

A2 =




0 0 1

C1

0 0 − 1
C2

− 1
L

1
L

0



 , A3 =




0 0 0
0 0 1

C2

0 − 1
L

0



 ,

and B1 = B2 = 0, B3 = [0, 0, E/L]T . The statesx1, x2

are the voltages in each capacitor andx3 is the load current.
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The controlu refers to the switches position and we count23

modes following the values ofu.
The aim is to estimate the voltage of the capacitors in the

case where only the current in the load is measured. The output
y is defined by the equationy = Cx with C =

[
0 0 1

]
.

Notice that the state components are only partially observ-
able for every fixed configuration of the switches. For example,
if the switch value isu =

[
1 0 0

]
, then the voltage in the

capacitorC1 cannot be estimated since it is disconnected or if
the switch value isu =

[
1 0 1

]
then only the sum of the

voltages in capacitorsC1 and C2 can be estimated. Thus, it
is not possible to consider an observer for arbitrary switching
law. A question of interest is then how to characterize the
switching law for which it is impossible to observe the state?

Here such characterization will be illustrated in the case of
a Luenberger switched observer. The purpose is to study the
behavior of a switched observer of the form:

˙̂x = A0x̂ + L0(y − ŷ) +
∑3

i=1ui(Aix̂ + Bi + Li(y − ŷ)).

Defining the estimation errore = x − x̂, its dynamics are
given by:

˙̂e = Ã0e +
∑3

i=1uiÃie, (2)

with Ãi = Ai − LiC, i = 0, 1, 2, 3.
In view of equation (2), the problem statement consists in

studying the stability of a linear switched system

ẋ = f(t, x) = Aσ(t)x, σ(t) ∈ {1, . . . , I} , (3)

where the statex(t) ∈ R
n, Ai, i ∈ {1, . . . , I} are non positive

definite matrices (Ai ≤ 0) and the switching lawσ(·) is a
measurable function of timet defined on[0, +∞).

III. C HARACTERIZATION OF INVARIANT SETS

As it is well known in the continuous time case [14], a
sufficient condition guaranteeing the global asymptotic sta-
bility of the continuous-time switched systems (3) is the
existence of a common Lyapunov function. When we consider
weak common Lyapunov functions, which differ from standard
Lyapunov ones in having justnonpositive derivative along
system trajectories, global asymptotic stability properties can
still be guaranteed using additional conditions such as, for
instance, a dwell time assumption on the switchings [15], [16],
[17], [18]. In this paper, no such assumptions are used and itis
only supposed that the switching law is a Lebesgue measurable
function. An interesting question is to characterize theω-limit
sets and its associated controls in presence of aweak common
Lyapunov functions.

Assume that there exists a symmetric positive definite
matrix P (P > 0, PT = P ) such that for allx ∈ R

n,

xT Px > 0

xT (AT
i P + PAi)x ≤ 0, ∀i ∈ {1, . . . , I} .

The function
V (x) = xT Px

is a weak common Lyapunov function. What could be said
about the asymptotic behavior of the trajectories? An answer
is given in the following theorem.

Theorem 1: Let x0 ∈ R
n and σ(·) be a switching law

defined on[0, +∞). Let x be the solution of the switched
system corresponding toσ(·) and with initial conditionx0.
Then theω-limit set Ω(x) is included in a level set ofV
and for all y0 ∈ Ω(x), there exists an absolutely continuous
function y which satisfies

ẏ = Aαy for a.e.t ≥ 0

y(0) = y0

y(t) ∈ Ω(x) for everyt ≥ 0,

and where the time variant matrixAα =
∑I

i=1αiAix evolves
following a control lawα(t) = (α1(t), . . . , αI(t)) taking its
values in the set

∆ =
{
α = (α1, . . . , αI) |

∑I

i=1αi = 1, αi ≥ 0, i = 1, . . . , I
}

.

In particular,
V̇ (y(t)) = 0

for every t ≥ 0, where, with a standard abuse of notations,
V̇ (y(t)) denotes the derivative oft 7→ V (y(t)).

Roughly speaking, theΩ(x) limit set is made with Fillipov
solution of the switched systems included in a level set and
given by the differential inclusion:

ẋ ∈ F (x) (4)

where the set-valued mapx 7→ F (x) =
∑I

i=1αiAix | α ∈
∆} ⊂ R

n.
Define, for everyx ∈ R

n and everyi = 1, . . . , N the
directional derivative ofV in the directionAix as V̇i(x) =
xT (AT

i P + PAi)x ≤ 0. Therefore, for everyv ∈ F (x) the
directional derivative ofV in the directionv is given by

V̇ (x; v) = xT (AT
αP + PAα)x

=
∑I

i=1αi(x
T (AT

i P + PAi)x)

=
∑I

i=1αiV̇i(x) ≤ 0

since theα′
is are positive.

Then, the directional derivative ofV along any direction in
the setF (x) is nonpositive. Then, the solutions of (4) included
into a level set ofV satisfy the following control problem:

Problem 2: Find the controlsα∗ ∈ L∞([0, +∞), ∆) and
the associated trajectoriesx satisfying

ẋ = Aα∗x a.e (5)

subject to
∑I

i=1α
∗
i V̇i(x) = 0.

By homogeneity, solving Problem 2 amounts to finding the
trajectories of (4) that are included in a given level set ofV
and the associated control functions. Notice that ifα∗ andx
satisfy Problem 2, then

α∗ ∈ arg max
α∈∆

αiV̇i(x).

Denote byInv the union of all supports of trajectoriesx
corresponding to a solution of Problem 2 and byΩInv the
union of all theirsω-limit sets. It follows from Theorem 1 that
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Inv contains bothΩInv and the setΩ, defined as the union of
all ω-limit sets associated to (3).

Therefore, Problem 2 may be useful to characterize theω-
limit set and the associated control for the switched system
(3). An important question is: “What is the relative size ofΩ
with respect toInv and ΩInv?” The answer can be obtained
using the following density result.

Theorem 3: (See [19, Theorem 1].) The Carathéodory solu-
tions of (3) are dense among the solutions ofẋ ∈ F (x) in the
following sense: Letx a global solution of (4) starting from
x0 and letε : [0, +∞) → (0, +∞) be continuous. Then there
exists a solutionξ of (3) starting fromξ0 ∈ B(x0, ε(0)) such
that ‖ξ(t) − x(t)‖ < ε(t) for all t ∈ [0, +∞).

In other words, all global solution of (4) could be ap-
proached arbitrarily close by global solutions of (3).

In view of this density theorem theω-limit set of any
trajectory of (4) is theω-limit set of a trajectory of (3).
Therefore,ΩInv ⊂ Ω ⊂ Inv.

Assume now that we get a trajectory solving Problem 2
which is not entirely anω-limit set. Since this solution is
included in a level set ofV , it is clear, that itsω-limit set
remains in the same level set.

IV. A LGORITHM TO COMPUTE INVARIANT SET

The simplest situation occurs when on a time interval(a, b),
a < b, there exists one indexi such that

V̇i(x) = xT CT
i Cix ≡ 0

and V̇j(x) 6= 0 for j 6= i.
The control is then given byαj(t) = δij for all t ∈ (a, b).

In this situation, sincexT CT
i Cix = 0 vanishes identically, by

successive differentiations we get the set of equations:

Cix = 0

CiAix = 0

...

CiA
n−1
i x = 0

and the trajectoryx is therefore contained in the unobserv-
able subspace associated to the pair (Ci, Ai), denoted in the
following by Ker(O(Ci, Ai)).

Assume now that there exists a subset of indicesI0 ⊆
{1, . . . , I} of cardinality |I0| > 1 such that for alli0 ∈ I0,

Ci0x ≡ 0 (6)

on (a, b) andCjx(t) 6= 0 if j 6∈ I0 andt ∈ (a, b). In particular
x, restricted to the interval(a, b), evolves in

⋂
i0∈I0

Ker(Ci0 ) and

the associated control law (see Problem 2) takes its values in
the subset

∆I0 =
{
α ∈ ∆ |

∑
i0∈I0

αi0 = 1
}

. (7)

By differentiating (6) and replacinġx by
∑

i∈I0
αiAix, we

get ∑
i∈I0

αiCi0Aix = 0

for all i0 ∈ I0.
We see the former as a linear relation between control

components, and we notice that either at least one coefficient
Ci0Aix is a non-vanishing function (giving an algebraic con-
dition on α) or they all vanish, providing us with|I0| extra
algebraic conditions onx that can again be differentiated. In
the case in which some coefficients are vanishing and some
other are not, we are given an algebraic condition onα and
some algebraic conditions onx that can again be differentiated.

We obtain in this way a recurrent procedure. Notice that we
do not need to require additional regularity assumptions onx
in order to consider all these subsequent differentiations, since
at each step only the differentiability ofx is required.

We are therefore justified to define, for everyi0 ∈ I0,

pi0 = min

{
k | ∃i ∈ I0,

∂

∂αi

dk

dtk
Ci0x 6≡ 0 on (a, b)

}
,

that is,pi0 is the minimal number of time derivatives ofCi0x
guaranteeing the appearance of at least one component of the
control with a nonzero coefficient.

By eventually restricting the interval(a, b), we will assume
that all such non-vanishing coefficients are nonzero every-
where in(a, b).

For eachi0 ∈ I0 the following conditions are fulfilled on
(a, b),




Ci0x = 0
Ci0Ai1x = 0, i1 ∈ I0

· · ·

Ci0Ai1Ai2 · · ·Aipi0
−1x = 0,

(
i1, · · · , ipi0−1

)
∈ I

pi0−1
0

(8)
and
∑

ik∈I0
αik

Ci0Ai1Ai2 · · ·Aipi0
x = 0,

(
i1, · · · , ipi0

)
∈ I

pi0

0 .
(9)

Even if the the last equation can be differentiated once
again (this depends on the regularity ofα), no additional
information concerning the values of the control components
can be obtained since their derivatives will appear.

The system of equations (7), (8), (9) provides us, at every
instant of time, with a set of algebraic relations between the
control α and the pointx.

The set of solution of (8), denotedSpi0
is monotone non

increasing w.r.t.pi0 . Then, assume that for every setI0, there
exists a finite maximum numberpi0 max beyond which (that
is for all pi0 > pi0 max) the solution set of (8) is constant.

As the numberpi0 is a priori unknown, the following
algorithm may be used to try to determine a solution.

Algorithm 4: for all subset I0 = {s1, s2, . . . , s|I0|} of
{1, . . . , I} for eachi0 ∈ I0

setpi0 = 1 andS0 = {∅}
step 1: check if the solution set of (8) is constant

Spi0
= Spi0−1

if not setpi0 := pi0 + 1 and return to step 1
end if
setpi0 max := pi0 − 1

end for
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for all p = (ps1 , ps2 , . . . , ps|I0|
) with 1 ≤ psk

≤
psk max for k = 1, 2, . . . , |I0|

compute the solution set of (8) takingi0 = sk

for k = 1, . . . , |I0| and check if the intersection of all such
solution sets reduces to the singleton{0}

if not solve the algebraic system of equations (7),
(8), (9)

end if
end for

end for

V. A PPLICATION TO THE FLYING CAPACITOR CONVERTER

It is easy to show that if a matrixP > 0 satisfiesÃT
i P +

PÃi 6 0, for i = 0, 1, 2, 3, thenP must be of the type

P =




p1 p4 0
p4 p2 0
0 0 p3


 .

Moreover, in order to avoid a positive eigenvalue iñAT
i P +

PÃi, the gainsLi andP must be such that

p1

 

u2 − u1

C1

− L1(u)

!

+ p4

 

u3 − u2

C1

− L2(u)

!

+ p3
u1 − u2

L
= 0

p4

 

u2 − u1

C1

− L1(u)

!

+ p2

 

u3 − u2

C1

− L2(u)

!

+ p3
u2 − u3

L
= 0

where L1(u) and L2(u) are respectively the first and the
second component ofL(u) = L0 +

∑3
i=1uiLi.

As mention above, for a given mode, the subsystem is not
or partially observable. The dynamic of such a system is fast
and the smallest eigenvalues is p=-3000. Choosing a pole
placement atpole = −10000 for each observable subspace
of Ãi = Ai − LiC, the matrix gain are given by

L0 = 104[0, 0, 5.7]

L1 = 106[8.975, 4.5,−0.0]

L2 = 106[−4.475, 4.475, 0]

L3 = 106[−4.5,−8.975, 0]

with the matrixP having the following coefficients

p1 = p2 = 90

p4 = −45

p3 = 6.075 × 106.

A. Characterization of the invariant set and associated con-
trols

A simple computation using algorithm 4 provides an invari-
ant set and the associated generic singular control laws:

Inv = {e | e3 = 0} (10)

UInv = {u ∈ [0 1]
3

: e2u3 − u1e1

+ u2e1 − u2e2 = 0}, (11)

which do not depend onL.
For example, an error trajectory starting from a point

e ∈ Inv and corresponding to a controlu whose first two
components are arbitrarily chosen and the third one is set to
u3 = −−u1e1+u2e1−u2e2

e2
remains inInv. Notice that such
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Fig. 2. Example of a singular control making unobservable the Flying
Capacitor Converter

choice ofu3 does not necessarily belong to[0, 1], but it is not
difficult to show that there exist values of(u1, u2, e1, e2) for
which this is the case.

In the case wheree2 = 0, we getu1 = u2 andu3 free.
For all control laws built in this way, system (2) is just

stable and evolves on a level set of the matrixP . In the figure
(2), for example, we have applied the singular controlu3 =
−−u1e1+u2e1−u2e2

e2
. It can be observed that once the errore3

is in or near 0 (that ise in or near Inv) the errors in the
estimation of the voltage values remain constant.

B. Observability of the operating point

Generally, the goal of the control applied on the flying
capacitor converter is to regulate the load current and to
maintain in average the voltage in each capacitor to a fixed
value of2E/3 in capacitorC2 andE/3 in capacitorC1. The
operating points of the flying capacitor converter may therefore
be defined in average value byxref =

[
2E/3 E/3 iref

]T
.

It is interesting to notice that the only control value that
maintains the current in average around a nonzero value is a
singular law. Indeed, for systems exhibiting a cyclic behavior,
the desired operating point is the mean value ofx on the cycle.

To find the admissible operating point set, one can study
the evolution of the average statex̄ given by the convolution
product

x̄(t) = ⊓Tp
∗ x(t) =

1

Tp

∫ t

t−Tp

x(τ)dτ (12)

whereTp is the cycle period and⊓Tp
is a rectangular window

function.
The dynamical model of̄x is obtained differentiating (12).

However, the derivative is generally hard to use because of its
nonlinear form.
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A solution consists in defining the average state model

˙̃x = A0x̃ +
∑3

i=1ūi(t)(Aix̃(t) + Bi), ui ∈ [0 1] (13)

which gives an approximation of the dynamics ofx̄. ū is the
average value ofu on the cycle. It has been proven thatx̃ is
close tox̄ andx whenTp is small with respect to the system
dynamics (see [20]).

The operating points are then defined as the equilibria of
the average state model, that is, the elements of the set

Xref = {xref ∈ R
n | A0xref+

∑3
i=1ui,ref(Aixref+Bi) = 0,

ui,ref ∈ [0, 1]}. (14)

Since no mode allows to hold the given referencexref as
uref ∈ (0, 1), the only possibility for the switched system is
to enter into a cyclic behavior around the referencexref .

Here, equationA0x+
∑3

i=1ui(Aix+Bi) = 0 has a unique
solutionu1 = u2 = u3 leading to the equilibriumi = E

R
u3 6=

0. This law corresponds to a singular law of the type seen at the
beginning of the section, rendering the system unobservable.

Consequently, a better approximation of the singular law
u1 = u2 = u3 by the switching law leads to a smaller
convergence rate of the observer. For example, if we consider
two periodic switching laws, one obtained from the other by a
uniform time-rescaling, which realizeu1 = u2 = u3 in aver-
age, we can see in Figures 3 and 4 that the convergence rate of
system (2) decreases when the switching frequency increases.
For this example the observer convergence is achieved at time
t = 2 × 10−3s for a switching frequency offs = 10 kHz
while it only happens at timet = 1.0×10−2s for a switching
frequency offs = 30 kHz.
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Fig. 3. Convergence rate vs the switching frequency (fs = 10 kHz)

The method presented in this article has been validated in
simulation with the nominal parameter valuesC1 = C2 =
40µF , L = 0.01H , R = 30Ω.
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Fig. 4. Convergence rate vs the switching frequency (fs = 30 kHz)

C. Toward a separation principle

Known as a Principle of separation of estimation and
control, it has been proved that if a stable observer and stable
state feedback are designed for a linear time-invariant system,
then the combined observer and feedback will be stable. The
Separation principle does not hold in general for nonlinear
systems and in particular for switched systems. Nevertheless
a version for discrete time linear switched systems is proved
in [21]. But its continuous version remains to write. On the
figure 5, an optimal state feedback law [6] is used jointly with
the proposed observer.

The defined operating point isvC10 = 1
3E, vC20 = 2

3E and
iL = 1A (hereR = 10 ohm). We can see that the control
target is clearly achieved.
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VI. CONCLUSION

In this paper, a pole placement design of a switched observer
is proposed and applied on a flying capacitor converter. A com-
plete characterization of invariant set and associated control
laws for the estimate error dynamic systems explains in which
case the system state cannot be estimated. A contrary, the
result proves the asymptotic convergency of the observer under
suitable control laws (i.e. for switching law not associated
to an invariant set). An amazing consequence is that the
operating points of the flying capacitor are associated to an
invariant set making unobservable the system. Fortunately, this
points are defined by mean values remaining observable the
system in a neighborhood. In view of these results, it is clear
that asymptotic stability property are not sufficient and an
important question concerns the estimation of the observer
rate convergency.
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