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Abstract

In this paper, a suitable LaSalle principle for continuous-time linear switched systems is used to characterize invariant sets and
their associated switching laws. An algorithm to determine algebraically these invariants is proposed. The main novelty of our
approach is that we require no dwell time conditions on the switching laws. By not focusing on restricted control classes we
are able to describe the asymptotic properties of the considered switched systems. Observability analysis of a flying capacitor
converter is proposed as an illustration.
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1 Introduction

Switched systems have attracted a growing interest in
recent years [18]. Such systems are common across a di-
verse range of application areas. As an example, switched
systems play a major role in the field of power systems
where interactions between continuous dynamics and
discrete events are an intrinsic part of their behavior.

Stability of switched systems is a fundamental property
for which many contributions have been proposed. Some
important results go back to the works on the stability of
systems driven by discontinuous feedback laws [25,23].
The importance of discontinuous feedback laws in con-
trol theory has been acknowledged since the late seven-
ties, see [27,2]. More specific results for switched and hy-
brid systems have since then been developed (see [7,10]
for multiple Lyapunov based approach, [18] for Lie alge-
bra based results , [15] for the role of dwell time and [26]
for a survey on stability criteria for switched and hybrid
systems). One of the most fundamental results in the
field of dynamical systems analysis and feedback control
is the LaSalle principle. In the context of switched sys-
tems, recent investigations (see [9,16,5,20]) provide in-
teresting contributions leading to extremely general re-
sults that require little structure on the family of solu-
tions of the hybrid system [24,14]. We study in this pa-
per the characterization of invariant sets and the asso-
ciated control laws in the special case of linear switched
systems and we apply it to the design of a switched ob-

server. The invariance result on which our analysis is
based uses essentially a result given in [19]. A finer char-
acterization is possible in the framework of our paper,
due to the linearity of the vector fields and the fact that
the Lyapunov function is assumed to be quadratic.

The main novelty of our approach is that we require
no dwell time conditions on the switching laws. By not
focusing on restricted control classes we are able to
describe the asymptotic properties of the considered
switched systems. We can, in particular, characterize
ω-limit sets of solutions of the switched system in terms
of special invariant sets of the differential inclusion ob-
tained by convexifying the set of admissible velocities.
We show how to compute algebraically such invariant
sets and the associated control laws. Such a character-
ization can be used to determine stabilizing switching
laws. We illustrate this fact on a practical application
from power systems, namely, the observation of a flying
capacitor converter. No mode of this switched system is
fully observable, in the sense that the observability ma-
trix associated to each mode has not full rank. Our aim is
to analyze which switching laws lead to unobservability.

The paper is organized as follows. The next section gives
definitions of some important notions used in the paper.
Section 3 presents the description of ω-limit sets and
corresponding switching laws in terms of invariant sets
of the associated differential inclusion. In Section 4 we
propose an algorithm allowing to compute algebraically
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the invariant sets and their associated controls laws. The
application to the observation problem of a flying capac-
itor converter is detailed in Section 5.

2 Preliminaries

Let us recall some standard notions (see, for instance,
[13], section 3.12.4, p.129).

Definition 1 A function x : [0, +∞) → R
n is said to

approach a set S ⊂ R
n if inf

s∈S
‖x(t) − s‖ → 0 as t → ∞.

Definition 2 A point l ∈ R
n is an ω-limit point of x :

[0, +∞) → R
n, if there exists a sequence (tn)n∈N with

tn → ∞ and x(tn) → l as n → ∞. The set Ω(x) of all
such ω-limit points is the ω-limit set of x.

Property 3 The ω-limit set Ω(x) is always closed. If x
is bounded and continuous, then Ω(x) is nonempty, com-
pact, connected, is approached by x and it is the smallest
closed set so approached.

3 Problem statement and characterization of
invariant sets

Consider the linear switched system

ẋ = Aσ(t)x, (1)

where the state x(t) belongs to R
n, A1, . . . , AI are

square matrices and the switching law σ belongs to
L∞([0, +∞), {1, . . . , I}).

Notice that the initial-value problem associated with (1)
has a unique global Carathéodory solution (see for in-
stance [1] or [19]).

As it is well known, a sufficient condition guarantee-
ing the global asymptotic stability of the continuous-
time switched system (1) is the existence of a common
quadratic Lyapunov function [12]. Nevertheless, com-
mon quadratic Lyapunov functions are not necessary for
asymptotic stability of switched systems (see [22,11] and
also [21] for similar results on Lyapunov functions of
higher degree). The main advantage in using quadratic
Lyapunov functions is the fact that LMI methods pro-
vide powerful numerical tools to compute them [6].

In this paper, we consider weak common Lyapunov
functions, which differ from standard Lyapunov ones in
having just nonpositive derivative along system trajec-
tories. The main difference with a LMI based approach
is related to fact that asymptotic stability is analyzed
using an extension of the LaSalle principle and we pro-
vide a characterization of the ω-limit sets and their asso-
ciated switching laws. Using weak Lyapunov functions,

global asymptotic stability can be guaranteed using
additional conditions such as a dwell time assumption
[16,5,20,24,14]. Here, no such assumptions are used and
it is only supposed that the switching law is a Lebesgue
measurable function.

Assume that there exists a symmetric positive definite
matrix P (P > 0, PT = P ) such that for all x ∈ R

n\{0},

xT Px > 0

xT (AT
i P + PAi)x ≤ 0, ∀i ∈ {1, . . . , I} .

The function V (x) = xT Px is a weak common quadratic
Lyapunov function. The asymptotic behavior of the tra-
jectories is described by the following theorem.

Theorem 4 Let x0 ∈ R
n and σ(·) be a switching law

defined on [0, +∞). Let x be the solution of the switched
system corresponding to σ(·) with initial condition x0.
Then the ω-limit set Ω(x) is contained in a level set of V
and, for all y0 ∈ Ω(x), there exists an absolutely contin-
uous function y which satisfies

ẏ = Aαy for a.e. t ≥ 0 (2)

y(0) = y0

y(t) ∈ Ω(x) for every t ≥ 0,

where the time-dependent matrix Aα =
∑I

i=1αiAi cor-
responds to a control law α(·) taking its values in the set

∆ =
{

α = (α1, . . . , αI) ∈ [0, 1]I |
∑I

i=1αi = 1
}

.

In particular, V̇ (y(t)) = 0 for every t ≥ 0, where, with a

standard abuse of notations, V̇ (y(t)) denotes the deriva-
tive of t 7→ V (y(t)).

The theorem is a direct consequence of known facts. In-
deed, the existence of a solution y of

ẏ ∈
{

I
∑

i=1

αiAiy | α ∈ ∆

}

=: F (y)

on Ω(x) follows from [19]. Then α(·) can be chosen mea-
surable thanks to classical selection results (see [3,4]).

Define, for any x ∈ R
n and i = 1, . . . , N , V̇i(x) =

xT (AT
i P +PAi)x ≤ 0. For any v =

∑I

i=1 αiAix ∈ F (x),
the directional derivative of V in the direction v satisfies:

V̇ (x; v) = xT (AT
αP + PAα)x

=
∑I

i=1αi(x
T (AT

i P + PAi)x)

=
∑I

i=1αiV̇i(x) ≤ 0

since the αi’s are positive. The solutions of (2) evolving
in a level set of V satisfy the following control problem.
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Problem 5 Find the controls α∗ ∈ L∞([0, +∞), ∆) and
the associated trajectories x satisfying

ẋ = Aα∗x a.e (3)

subject to
∑I

i=1α
∗
i V̇i(x) = 0.

Notice that if α∗ and x satisfy Problem 5, then α∗ ∈
argmax

α∈∆
αiV̇i(x).

Denote by Inv the union of all supports of trajectories
x corresponding to solutions of Problem 5, by ΩInv the
union of all their ω-limit sets and by Ω the union of all
ω-limit sets of trajectories of (1).

Proposition 6 The following chain of inclusion holds

ΩInv ⊂ Ω ⊂ Inv. (4)

Both inclusions can be strict.

Proof. The inclusion of Ω in Inv is a direct consequence
of Theorem 4. In order to prove that ΩInv ⊂ Ω, recall the
following result [17, Theorem 1]: if x is a global solution
of (2) starting from x0 and ε : [0, +∞) → (0, +∞) is
continuous, then there exists a solution ξ of (1) starting
from ξ0 ∈ B(x0, ε(0)) such that ‖ξ(t) − x(t)‖ < ε(t)
for all t ∈ [0, +∞). Therefore, the ω-limit set of any
trajectory of (2) is the ω-limit set of a trajectory of (1).
This concludes the proof of (4). 2

An example where both inclusions are strict can be con-
structed as follows. Let n = 3 and P be the identity ma-
trix. For every a ∈ R

3, let S(a) be the skew-symmetric
matrix such that S(a)v = a × v, where × denotes the
cross product. Fix two orthogonal unit vectors v and w
of R

3. If I = 2, A1 = −wwT + S(w + v) and A2 =
−wwT + S(−w + w × v), then V (x) = ‖x‖2 is non-
decreasing along the dynamics of A1 and A2 and the di-
rectional derivative of V at a point x along A1x or A2x
is zero if and only if x is orthogonal to w. Notice that the
only invariant subset of {x | xT w = 0} for the dynamics
of A1 or A2 is {0}. It is easy to check that the solutions
to Problem 5 are either constant trajectories on points
of the line L = span(v +w× v) or arcs of circle centered

at the origin and connecting λv to (λ
√

2/2)(v + w × v)

or λv×w to (λ
√

2/2)(v +w× v), for some λ ∈ R. These
arcs are parameterized with a velocity going to zero as
the trajectory approaches L. Thus, ΩInv = Ω = L and
Inv = {x | xT w = 0, (xT v)(xT (v × w)) ≥ 0}.
The previous argument can be refined in order to get
that both inclusions in (4) are strict. In order to do so,
denote by A(v, w) the pair of matrices {A1, A2} intro-
duced above, seen as a function of the vectors v and w.
Similarly, let I(v, w) = {x | xT w = 0, (xT v)(xT (v ×
w)) ≥ 0}. Let T be a geodesic equilateral triangle on

the unit sphere of R
3 with edges of length π/4. Denote

by v1, v2, v3 its vertices and define wi = vi × vi+1/‖vi ×
vi+1‖, i = 1, 2, 3, with the convention that v4 = v1. Let
I = 6 and consider the set {A1, . . . , A6} obtained as
union of A(v1, w1), A(v2, w2), A(v3, w3). Then ΩInv =
R{v1, v2, v3}, Ω = RT and Inv = ∪3

i=1I(vi, wi).

v2

v1

v3

v2

v1

v3

Fig. 1. The intersection of Ω (left) and Inv (right) with the
unit sphere.

Proposition 6 states that if we are able to characterize
completely the set of solutions of Problem 5 then we can
bound from above and from below the set Ω containing
all possible ω-limit sets of the original switched system.
This motivates the results of the next section.

Another relation between Problem 5 and the conver-
gence to the origin of a trajectory of (1) is the following.

Proposition 7 Let x be a solution of (1) and α :
[0, +∞) → ∆ be the piecewise constant function taking
value on the vertices of ∆ such that ẋ = Aαx. If there ex-
ists a sequence of times tn → +∞ such that the sequence
(α(tn + ·))n∈N weak-⋆ converges in L∞([0, +∞), ∆) to
some α⋆ that does not correspond to any nonzero solu-
tion of Problem 5, then x(t) → 0 as t → +∞.

Recall that a sequence αn ∈ L∞([0, +∞), ∆) weak-⋆
converges to α⋆ if for every ϕ ∈ L1([0, +∞), ∆) the
sequence of integrals

∫ ∞

0 αn(t) · φ(t)dt converges to
∫ ∞

0 α⋆(t) ·φ(t)dt as n → ∞. Due to the Banach-Alaoglu
theorem, L∞([0, +∞), ∆) is sequentially weak-⋆ com-
pact.

Proposition 7 follows from the remark that x(tn), be-
ing bounded, converges, up to the extraction of a sub-
sequence, to some x⋆ ∈ R

n and that x(tn + ·) converges
uniformly on compact sets to the trajectory of (3) cor-
responding to α⋆ with x0 = x⋆. (See, e.g, [8] for details.)

Proposition 7 can be used to guarantee the convergence
to the origin of solutions of (1) corresponding to a wide
class of switching laws, once the controls corresponding
to solutions of Problem 5 are characterized.

4 Algebraic characterization

We discuss in this section a procedure to get algebraically
the solutions of Problem 5. For every i = 1, . . . , I, let Ci
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be the matrix defined by

CT
i Ci = −(AT

i P + PAi).

Then, along a solution x of Problem 5,

0 = V̇ (x) = xT (AT
αP + PAα)x

= −xT CT
α Cαx = 0 a.e.

with Cα =
∑I

i=1

√
αiCi. Hence, for a.a. t, Cαx = 0.

Let us assume that there exists a subset of indices I0 ⊆
{1, . . . , I} of cardinality |I0| ≥ 1 on a time interval (a, b),
a < b, such that for all i0 ∈ I0,

Ci0x ≡ 0 (5)

and Cjx(t) 6= 0 if j 6∈ I0. In particular x, restricted
to the interval (a, b), evolves in

⋂

i0∈I0

Ker(Ci0) and the

associated control law takes its values in the subset

∆I0 =
{

α ∈ ∆ | ∑

i0∈I0
αi0 = 1

}

. (6)

By differentiating (5) and replacing ẋ by
∑

i∈I0
αiAix, we

get for all i0 ∈ I0,
∑

i∈I0
αiCi0Aix = 0. We are therefore

justified to define, for every i0 ∈ I0,

pi0(x) = min

{

k | ∃i ∈ I0,
∂

∂αi

dk

dtk
Ci0x 6≡ 0 on (a, b)

}

,

that is, pi0(x) ∈ N ∪ {+∞} is the minimal number of
time derivatives of Ci0x guaranteeing the appearance of
at least one component of the control with a nonzero
coefficient. Notice that the time derivative appearing in
the definition of pi0(x) corresponds to the formal re-
placement of ẋ by Aαx and that pi0(x) depends on I0.
Let pi0 be the minimum value of pi0(x(t)) as t varies in
(a, b) and assume that pi0 is finite. For each i0 ∈ I0 the
following conditions are fulfilled on (a, b),



























Ci0x = 0

Ci0Ai1x = 0, i1 ∈ I0

...

Ci0Ai1Ai2 · · ·Aipi0
−1

x = 0,
(

i1, · · · , ipi0
−1

)

∈ I
pi0

−1
0

(7)
and

∑

ik∈I0
αik

Ci0Ai1Ai2 · · ·Aipi0
x=0,

(

i1, · · · , ipi0

)

∈ I
pi0

0 .

(8)
The system of equations (6), (7), (8) provides us, at every
instant of time, with a set of algebraic relations between
the control α and the point x. Let us rewrite system (7)
in matrix form as Mi0,I0,pi0

x = 0 and denote by Si0,I0,pi0

the kernel of Mi0,I0,pi0
.

Lemma 8 For every set I0 and every i0 ∈ I0, there
exists a finite number pmax

i0,I0
beyond which (that is for all

p > pmax
i0,I0

) Si0,I0,p is constant. Moreover, pmax
i0,I0

is the
smallest p such that Si0,I0,p = Si0,I0,p+1.

Proof. It is clear that Si0,I0,p is monotone non-
increasing w.r.t. p. We prove by recurrence on k that
if Si0,I0,p = Si0,I0,p+1 then Si0,I0,p = Si0,I0,p+k for all
k ≥ 1. If x ∈ Si0,I0,p+1 then, for every i ∈ I0,

yi = Aix ∈ Si0,I0,p = Si0,I0,p+1,

i.e. Mi0,I0,p+1yi = 0. Replacing yi by Aix for all i ∈ I0,
we get that x ∈ Si0,I0,p+2. 2

Notice that if pi0 ≥ pmax
i0,I0

then (8) is verified. To avoid
pathological cases we introduce the following definition.

Definition 9 A control α solving Problem 5 is called
regular if there exists a sequence of concatenated time in-
tervals [ak, bk) whose union is [0, +∞) and an associated
sequence Ik

0 of subsets of {1, . . . , I} such that for a.a.
t ∈ (ak, bk), α(t) ∈ ∆Ik

0

.

We can now state the following proposition.

Proposition 10 If (x, α) is a solution of Problem 5 with
α regular then its support in R

n × ∆ is included in the
union of all subsets obtained through the following algo-
rithm: take a subset I0 = {s1, s2, . . . , s|I0|} of {1, . . . , I},
take p = (ps1

, ps2
, . . . , ps|I0|

) with 1 ≤ psk
≤ pmax

sk,I0
,

k = 1, 2, . . . , |I0|, and solve the algebraic system of equa-
tions (6), (7), (8) associated to I0 and p.

The projection on R
n of the set obtained through the

algorithm proposed in Proposition 10 usually contains
strictly the set Inv. The following proposition gives a
criterion guaranteeing that the output of the algorithm
is contained in Inv.

Proposition 11 Fix I0 and p as in the statement of
Proposition 10 and assume that the projection on R

n of
the solutions of (6), (7), (8) is the same as the projec-
tion of the solutions of (7), (8). Then such projection is
contained in Inv.

The proposition follows from the fact that the projection
of the solutions of (7),(8) is a linear space L and the
equality of projections guarantees that there exists a
velocity tangent to L that is admissible for Problem 5.

5 Illustrative application

We will show in this section how the characterization
proposed in the previous sections can be used to study
observability of a flying capacitor converter.
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Fig. 2. Flying capacitor converter.

5.1 Problem statement

The state equations of the converter are given by

ẋ(t) = A0x(t) +
∑3

i=1ui(t)(Aix(t) + Bi) (9)

where x = (x1, x2, x3) ∈ R
3 and u = (u1, u2, u3) ∈ {0,

1}3. The matrices Ai, i = 0, 1, 2, 3, are defined by

A0 =









0 0 0

0 0 0

0 0 −R

L









, A1 =









0 0 − 1
C1

0 0 0

1
L

0 0









,

A2 =









0 0 1
C1

0 0 − 1
C2

− 1
L

1
L

0









, A3 =









0 0 0

0 0 1
C2

0 − 1
L

0









,

and B1 = B2 = 0, B3 = (0, 0, E/L)T . The states x1,
x2 are the voltages in each capacitor and x3 is the load
current. The control u refers to the switches position and
each among the possible 23 values of u corresponds a
mode of (9). Here and in the following we take C1 = C2 =
40µF , L = 0.01H , R = 30Ω. The aim is to estimate
the voltage of the capacitors by measuring only the load
current. The output y is thus defined by the equation
y = Cx with C = (0, 0, 1).

Notice that the state components are only partially ob-
servable for every fixed mode, since the observability ma-
trix has never full rank. Thus, no observer will converge
to the actual state for arbitrary switching laws. A ques-
tion of interest is then how to characterize the switching
laws for which it is possible to observe the state.

Here such characterization is illustrated in the case of a
Luenberger switched observer of the form

˙̂x = A0x̂ + L0(y − ŷ) +
∑3

i=1ui(Aix̂ + Bi + Li(y − ŷ)).

The dynamics of e = x − x̂ are given by

ė = Ã0e +
∑3

i=1uiÃie, (10)

with Ãi = Ai − LiC, i = 0, 1, 2, 3. It is easy to show
that if a matrix P > 0 satisfies ÃT

i P + PÃi 6 0, for

i = 0, 1, 2, 3, then P and the gains Li must be of the type

P =









℘1 ℘4 0

℘4 ℘2 0

0 0 ℘3









,

℘1

„

u2 − u1

C1

− L1(u)

«

+ ℘4

„

u3 − u2

C1

− L2(u)

«

+ ℘3

u1 − u2

L
= 0,

℘4

„

u2 − u1

C1

− L1(u)

«

+ ℘2

„

u3 − u2

C1

− L2(u)

«

+ ℘3

u2 − u3

L
= 0,

where L1(u) and L2(u) are respectively the first and

the second component of L(u) = L0 +
∑3

i=1uiLi.
By pole placement, we fix L0 = 104(0, 0, 5.7), L1 =
106(8.975, 4.5, 0), L2 = 106(−4.475, 4.475, 0), L3 =
106(−4.5,−8.975, 0) and ℘1 = ℘2 = 90, ℘3 =
6.075× 106, ℘4 = −45.

5.2 Invariant set and control characterization

A simple computation shows that zero is the only ad-
missible velocity for Problem 5 and that its trajectories
are constrained on {e | e3 = 0}. Therefore,

Inv = ΩInv = {e | e3 = 0}.

It follows from Proposition 6 that Ω = {e | e3 = 0}.
Moreover, the control law u = u(t) ∈ [0, 1]3 correspond-
ing to a trajectory of Problem 5 must satisfy a.e. the
relation

(u3 − u2)e2 + (u2 − u1)e1 = 0. (11)

Equation (11) and Proposition 7 guarantee the conver-
gence to zero of the estimation error for a wide class
of switching laws. In Figure 3 and 4, we have applied a
switching law satisfying (11) to system (10). Once the
error e3 approaches 0 (that is, e approaches Inv) the es-
timation errors of the voltage values remain constant.
Although the control applied is a singular one, taking
values in ∆ but not always in its vertices, the trajectory
can be approximated arbitrarily well by a solution of the
switched system (10), as it follows from [17, Theorem 1].

5.3 Observability at the operating point

Generally, the goal of the control is to regulate the load
current and to maintain in average the voltage in each
capacitor to a fixed value of 2E/3 in capacitor C2 and
E/3 in capacitor C1. The operating point of the flying
capacitor converter may therefore be defined in average
value by xref = (2E/3, E/3, iref). Notice that the control
law which maintains the current at a prescribed nonzero
value is a singular law. The operating points are defined
as the equilibria of the average state model, that is, the
elements of the set
{

xref ∈ R
3 | A0xref +

∑3
i=1ui,ref(Aixref + Bi) = 0

for some uref ∈ [0, 1]3
}

.
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Fig. 3. Observation errors
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Fig. 4. A control making the converter unobservable

The equation A0x+
∑3

i=1ui(Aix+Bi) = 0 has a unique
solution u1 = u2 = u3 leading to the equilibrium i =
E
R

u3 6= 0. This law corresponds to a singular law of
the type seen at the beginning of the section, render-
ing the system unobservable. Consequently, the better
the switching law approximates the singular law u1 =
u2 = u3, the smaller is the convergence rate of the ob-
server. For example, if we consider three periodic switch-
ing laws, one obtained from the other by a uniform time-
rescaling, realizing u1 = u2 = u3 in average, we can
see in Figure 5 that the convergence rate of system (10)
decreases when the switching frequency increases (the
chosen switching frequencies are fs = 5, 15, 25kHz).
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Fig. 5. Observation errors for time-rescaling switching laws

6 Conclusion

In this paper, a characterization of invariant sets and the
associated switching laws for continuous-time switched
systems is proposed. In particular, a description is given
of the relations between the ω-limit sets of a switched
system having a common weak Lyapunov function and
the trajectories of the convexified system lying on a level
set of the Lyapunov function. The result is used to anal-
yse observability properties of a flying capacitor con-
verter.
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