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Abstract - The main objective of this paper is to discuss nu-
merical difficulties in solving hybrid optimal control problems
and to propose a multiple phase-multiple shooting formula-
tion for hybrid optimal control design. Such a formulation
allows to solve directly the problem using nonlinear program-
ming techniques. In the case of switched systems, it is shown
that the switching rule can be obtained in a direct way avoid-
ing combinatory explosion.
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I. INTRODUCTION

In hybrid systems context, the necessary conditions for op-
timal control are now well known [1], [2], [3]. These condi-
tions mix discrete and continuous classical necessary con-
ditions on the optimal control. The discrete dynamic in-
volves dynamic programming methods whereas between
the a priori unknown discrete values of time, optimization
of the continuous dynamic is performed using the maxi-
mum principle (MP) or Hamilton Jacobi Bellmann equa-
tions (HJB). At the switching instants, a set of boundary-
tranversality necessary conditions ensures a global opti-
mization of the hybrid system.
From a practical point of view, it is particulary very hard to
perform such an optimization. The major raison is that dis-
crete dynamic requires to evaluate the optimal cost along
all branches of the tree of all possible discrete trajectories.
Dynamic programming is then used, but the duration be-
tween two switchings and the continuous optimization pro-
cedure make the task really hard. This makes the com-
plexity increasing and only problems with a poor coupling
between continuous and discrete parts can be reasonably
solved.
Recent works have proposed to solve optimal switching
problems by using a fixed switching schedule. By switched
systems we mean a class of hybrid dynamical systems con-
sisting of a family of continuous (or discrete) time subsys-
tems and a rule that governs the switching between them
(to be determined). The optimization consists then in de-
termining the optimal switching instants and the optimal
continuous control assuming the number of switchings and
the order of active subsystems already given. In [4], [5], the
authors develop a search algorithm based on dynamic pro-
gramming to obtain derivatives of the value function with
respect to the switching instants. Then a nonlinear search
method is used to determine the optimal solution.

Recently, in the case of piecewise linear systems for which
the different dynamics are associated to a fixed partition
of the state space, B. Lincoln and A. Rantzer have pro-
posed a Relaxed Dynamic programming methodology to
obtain a suboptimal state feedback solution in the case of
a quadratic criteria [6]. These works complete preceding
approaches [7], [8], [9].
Shaikh and Caines have proposed algorithms based on the
maximum principle for both multiple controlled and au-
tonomous switchings with fixed schedule [1]. The algo-
rithms use the transversality conditions at switching in-
stants. Then, the authors develop a combinatoric search
in order to determine the optimal switching schedule [10].
In [11], a strong variations algorithms based on the max-
imum principle are proposed and applied to a eight order
hybrid system with seven discrete states.

In the context of discrete time systems, some interesting
results on state or output feedback must be mentioned [12],
[14] , [13] and [15]. Finally and more recently, always
for a fixed schedule, M. Egerstedt et al. have proposed a
gradient based algorithm for switched systems [16] and for
switching systems [17].
This paper is organized as follows. In section II, we start by
staying the optimal control problem in a hybrid framework.
In section III, we discuss numerical methods based on the
Maximum Principle and the Bellmann Principle. Then in
section IV and in complement of all the methods resulting
from the resolution of the necessary conditions of optimal-
ity, we propose to use a multiple-phase multiple-shooting
formulation which enables the use of standard constraint
nonlinear programming methods. This formulation is ap-
plied to hybrid systems with autonomous and controlled
switchings and seems to be of interest in practice due to the
simplicity of implementation.
In the case of controlled switching (section V), we show
that the proposed approach gives directly the optimal
switching schedule. A convex formulation of the initial
problem can also be used to solve the problem and pos-
sibly to detect singular control [18]. This fact is illustrated
in section (VI) with a numerical example.

II. PROBLEM FORMULATION

The class of hybrid systems under consideration in this pa-
per is defined as follows :



For a given finite set of discrete statesQ = {1, ..., Q}, there
is an associated collection of continuous dynamics defined
by differential equations

ẋ(t) = fq(x(t), u(t), t) (1)

where q ∈ Q, the continuous state x(.) ∈ R
n (n ∈ N), the

continuous control u(.) ∈ R
m (m ∈ N), the vector fields

fq are supposed defined and continuously differentiable on
R

n × R
m × [a, b], ∀q ∈ Q. In addition, some algebraic

constraints of the form

gLq
≤ gq(x, u, t) ≤ gUq

(2)

and bounds on the state

xLq
≤ x(t) ≤ xUq

(3)

and control
uLq

≤ u(t) ≤ uUq
(4)

are considered. Actually, (3) and (4) are included in the
condition (2) but usually we give them separately to exhibit
state and control constraints.
The discrete dynamic is defined using a transition function
ν of the form:

q(t+) = ν(x(t−), q(t−), d(t), t) (5)

with q(.) the discrete state (q(t) ∈ Q) and d(.) the discrete
control (d : [a, b] → D where D = {1, ..., D} is a finite
set). ν is a map from R

n ×Q×D × [a, b] to Q.
The discrete variable q(.) is a piecewise constant function
of the time. This is indicated by t− and t+ in (5) meaning
just before and just after time t.
The value of the transition function ν depends on two kinds
of discrete phenomena which can affect the evolution of
q(.): changes in the discrete control d(.) and boundary con-
ditions on (x, t) of the formC(q,q′)(x, t) = 0which modify
the set of attainable discrete states.
This hybrid model covers a very large class of hybrid phe-
nomena. It takes into account autonomous and/or con-
trolled events.
Let [t0 = a, t1, ..., ti, ..., tm = b] and [q0, ..., qi, ..., qm] be
the sequence of switching times and the associated mode
sequence corresponding to the control (u, d)(.) on the time
interval [a, b].
A hybrid criterion is introduced as:

J(u, d) =

m
∑

i=0

∫ ti+1

ti

Lqi
(x(t), u(t), t)dt+ φ(x(ti), ti)

(6)
where qi ∈ Q.
The optimal control problem consists in finding the hybrid
control (u, d)(.) that minimizes the cost function J over the
time interval [a, b].

III. DISCUSSION ON THE NUMERICAL METHODS
BASED ON NECESSARY CONDITIONS FOR

OPTIMALITY

In optimal control theory, there are two major ways to solve
a continuous problem:

i Methods classified as variational methods (e.g. using the
Maximum Principle)

ii Methods which use the Bellmann Principle with the
dynamic programming and the Hamilton Jacobi Bellmann
equation.

A. The necessary conditions resulting from the Maximum
principle

Applying a hybrid version of the maximum principle to the
problem formulation above yields a set of necessary condi-
tions on the optimal control (under suitable assumptions).
For simplicity we do not consider path constraints or in-
equality constraints. The reader may refer to [2] for a de-
scription of the suitable assumptions.
As in the continuous case, at any time t, the following max-
imum condition holds for (p, p0, x, q)(t):

∂Hq

∂u
= 0 (7)

where Hq(p, p0, x, u, t) = pT fq(x, u, t) + p0Lq(x, u, t)
denotes the Hamiltonian function and p the costate or ad-
joint variable whose dynamic is given by

ṗ = −
∂Hq

∂x
. (8)

At switching time ti, i = 0, . . . ,m, the following transver-
sality conditions are satisfied: there exists a vector πi such
that

p(t−i ) = p(t+i )+
∂Cqi−1,qi

∂x

T

πi (9)

Hqi−1
(t−i ) = Hqi

(t+i )−
∂Cqi−1,qi

∂t

T

πi (10)

The notations (9), (10) imply that πi must be equal to zero
if ti is a controlled switching time without boundary condi-
tions giving thus the continuity of p and H . Equations (9)
and (10) must obviously be adapted according to the final
and initial constraints under the state (x, q) at time t = a
and t = b (not necessary specified).
The complete set of necessary conditions are the equation
(1) to (8) and the boundary conditions at switching instants



ti, (9) (10). This problem is known as a multipoint bound-
ary value problem. It must be noticed that the above set
of necessary conditions express only local optimality prop-
erties and they do not make it possible to determine the
optimal switching sequence. A way of doing it is to use the
dynamic programming jointly.

In the continuous case and in order to solve a boundary
value problem, the user has to determine the good values
for the state and adjoint variables at initial and /or final
time. A shooting method [20] can be a way to solve numer-
ically this problem. The procedure consists of determining
an initial guess such that final boundary conditions are met.
It can be described by the following algorithm:

1) choose an initial condition for the differential system (1)
and (8),

2) integrate the system along the time interval

3) determine whether final boundary conditions are met or
not

4) if not, use a procedure which adjusts the initial guess
and repeat from step 2

Unfortunately this method is sensitive : a small change of
the initial guess can produce a large change in the final con-
dition. Moreover as the choice of the adjoint variable is not
intuitive (non physical), it may be very difficult to deter-
mine a good guess.
Finally numerical integration of (1) and (8) can be very ill-
conditioned : for example in case of linear systems, if the
direct system has λ as an eigenvalue then the adjoint system
has −λ as an eigenvalue leading to opposite dynamic. In
order to avoid this ill contitioning, it is better to proceed in
the following way:

1) choose a control u for the differential system (1),

2) integrate forward the system (1)

3) integrate backward the system (8) using the relevant op-
timal conditions at final time to determine p(b)

4) determine whether optimal conditions are met or not

5) if not, use a procedure (gradient with ∂H
∂u

) which adjusts
the initial control u and repeat from step 2.

In the hybrid case, due to discrete dynamic, the switching
instants as well as their number and the mode sequence, are
a priori unknown. So it is difficult to impose the transver-
sality conditions (9) (10) due to combinatory explosion
[10], [11].

B. Necessary conditions using Bellmann Principle

To summarize for a given classical optimal control prob-
lem, the Bellmann Principle expresses that the value func-
tion on [a, b] satisfies for a given initial state x0 :

J∗(a, b, x0) = min
u|[a c]

{J(a, c, x0, u) + J
∗(c, b, xc)} (11)

where xc = x(c) is the resulting state at time c ∈ [a, b] for
the control u

∣

∣

[a c] . In discrete time, this relation defines a
recurrent relation whose solution can be obtained backward
in time.
In continuous time, one gets (by differentiating (11)) the
Hamilton Jacobi Bellmann equation (HJB). This leads in
the hybrid case to :

∂J∗(t, b, x, q)

∂t
= −min

u
{Lq(x, u, t) (12)

+
∂J∗(t, b, x, q)T

∂x
fq(x, u, t)}

J∗(t, b, x, q) ≤ J∗(t, b, x′, q′) (13)

where (x′, q′) is the resulting state after an authorized
jump.
There is also some major difficulties to solve (12) and (13).
As (12) is a partial differential equation, numerical solu-
tions imply a discretization on the whole time-state space.
In that case, we have to solve globally the problem and the
dimension of the problem appears as a brake. In the hy-
brid case, a set of inequalities (13) on the value functions
and defined for each locations are added(see [6]) which in-
creases notably the difficulties.

These two ways to solve optimal control problem can be
refered as indirect methods since they attempt to solve nec-
essary conditions derived from the initial control problem.
Another way to proceed can be to reformulate the optimal
control problem as a classical optimization problem for a
simple reason: multiple-phase multiple-shooting formula-
tion can be a good formulation for hybrid optimization.

IV. MULTIPLE-PHASES MULTIPLE-SHOOTING
FORMULATION

Hybrid trajectories can be viewed as made up of a col-
lection of N phases. A phase is a portion of trajectory
in which the system of differential equations remains un-
changed. Within the phase k, the discrete state, qk, is fixed
and the continuous dynamic equations are given by con-
straints (2,3,4) and ẋ(t) = fqk

(x(t), u(t), t) for tIk
≤ t ≤

tFk
.

At the switching instants, the phases are linked by bound-
ary conditions of the general form:

ψL ≤ ψ(x(tI1
), u(tI1

), tI1
, x(tF1

), u(tF1
), tF1,

x(tI2
), u(tI2

), tI2
, x(tF2

), u(tF2
), tF2

, (14)
...

x(tIN
), u(tIN

), tIN
, x(tFN

), u(tFN
), tFN

) ≤ ψU

This boundary conditions are used to ensure the junction
conditions for example:



tIk+1
= tFk

(15)
x(tIk+1

) = x(tFk
) (16)

or in the case of a jump of the state at tFk

x(tIk+1
) = Υ(x(tFk

), u(tFk
), tFk

) (17)

and in the case of an autonomous switching, an algebraic
constraint of the form

Cqk,qk+1
(x(tFk

), tFk
) = 0. (18)

To sum up, we have a collection of phases corresponding to
a sequence qk, k = 1...N, a constraint dynamical system in
each phase and a set of conditions evaluated at the phases
boundaries. It can be noticed that the sequence qk, k =
1...N, as well as the number N are a priori unknown. It
depends on the controls u and d and on equations (1)(5).
Now, recall that a shooting method is a procedure which
consists of determining an initial guess such that final
boundary conditions are met. In order to reduce the sen-
sitivity [22], [21] of a shooting method (a small change
of the initial guess can produce a large change in the fi-
nal condition), it is widely fruitful to split the time interval
into M smaller segments [tmtm+1]. In this case, an ini-
tial value x0

m for the shoot on each segment m must be
guessed. As final boundary conditions, constraints to force
continuity of the state between the segments must be added
i.e. xm(tm+1) = x0

m+1. This approach is called multiple-
shooting [20]. As additional variables and constraints are
introduced, the size of the problem increases but robustness
is improved [22]. In our case, it is advantageous to divide
all phases in a multiple-shooting formulation.
In order to solve numerically the multiple-phase multiple-
shooting formulation of the above optimization problem,
discretization schemes must be chosen for (1) and (6). For a
fixed switching schedule qk, k = 1...N, the resulting finite
dimensional problem can be solved using standard nonlin-
ear programming.

At this point, it is interesting to mention the fact that NLP
applies to optimal hybrid control problems and can be use-
ful to solve them. It can be noticed that the multiple-phase
formulation is of importance in order to consider discon-
tinuous vector fields. Concerning the convergence results,
they are obviously related to NLP algorithms.
It is important in such programs to be able to exploit the
sparsity of the corresponding matrices and call refinement
procedures. Some standard code exist and make it prop-
erly [23]. Naturally, a better accuracy can be obtained by
passing formally expression of the gradient of the cost and
constraints.
Then, it is necessary to repeat the optimization with com-
binatoric algorithms (for example [1]) along all admissible
switching schedules. This last point can be omitted in the
case of switched systems as it is shown in the next section.

V. THE CASE OF SWITCHED SYSTEMS

Switched systems are the most simple hybrid systems : the
only hybrid phenomena are controlled switchings. So, such
systems can also be expressed using a single vector field
meaning,

ẋ(t) = F (x, u, α) =
∑Q

q=1
αq(t)fq(x(t), u(t)) (19)

with x ∈ R
n, α(t) a Boolean vector ( α(t) ∈ {0, 1}Q) and

αq(t) refers to the qth-component of α(t) so that there is
one and only one component of α(t) equal to 1, i.e. α(t) ∈

D where D = {α ∈ {0, 1}Q
:
∑Q

q=1 αq = 1}.
By switching between the different values of D, the func-
tion α plays the role of the discrete control.
Two approaches can be used to solve the optimal control
problem in such a situation.
The first one consists in the following :
Choose an arbitrary but reasonably large number of phases
N multiple ofQ (N = mQ). Choose the periodic schedule
sequence s = {1, 2, ..., Q, 1, 2, ..., Q, ..., 1, 2, ..., Q}. Set
the duration at each location q to Iq = T/N (T = b −
a). Guess an initial control u0 and compute the resulting
trajectory x0.
Solve the corresponding multiple phase multiple shooting
problem formulation with the above initial conditions.
The boundary phase constraints are :

x(tIk+1
) = x(tFk

), Iqk
≥ 0,

N
∑

k=1

Iqk
= T. (20)

Remark : The schedule seems to be imposed. Actually it is
not the case since the optimization procedure can produce
Iqk

= 0 which means that the mode qk must not be used
locally. Hence, the optimization is made for all possible
sequences of length less or equal to N .
The second approach consists in extending the set D to its
convex hull

co{D} = {α ∈ [0 1]
Q
:
∑Q

q=1
αq = 1} (21)

and treating the problem as a continuous optimization prob-
lem using nonlinear programming. A bang bang optimal
control α (at the vertices of the set [0 1]Q) corresponds to
an optimal solution for the switched systems. The advan-
tage of such a formulation is that it enables the detection of
singular arcs (the case where Huu is singular which leads
to controls which are not bang-bang) which is a frequent
situation into switched system optimization problems [18],
[25].



The methods based on the maximum principle are not able
to detect singular control and no solution can be produced
without more mathematic analysis. On another hand direct
methods take the advantage in such situation as explained
in the next section.
In fact various constraints on the solution can be formulated
and solved with this numerical approach: the sequence
schedule can be fixed i.e. the number and/or the order of
the switchings, as minimum delay between two switchings
and so on...

VI. EXAMPLE

Let us illustrate our purpose on a time optimal control prob-
lem proposed in a preceding paper [18]. We consider a
switched system formed by two linear systems

ẋ(t) = α(t)A0x(t) + (1− α(t))A1x(t) (22)

with A0 =

(

0.4 0.3
−1.3 1.1

)

and A1 =

(

0.2 −1.4
0.8 −0.7

)

.

The values of the discrete control α(.) are 0 or 1. The prob-
lem is to find the optimal time transfer from the initial posi-
tion x0 to the final position xF . Although there exist trajec-
tories which connect (x0 , xF ), an optimal hybrid trajectory
doesn’t exist. Now if the set of control values is extended
to its convex hull (α(t) ∈ [0 1]), there exists an optimal
solution (figure 1). As it has been mentioned in [18], when
line D (fig 2) is reached from initial position by applying
control α(t) = 1, the control α(t) ∼= 0.5127 leads to a slid-
ing motion on D until reaching the second intersect point
where the control switch to α(t) = 0. In fact, the value
α(t) ∼= 0.5127 refers to a singular control. It corresponds

to the case where ∂H
∂u

= 0, ∂2H
∂u2 = 0. The presence of

a singular control explains why the original problem has
no solution. Nevertheless, sub-optimal trajectories for the
switched system can be obtained by chattering throughout
the line D.
On figure 2, we have drawn numerical solutions of two con-
tinuous problems :

1) a one-phase one-shooting formulation for the embed-
ding (i.e. α(t) ∈ [0 1]) continuous problem

2) a multiple-phase multiple-shooting formulation for the
embedding continuous problem

On figure 2, we can see that due to the presence of a singu-
lar control, the numerical solution of the embedding prob-
lem (α(t) ∈ [0 1]) gives rise to a bad convergency and os-
cillations in the neighborhood of line D. It is clear that the
multiple-phase multiple-shooting formulation yields better
results than the one-phase one-shooting formulation and
gives results close to the analytic solution because no con-
tinuity w.r.t. the vector field is imposed.
Finally, a multiple-phase multiple-shooting formulation for
the hybrid problem (α(t) ∈ {0, 1}) with time constraint
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Fig. 1. Optimal trajectory for the embedding problem J =

0.7869
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Fig. 2. Numerical solution for the embedding problem. Single
(dash, J = 0.7875) versus multiple-phase multiple-shooting
(dash dot J = 0.7874) formulation.

between two switchings and/or a fixed maximum number
of switchings is considered. On figure 3, for 32 maximum
switchings, we obtain the best result (J = 0.7874) by chat-
tering in exactly 32 switchings near the line D (dash dot).
We can also impose a minimum duration (here ∆t =
0.02s) between two switchings (fig. 4) without any con-
straint on the maximum number of switchings. This case
may represent physical constraints on the actuator, for ex-
ample. The best result is obtained for 24 switchings (fig.
4)(J = 0.7875).
Finally, we have drawn the result for 32 switchings and a
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Fig. 3. Optimal trajectory for a maximum of 32 switchings. Cost
J = 0.7874.
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Fig. 4. Optimal Trajectories with time delay∆t = 0.02 between
two switchings and no maximum number of switchings. Best
result : 24 switchings and J = 0.7875.

minimum duration (∆t = 0.02s) between two switchings
on figure 4. In this last case, we obtain J = 0.8043.

VII. CONCLUSION

In this paper, practical methods for optimal hybrid con-
trol are considered. After a short recall of existing meth-
ods, we have mentioned that a multiple-phase multiple-
shooting formulation can be really useful to solve hybrid
problems with the help of nonlinear programming. The
proposed method presents the advantage to be particulary
robust and easy to implement on a computer and must be
mentioned as a complement to existing methods. As an ex-

ample and in order to show the effectiveness of the method,
we have chosen a singular time optimal control problem
for which methods based on the Maximum Principle are
unable to give any result. It has been shown that several
constraints can be added such as time delay between two
switchings, maximum number of switchings... Neverthe-
less in the general case, it remains the problem of discrete
dynamics which imply to use combinatoric search and may
lead to explosive computational effort (as in the discrete
case with the dynamic programming).

REFERENCES

[1] M. S. Shaikh, P. E. Caines, On the optimal control of hybrid
systems: Analysis and algorithms for trajectory and schedule op-
timization, on proc. IEEE Conference on Control and Decision,
Hawai dec. 2003.

[2] P. Riedinger, C. Iung, F. Kratz, An Optimal Control Approach
for Hybrid Systems. European Journal of Control, vol 9 (5), pp
449-458, 2003.

[3] H.J. Sussmann, A maximum principle for hybrid optimal con-
trol problems, proc. of the 38th IEEE Conf. on Decision and Con-
trol,pp 425-430, 1999.

[4] X. Xu, P. J. Antsaklis, An approach for solving General
switched Linear Quadratic Optimal Control Problems, proc. 40th
IEEE Conf. on Decision and Control, 2001.

[5] X. Xu, P. J. Antsaklis, Optimal Control of Switched Systems
via Nonlinear Optimization Based on Direct Differentiations of
Value Functions, in International Journal of Control, 75(16):1406-
1426, 2002.

[6] Bo Lincoln, Anders Rantzer, Relaxed Optimal Control of
Piecewise Linear Systems, ADSH 03 Saint Malot, France 2003.

[7] Hedlund S. et Rantzer A., Optimal Control of Hybrid Sys-
tems, Proceedings of 38th IEEE Conf. on Decision and Control,
Phoenix, 1999.

[8] Hedlund S. et Rantzer A., Convex dynamic programming
for hybrid systems, IEEE Transactions in Automatic Control ,
47(9):1536-1540, 2002.

[9] A. Rantzer, Piecewise Linear Quadratic Optimal Control,
IEEE Transactions on Automatic Control, April 2000.

[10] M. S. Shaikh and P. E. Caines. On the optimal control of hy-
brid systems: Optimization of switching times and combinatoric
location schedules. In Proc. American Control Conference, pages
2773–2778, Denver, CO, 2003.

[11] On solving optimal control problems for switched hybrid
nonlinear systems by strong variations algorithms. Submitted to
IEEE Trans. on Automatic Control and to NOLCOS 04 - Stuttgart

[12] J. Daafouz, P. Riedinger, C. Iung, Static Output Feedback
Control for Switched Systems, proc. 40th IEEE Conference on
Decision and Control, Orlando, 2001.

[13] A.Bemporad, D.Corona, A.Giua, C.Seatzu, Optimal State-
Feedback Quadratic Regulation of Linear Hybrid Automata,
ADSH Saint Malot, France juillet 2003.

[14] A.Bemporad, A.Giua, C.Seatzu, An algorithm for the opti-
mal control of continuous time switched linear systems, in IEEE
Computer Society, Proceeding of the Sixth workshop on Discrete
Event Systems (Wodes’02), 2002.

[15] D. Corona, A. Giua, C. Seatzu, Optimal Feedback Switching
Laws for Homogeneous Hybrid Automata, on proc. IEEE Confer-
ence on Control and Decision, Hawai dec. 2003.

[16] M. Egerstedt, Y. Wardi, and F. Delmotte. Optimal Control
of Switching Times in Switched Dynamical Systems. IEEE Con-
ference on Decision and Control, Maui, Hawaii, Dec. 2003.



[17] Y. Wardi, M. Egerstedt, M. Boccadoro, and E. Verriest, Op-
timal Control of Switching Surfaces, to appear in IEEE Confer-
ence on Decision and Control, Dec. 2004.

[18] Riedinger P., Daafouz J., Iung C., Suboptimal switched con-
trols in context of singular arcs. 42th IEEE Conference on Deci-
sion and Control, Hawaii, USA, December 09 dec, 2003

[19] P. Riedinger, F. Kratz, C. Iung & C. Zanne (1999), Linear
Quadratic Optimization for Hybrid Systems, proc. of the 38th
IEEE Conf. on Decision and Control, 3059-3064.

[20] L. R. Petzold, Uri M. Ascher, Computer Methods for Or-
dinary Differential Equations and Differential-Algebraic Equa-
tions. Siam 1998.

[21] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, S.S. Sas-
try, Dynamical Properties of Hybrid Automata, IEEE Transaction
on Automatic Control, vol 48(1), 2003.

[22] John T; Betts, Practical methods for optimal control us-
ing nonlinear programming, Advanced design and control, Siam
2001.

[23] A. L. Schwartz, Theory and Implementation of Numerical
Methods Based on Runge-Kutta Integration for Solving Optimal
Control Problems, Ph D thesis of Massachusetts Institute of Tech-
nology, 1989.

[24] P. Riedinger, Contribution à la commande optimale des
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