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Abstract

In this article, a method for computing an optimal state feedback
control law for continuous-time switched affine systems exhibiting cyclic
behavior in steady state is presented. The hybrid solutions are deduced
from the Fillipov solutions. It is shown that the optimal trajectory syn-
thesis implies to determine singular arcs. Algebraic conditions are given
to obtain these particular arcs of the trajectory. A numerical procedure
is then proposed to generate optimal trajectories on a given state space
area avoiding the classical two-point boundary value problem occurring in
optimal control synthesis. The interpolation of the solutions set, through
a neural network, yields a state feedback control law. Several examples
in the power converters field show the feasibility and the efficiency of the
method.

1 Introduction

Hybrid systems are dynamical systems characterized by interactions between
a continuous and a discrete dynamics. The meaning of the term “dynamical
systems” was given by Kalman et al. in [Kalman et al.(1969)]

A particular and important class in terms of hybrid system applications is
depicted by systems with a cyclic behavior in steady state. From the designer
point of view, one of the most important control target is the average value of
the state instead of its instantaneous value. Therefore, a required performance
of the close-loop system is a state balance around a desired average value. For
example, combustion engines belong to this category . Another application
which has received a big theoretical contribution is the power converters class.
Indeed, power supplies are currently embedded in computers, electric drives,
cellular phones and generally in all electric devices. Their aim is to convert an
electrical energy shape (voltage / current / frequency) to another one. This
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modulation process is carried out with semiconductor-based electronic switches
which make them belong to a hybrid system class. This explains why most of
the references in this field are related to power converters.

Usually, the analysis and the control design in these types of systems rely
either on average models or on small signal approximations of the average model
[Middlebrook and Wester(1973)], [Sanders et al.(1991)], [Iung et al.(1978)]. The
averaging technique is convenient when the average is computed over a small
time interval with respect to the system’s dynamics. However, these are only low
frequency approximations of the true dynamics. Moreover, the discontinuous
effect of switchings is ignored and the resulting waveform may generate undesir-
able subharmonics or interharmonics of the cutting frequency [Möllerstedt and Bernhardsson(2000)].
On the other hand, the sampled linear methods use tangent approximations to
the non-linear sampled model [Mahabir et al.(1990)], [Huliehel and Ben-Yaakov(1991)].
The recurrence is not easily obtained and it does not prevent high ripples be-
tween switching instants.

Nowadays, the constant components’ integration into systems with a cycle
as steady state leads to very specific performances in the transitory and also
in stability. Oftentimes, the classical methods to control this kind of systems
give insufficient results. Thus, control laws which address all performance re-
quirements remain a challenging problem. To be able to consider the whole
system dynamics, hybrid methods should be used. The idea is to operate
the different system modes directly. In addition, the stability for the hybrid
systems has been widely studied [Rantzer et al.(2000)], [Daafouz et al.(2002)],
[Decarlo et al.(2000)], [Hespanha(2004)], as well as limit cycles [Flieller et al.(2006)],
[Rubensson(2000)] [Goncalves(2004)].

Emerging approaches based on sliding modes [Perry et al.(2005)], [Richard et al.(2006)],
[Sira-Ramirez et al.(2002)], [Ahmed et al.(2003)] optimal control [Bemporad et al.(2002)],
[Mehta and Egerstedt(2006)], [Shaikh and Caines(2003)], [Joh(2007)] or predic-
tive control [Béthoux and Barbot(2006)], [Silva et al.(2007)], [Beccuti et al.(2007)],
[Donzel and Bornard(2000)], [Almer et al.(2007)] are promising.

The Model Predictive Control (MPC) [Geyer et al.(2005)], [Lazar and Keyser(2004)]
is a well-known and useful tool for the switched systems. However, the reced-
ing horizon implies to solve an optimization program at each sampled time and
the control signal may not always be available in real time. One of the so-
lutions could be to interpolate off-line the optimal trajectories with a neural
network [Baja et al.(2007)], [Patino et al.(2007)]. Other methods use a dis-
crete time formulation with the Mixed Logical Dynamics (MLD) program-
ming framework. To avoid time consumption, a MPC controller is designed in
[Bemporad et al.(2000)], [Borelli et al.(2003)] and a look-up table is obtained
off-line and applied on-line.

A switching table procedure is proposed in [Bemporad et al.(2002)], [Seatzu et al.(2006)].
This method is based on dynamic programming. Nevertheless, it presents com-
putation problems due to a combinatory explosion. We can also mention passiv-
ity based control methods [Morvan et al.(2004)], [Sira-Ramirez and Ortega(1995)],
[Zainea et al.(2007)] leading to control the system by sliding modes [Richard et al.(2006)],
[Ahmed et al.(2003)]. Based on the use of the Lyapunov function, system sta-
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bility is guaranteed. Flatness based control in hybrid systems also seems to
be a promising approach because it prevents the energy loss in the switches
[Payman et al.(2006)], [Sira-Ramı́rez and Silva-Ortigoza(2002)].

In our work, optimal techniques are investigated for high performance design
in controlling affine switched systems depicting a limit cycle in steady state. To
the authors’ knowledge, the optimal control without approximation assumptions
applied to this particular class of systems has not been sufficiently considered
until recently.

Although the problem is tedious, it is possible to synthesize an optimal state
feedback control law for low order systems. The goal of our article is to show
how to compute this control law.

We will use the following notation and terminology. An arbitrary function
f is C1 when its derivative exists and is continuous. All vectors are column
vectors. If x is a vector, xT is its transpose. The abbreviation fx is used for the
partial derivative of an arbitrary function f with respect to x. If A is a matrix,
A > 0 and A ≥ 0 indicate respectively that A is positive definite and positive
semidefinite. λ ⊥ h denotes that a vector λ is orthogonal to another vector h.
If U and V are subsets of E, the complementary subset V c in E is such that
E = V c ∪ V and V c ∩ V = ∅. The subset U private V denoted U\V = U ∩ V c.
The convex hull of a set U is denoted by co(U). The cardinality of a set U is
denoted by |U |.

For two real numbers a and b, [a b] is the closed interval while {a, b} is the
set composed by singletons {a} and {b}.

Let us start by considering the following optimal control problem over a
control-affine system:

min
u(.)

∫ T

0

L(z(t) − zref )dt (1)

s.t. ż(t) = r(z(t)) + s(z(t))u(t)

= r(z(t)) +
m∑

i=1

ui(t)s
i(z(t))

z(0) = z0 u(t) ∈ U = {0, 1}m

where z ∈ R
ν (ν ∈ N) is the state, and the functions r, si: R

ν→ R
ν , i = 1, ..., m

(m ∈ N), and L(.) : R
ν → R (L is the performance function). All these functions

are supposed to be C1. The term zref is a given equilibrium point in the sense
defined later by equation (11), T is the final time (T ∈ R

+ ∪ {∞}), u(t) is an
m-dimensional Boolean control vector, m is the number of admissible switches
(number of switches that can be freely positioned). Notice that there exist 2m

modes or 2m configurations.
The following assumption is considered:

Assumption 1 There is no restriction related to the control set values U (Nei-
ther state nor time constraints). We assume that u : [0, T ] → U is a Lebesgue
measurable function.
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This assumption implies that only control switchings are taken into account
and no autonomous switchings will be studied (threshold).

To solve the problem (1), necessary conditions given by the Minimum Prin-
ciple (MP) can be used.

In this article, for this class of systems with a low order, we explain how to
synthesize the appropriate control law among those satisfying the MP (extremal
trajectories). In the case when the MP is not sufficient to compute the candi-
date control law, a singular arc appears. Precisely, the outcome presented here
depends on the singular arcs. Algebraic conditions and second order necessary
conditions will be shown. They are used to determine singular surfaces.

Once the potential singular surfaces are algebraically solved, a backward
integration procedure from the equilibrium point and the associated singular
arcs is used to numerically generate “optimal candidates”. The main advantage
of this method is to avoid the classical two-point boundary value problem which
occurs everytime the MP is used to find optimal trajectories.

Then, a neural network interpolates all the solutions on the whole working
area. The result is a simple state feedback control law which can efficiently be
implemented on-line.

The present article is organized as follows: Section 2 shows the problem
statement and first order necessary conditions for the switched hybrid optimal
control problem (1). The main contribution lays in Section 3. Standard results
about singular control theory are firstly recalled. Then, an algebraic conditions
set is deduced to obtain singular arcs (in Propositions 11, 12, 21 and 22). These
conditions are easier to solve than the classical ones. A systematic procedure
is proposed to get all singular arc candidates for low-order systems. Section 4
is devoted to the optimal trajectory synthesis using backward integration and
a neural network interpolation. Indeed, we propose a methodology to obtain
an optimal switching feedback control law from the open loop optimal control
synthesis. In Section 5, two DC-DC converters are considered as examples: the
step down and multilevel converters. Finally, we address some conclusions.

2 Problem formulation and necessary conditions

For clarity and simplicity, (1) is rewritten in a Mayer form. Adding a variable

xn(t) =

∫ t

0

L(z(τ) − zref )dτ

and defining

x(t) = [zT (t), xn(t)]T

x0 = [zT
0 , 0]T

f(x(t)) = [rT (z(t)), L(z(t) − zref )]T

g(x(t)) = [sT (z(t)), 0]T
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we get the equivalent problem (2):

min
u(.)

xn(T ) (2)

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t)

x(0) = x0 u(t) ∈ U = {0, 1}m

where x ∈ R
n (n = ν + 1).

To simplify, time dependency of x(t), λ(t) and u(t) is not mentioned. f(x)
is the drift term and g(x) the control affine term.

The Hamiltonian H can be deduced from (2) :

H = H(λ, x, u)

= λT f(x) + λT g(x)u (3)

where λ(t) ∈ R
n is the adjoint variable. The dynamics of λ and x are given by:

λ̇ = −Hx and ẋ = Hλ (4)

The MP to control the affine switched system (2) follows.

Theorem 2 (Minimum principle for switched systems, [Pontryaguin et al.(1964)])
Let (x∗, u∗) solve (2). There exists an absolutely continuous function λ∗ :
[0, T ] → R

n non identically equivalent to 0, which verifies (4) almost every-
where, such that the following conditions are satisfied:

1. The control u∗ minimizes the Hamiltonian function:

H∗ = H(λ∗, x∗, u∗) = min
u∈U

H(λ∗, x∗, u) a.e. (5)

2. For all t ∈ [0, T ]
H∗(t) = cst (6)

where cst is a constant and cst = 0 if T is not specified.

3. Initial and final conditions:

λ∗(0) free and λ∗(T ) = [0, ..., 0, 1]T (7)

This is a direct application of the Pontryagin Minimum Principle. The
abnormal case when λ∗

n(T ) = 0 is not considered here.
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Remark 3 The optimal switching law is one among those minimizing the Hamil-
tonian (5). This necessary condition does not hold when Assumption 1 is not
true. When the available discrete control set U has a (discrete or continuous)
state dependency, minimum condition (5) with respect to the discrete control
must be reduced to the set of its connex components. Two control values are
connex if no constraint concerning the switches between them exists. Therefore,
in order to determine the extremals set, it is necessary to proceed with a dynamic
programming procedure through the connex graph. Moreover, at switching time
λ and H are discontinuous. This is one of the difficulties encountered in opti-
mal hybrid control problems. For a complete explanation concerning the general
case with a continuous control u and state jumps, we invite the reader to see
[Riedinger et al.(2003)] or [Dmitruk and Kaganovich(2008)].

Necessary conditions from Theorem 2 assume that a solution exists. This
assumption is closely related to bang-bang solution existence for the relaxed
problem as it has been shown in [Riedinger et al.(2003)] . The relaxed problem
consists in extending the control set values U to its convex hull:

co(U) = [0 1]m (8)

Then, if the relaxed problem takes the form of a convex optimal control
problem, minimizers’ existence can be certified. Classical theorems state suffi-
cient conditions for an optimal solution’s existence under convexity assumptions
[Berkowitz(1974)], [Young(1969)], [Roubicek(1997)], [Meziat et al.(2007)].

Hence, when the relaxed problem has a bang-bang solution (i.e. ∀t, u(t) ∈
{0, 1}m), the original problem (2) is also solved. Otherwise, it means that the
optimal solution takes values u(t) ∈ co(U)\U, t ∈ T where T is a non zero
measure set of time (in the Lebesgue sense). Although this solution does not
satisfy (2), one can obtain an average approximation by switchings between the
different system modes. This leads to a sliding motion on the optimal trajectory
[Utkin(1992)]. Proof of this statement can be found using relaxation theory
and density results [Ingalls et al.(2003)]. Thus, studying problem (2) with its
control set extended to its convex hull (8) is more convenient than studying
the original problem with u(t) ∈ U . In other words, we try to determine the
Fillipov’s solution of (2) [Cortes(2008)].

Let us now consider the necessary conditions. Since the Hamiltonian func-
tion is affine with respect to the control, a switching function φ(t) can be defined
by:

φ(t) = λT (t)g(x(t))

and from minimum condition (5), the control is determined by the following the
rule,

For i = 1, ..., m ui(t) =






0 if φi(t) > 0

1 if φi(t) < 0

? if φi(t) = 0

6



When ui(t) = 0 or 1, the control is called regular.
A difficulty arises when a component of φ(t) vanishes identically on a time

interval [a, b], b > a. In this case, the MP is inconclusive concerning the control
value u(.) on [a, b]. This situation is referred to singular control [Robbins(1967)]
and it corresponds here to the case where u(t) takes values in co(U)\U, t ∈ [a, b].
We can conclude that solution segments for the relaxed problem, which are not
admissible for the original problem, involve a singular control. This case will be
defined and studied in detail in the next section.

Another reason to find optimal control values out of U comes from the nature
of the operating points xref . Indeed, for systems exhibiting a cyclic behavior in
steady state (e.g. torque in a combustion engine), the desired operating point is
the average value of x over the cycle. To find the operating points set, the model
dynamics of the average state x can be employed. x is given by the convolution
product:

x(t) = ⊓Tp
∗ x(t) =

1

Tp

∫ t

t−Tp

x(τ)dτ (9)

where Tp is the cycle period and ⊓Tp
is a rectangular window function.

The dynamical model of x is obtained differentiating (9). However, the
derivative is generally intractable or unusable because of its nonlinear form.

A solution consists in defining the average state model:

˙̃x =f(x̃) + g(x̃)u, u ∈ co(U) (10)

which gives an approximation of the dynamics of x. u is the average value of
u on the cycle. It has been proven that x̃ is close to x and x when Tp is small
with respect to the system dynamics [Sanders and Verhulst(1985)] (x̃−→x and
x when Tp −→ 0).

The operating points are then defined as the equilibrium points of the average
state model:

Xref = {xref ∈ R
n : f(xref ) + g(xref )uref = 0, uref ∈ co(U)} (11)

Therefore, there exist equilibrium points xref whose control is uref ∈ co(U)\U .
Finally, it can be noticed that the model used in the relaxed problem is exactly
the average state model.

Since no mode allows holding the given reference xref as uref ∈ co(U)\U,
the switched system enters into a cyclic behavior around the reference xref .
Consequently, uref is nearly the average value of u over the cycle. Pulse Width
Modulation (PWM) and sliding mode are practical methods to obtain the result
in average.

3 Singular trajectories

This section describes a particular case for solving the problem (2) using neces-
sary conditions from Theorem 2. Some literature concerning this difficult case
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can be found in [Robbins(1967)], [Krener(1977)], [Powers(1980)], [Michel(1996)],
[Bonnard et al.(2003)], [Chitour et al.(2006)] and references therein.

The aim of this section is to summarize the standard results and to show
how they can be used to compute the singular arcs. Some well known definitions
and second order necessary conditions in singular control theory are recalled.
This material is then used to deduce algebraic conditions set. This set involves
only (x, u) (λ disappears) and is easier to solve. The result 11, 12, 15, 21,
22 and 24 have a practical and great interest for low-order systems, when the
procedure ends with unique value for the control u as function of x.

To make the proposals clear, we will distinguish between the single control
case and multiple controls case.

3.1 One-single control case m = 1

3.1.1 Standard results and second order necessary condition

Definition 4 (Singular arc, [Krener(1977)], [Powers(1980)], [Michel(1996)])
If (x, λ,u) is an extremal for (2) such that

φ(t) = Hu ≡ 0

on a time interval [a b] ⊂ T, a < b, then (x, λ, u) is called a singular arc on time
interval [a b].

In this situation, the Hamiltonian function is independent of the control
variable u and minimum condition (5) does not determine directly the con-
trol u. Nevertheless, additional conditions can be deduced with the total time
derivatives of the switching function φ(t), i.e.,

d

dt
φ(t) = 0,

d2

dt2
φ(t) = 0, ....

The following definition must be also given:

Definition 5 (Problem order, [Robbins(1967)], [Michel(1996)]) The problem
order is the smallest integer q such that u explicitly appears in the (2q) derivative
φ(2q) where in each derivative ẋ and λ̇ are replaced by their expression as given

by (4) ( φ(k) = dk

dtk φ(t) is the total time derivative of order k).

For an affine system, the control enters linearly in the (2q) time derivative
of φ and we get an expression of the form:

φ(2q) = A(x, λ) + B(x, λ)u. (12)

Definition 6 (Arc order, [Robbins(1967)], [Michel(1996)]) Let (x, λ, u) be a
singular arc defined on [a b] ⊂ T for (2). The arc order of (x, λ, u) is the
smallest integer p = min{0 ≤ k < ∞ : (φ(2k))u = ((Hu)(2k))u, (x, λ, u) 6= 0, for
any t ∈ [a b]}. When k = ∞, the arc order does not exist.
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As it has been mentioned in the above definition, the arc order not only
depends on the extremal (x, λ, u) but also on the time interval [a b]. It may
occur that a singular arc does not have the same order in different locations.
This is why the following assumption is taken:

Assumption 7 For every arc, there exists a neighborhood of trajectories where
the arc order is constant.

Exceptional cases where this assumption does not hold can be found in
[Robbins(1967)].

It is clear that the arc order may be different from the problem order p if
B(x, λ) = 0. Thus, a control problem may have different arc orders for the same
problem order.

Definitions 4, 5 and 6 are consistent with the following necessary condition:

Proposition 8 [Robbins(1967)], [Michel(1996)] The arc and problem order are
obtained from an even number of derivative of φ.

When the arc order exists on [a, b], the following equality constraints along
a given extremal (x, λ, u) can be deduced:

φ(i) = 0, i = 0, ..., 2p− 1 (13)

∂

∂u
φ(i) = 0, i = 0, ..., 2p− 1 (14)

φ(2p) = A(x, λ) + B(x, λ)u = 0 (15)

with B(x, λ) 6= 0 for all t ∈ [a, b] (16)

¿From the last equality, the control is determined by

u = −A(x, λ)/B(x, λ) (17)

and higher order derivatives of φ give the relationship between the control and
its derivatives because they must vanish identically in [a b]. No further relations
are required.

¿From the solutions set (13), (14) and (15), a second order necessary condi-
tion is established. This condition excludes some of the non optimal candidates:

Theorem 9 (Legendre-Clebsch Generalized Conditions, [Robbins(1967)], [Krener(1977)]).
Let the problem (2) be given. If (x∗, λ∗, u∗) is an optimal arc, then the following
properties hold

a) If the problem order is q on [a b] then

(−1)q((Hu)(2q))u ≥ 0

for all t on [a b].

b) If the arc order is p < +∞ on [a b] then

(−1)p((Hu)(2p))u > 0 (18)

for all t on [a b].
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3.1.2 A practical method to determine singular arcs when m = 1

In general, nonlinear equations (13), (14) and (15) are not easy to solve. For the
class of problems considered here, a solution can be found as we will show at
the end of the subsection. It is based on algebraic conditions which are directly
deduced from the material presented above and some additional assumptions
related to the problem order and to the state space dimension.

The problem order can be determined by successive differentiation of the
switching function until the explicit appearance of u. For an affine system and
a problem order equal to q, the derivatives take the form:

λT adk
fg(x) = 0, k = 0, ..., 2q − 1 (19)

λT ad2q
f g(x) + λT [g, ad2q−1

f g](x)u = 0

where [f, g](x) := gx(x)f(x)− fx(x)g(x) denotes the Lie bracket and adk
fg(x) =

[f(x), adk−1
f g(x)], ad0

fg(x) = g(x) the iterated Lie bracket of order k.
The following proposition has been proven:

Proposition 10 [Michel(1996), Fraser-Andrews(1989)] For optimal control prob-
lem (2) if p = q then 2q ≤ n and adk

fg(x), k = 0, ..., 2q− 1, are linearly indepen-
dent along the extremal (x, λ, u).

Although this proposition is useful when p = q, there is no upper bound con-
cerning the value of p. Then, the number of time derivatives which are necessary
to determine the control is not a priori known.

¿From the order 2p, it is observed that higher derivatives of φ i.e. φ(k), k >
2p, involve successive derivatives of the control u. Therefore, these additional
equations φ(k), k > 2p, are not needed to find (x, λ). Note that time derivatives
of u are justified by the analytic expression (17). The singular control dynamics
of u is given by the differential equation φ(2p+1) = 0. Only the equations
φ(k) = 0, k = 0, ..., 2p, are necessary to determine (x, λ, u) and the additional
derivatives yield the terms u(i), i = 1, 2, ...

Usually, without more assumptions, the singular arc candidates cannot be
explicitly determined. Let us assume that p = q holds along the arc. From
(19) and for a given x, we count (n + 1) unknowns (λ and u) and also 2q + 1
equations. From MP, λ is not trivially zero and when 2q + 1 is equal to n, the
following equation is obtained:

det([g(x), ad1
fg(x), . . . , ad2q−1

f g(x), ad2q
f g(x) + u[g, ad2q−1

f g](x)]) = 0.

Using the independency property of adk
fg(x), k = 0, ..., 2q − 1 along the

singular extremal (proposition 10) and multi-linearity property of det(.), the
control is uniquely determined by:

u = −
det([g(x), ad1

fg(x), . . . , ad2q−1
f g(x), ad2q

f g(x)])

det([g(x), ad1
fg(x), . . . , ad2q−1

f g(x), [g, ad2q−1
f g](x)])

.
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Unfortunately most of control problems have a problem order q = 1, then
unique candidates w.r.t. x can only be guaranteed when n is limited to 3.
Nevertheless, additional conditions can be taken into account if problems in
which the Hamiltonian function vanishes are considered. This is the case for
the most used in practice criteria which are time optimal control or quadratic
criteria in infinite time. The next condition can be added:

λT f(x) = 0 (20)

and the following proposition is deduced:

Proposition 11 (Algebraic necessary conditions for singular arcs) Assume p =
q, n = 2(q + 1) and H = 0 (required by the the MP). If f(x) is linearly inde-
pendent of adk

fg(x), k = 0, ..., 2q − 1 along the singular extremal (x, λ, u), then
the singular control u is uniquely determined by the state feedback

u = −
det([f(x), g(x), ad1

f g(x), . . . , ad2q−1
f g(x), ad2q

f g(x)])

det([f(x), g(x), ad1
fg(x), . . . , ad2q−1

f g(x), [g, ad2q−1
f g](x)])

(21)

and λ is deduced from

λT [f(x), g(x), ad1
fg(x), . . . , ad2q−1

f g(x)] = 0. (22)

Proposition 12 (Algebraic necessary conditions for singular arcs) Assume that
p = q and n = 2q + 1. The singular control u is uniquely determined by the
state feedback

u = −
det([g(x), ad1

fg(x), . . . , ad2q−1
f g(x), ad2q

f g(x)])

det([g(x), ad1
fg(x), . . . , ad2q−1

f g(x), [g, ad2q−1
f g](x)])

(23)

and λ is deduced from

λT [g(x), ad1
fg(x), . . . , ad2q−1

f g(x)] = 0. (24)

Remark 13 By homogeneity, λ may be chosen such that ‖λ‖ = 1

The cases where n < 2q, do not exist following proposition 10. As we have
already mentioned, q = 1 is the most frequent case: it means that the two above
propositions 11 and 12 can be used for n = 3 or 4. n = 2 is trivially solved from
(19).

Remark 14 In a practical case (n = 2(q+1) or n = 2q+1), the above proposi-
tions require p = q. In order to ensure this, we must verify that p ≥ q+1 cannot
occur. A way to do it, is showing that the space E = span{g(x), ad1

fg(x), . . . , ad2q+1
f g(x)}

has a full rank n. Following the equation (13) and if p = q+1, then λT [g(x), ad1
fg(x), . . . , ad2q+1

f g(x)] =
0. Therefore, in the case that the dimension of space E is equal to n, the non
triviality of λ is contradicted and p > q cannot occur.
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Our proposal to determine admissible arcs can be now stated by the following
proposition:

Proposition 15 (Algorithm to obtain singular arcs) If the assumptions of propo-
sition 11 or 12 are satisfied, the candidate singular arcs can be obtained through
the steps:

1. Determine u(x) and λ(x) following related expressions in proposition 11
or 12

2. Store only solutions which satisfy u(x) ∈ co(U).

3. Store only solutions which satisfy the second order condition from Theorem
9.

3.2 Multi-input case m > 1

3.2.1 Standard results and second order necessary condition

The situation when m > 1 becomes more complex because of new conditions’
appearance. Two methods are generally employed to find singular arcs:

• A term
∫ tf

t0
(ǫ/2)α2dt is added to J(x) in (2) with ǫ → 0. This is a pe-

nalization technique [Moylan and Moore(1971)], [Jacobson et al.(1970)],
[Popescu(2005)]. Although such method can be indistinctively used when
either m = 1 or m > 1, it becomes ill-conditioned when ǫ is very small.

• The solution can be found with a shooting algorithm for a given x0. The
method assumes a known solution structure; for example, the number of
singular arcs in the trajectory. It requires a good initial estimation of λ
[Fraser-Andrew(1989)], [Maurer(1976)].

In this section, some algebraic conditions are derived exclusively for m > 1.
The proposed method has the advantage that neither approximations nor a
particular form of the solutions are needed.

Firstly, some definitions from the previous subsection must be generalized.
Once again, they are standard definitions on singular control. As in the case
when m = 1, they are necessary for the comprehension of the proposed method.

The switching function φ is an m-dimensional vector

φ(x, λ) = [φ1(x, λ), ..., φm(x, λ)]
T

= Hu(x, λ, u)

= [g1(x), ..., gm(x)]T λ

A singular trajectory may exist when at least one component of φ identically
vanishes on a non zero measure time interval. Suppose that there exists a non
empty fixed subset M of {1, 2, ..., m} such that

φi(t) ≡ 0, ∀i ∈ M on [a, b] (25)

φi(t) 6= 0, ∀i /∈ M on [a, b] (26)
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(26) represents those controls which are regular and from the optimality condi-
tions, ui(t) = 0 or 1 following the sign of φi, ∀i /∈ M , on [a, b]. In what follows,
these controls have a fixed value (0 or 1) on [a, b]. Since the fixed control ui,
i /∈ M , does not enter in the singular control problem, the terms giui, i /∈ M , are
added to the drift term f . To highlight it, f is replaced by fdrift in sequel. The
subscripts of M can be ordered as the set {1, 2, ..., m} without loss of generality.
Therefore, the definitions of singular arcs and orders become:

Definition 16 (Problem order matrix, [Michel(1996)]) Let the optimal control
problem (2) be given. The problem order matrix Q is a matrix with elements
(qij), i, j = 1, . . . , m. (qij) corresponds to the number where the control uj

appears explicitly for the first time in the 2qij-th derivative with respect to t of
the switching function φi.

Definition 17 (Arc order matrix, [Michel(1996)]) Let a singular extremal (u∗, x∗, λ∗)
for the optimal control problem (2) be given. The arc order matrix P is a matrix
whose elements pi,j, i, j = 1, . . . , m, are

pij := min
k

{k : k ≥ 0, (φ
(2k)
i )uj

(u∗, x∗, λ∗) 6= 0}

Definition 18 (Problem order and arc order [Robbins(1967)], [Michel(1996)])
The problem order q is

q = min{qij}, i, j = 1, . . .m

and the arc order:
p = min{pij}, i, j = 1, . . .m

¿From Definition 18, [Robbins(1967)], [Krener(1977)], [Powers(1980)], [Melikyan(1994)]
have developed some higher-order necessary conditions for optimality to distin-
guish the optimal controls from non optimal controls which satisfy the first order
conditions (25).

A second-order necessary condition is described by the following theorem:

Theorem 19 (Generalized Legendre-Clebsch Condition GLC, [Robbins(1967)])
Let an optimal singular extremal (x∗, λ∗, u∗) be given with an arc order p < +∞
on [a b]. Therefore, along all the arc (x∗, λ∗, u∗), the matrix (−1)p((Hu)(2p))u

is positive semidefinite for every t on [a b].

[Krener(1977)], [Michel(1996)], [Jacobson et al.(1970)], [Dmitruk(2007)] show
third-order conditions for optimality of the singular problems.

Different from the one-single control case (m = 1), the problem order and the
arc order might not be an integer number. However, the second order condition
from Theorem 19 claims the following proposition:

Proposition 20 [Robbins(1967)], [Vapnyarskii(1967)] The arc order of the op-
timal singular arcs is an integer number.

[Vapnyarskii(1967)] also proved this proposition for the case where 2q = 1.

13



3.2.2 A practical method to determine singular arcs

As in the case when m = 1, in this subsection, some algebraic conditions are
deduced to find singular arcs using additional assumptions.

Let us summarize the definitions and conditions presented:

• There exists a components subset M of the switching function which iden-
tically vanishes on a time interval [a b] ⊂ T, a < b.

• For the components for which the switching function does not vanish, the
value is fixed to 0 or 1.

• Considering the switching function φ(x, λ) without the fixed controls, we
must solve φ(x, λ) ≡ 0 on a time interval [a b] ⊂ T with the help of second
order necessary conditions.

Since g(x) =
∑

i∈M gi(x)ui, derivatives of the switching function compo-
nents can be formally computed until the order 2q, following the problem order
definition

φ
(k)
i (x, λ) = λ

T
ad

k
fdrift

g
i(x) (27)

= 0, k = 0, ..., 2q − 1 and i ∈ M

φ
(2q)
i (x, λ) = λ

T
ad

2q
fdrift

g
i(x) + λ

T P

j∈M

[gj
, ad

2q−1
fdrift

g
i](x)uj (28)

= 0, i ∈ M

For an extremal (x, λ, u) with an arc order p, if 2p > 2q, we get:

∂

∂uj

φ
(2q+k)
i (x, λ) = λ

T [gj
, ad

2q−1+k

fdrift
g

i](x) (29)

= 0, i ∈ M, j ∈ M, k = 0, ..., 2p − 2q − 1

φ
(k)
i (x, λ) = λ

T
ad

k
fdrift

g
i(x) (30)

= 0, i ∈ M, k = 2q + 1, ..., 2p − 1

φ
(2p)
i (x, λ) = λ

T (ad
2p

fdrift
g

i(x) +
P

j∈M

[gj
, ad

2p−1
fdrift

g
i](x)uj) (31)

= 0, i ∈ M

At this point, we note that:

1. All derivatives take the form λT hk(x, u) until order 2p is reached. For
k > 2p, successive time derivatives of u enter in the expressions of hk.

2. The adjoint λ is orthogonal to the space spanned by the vector field family
{hk(x, u), k = 0, 1, ...}.

3. Since the adjoint λ is not trivially zero, singular solutions are obtained
when the space dimension is less than n.
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4. The number 2p of derivatives to take into account is a priori unknown
and is directly related to the number of linear independent vector fields
hk for a given (x, u).

5. If for a given derivation order all components of u are determined (as a
function of x), then additional derivatives give the complete set of nonlin-
ear differential equations involving u. No further derivatives are required
to determine the values of the x candidates.

Assume now that p = q, from equations (27) and (28), and for a given x, we
count (n + |M |) unknowns (λ and u) and (2q + 1) ∗ |M | equations. From MP,
λ is not trivially zero and if 2q + 1 is equal to n, we get:

det([gi(x), ad1
fdrift

gi(x), . . . , ad2q−1
fdrift

gi(x), ad2q
fdrift

gi(x)+
∑

j∈M

[gj, ad2q−1
fdrift

gi](x)uj ]) = 0, i ∈ M.

Multi-linearity property of det(.) leads to the following equation,

det([gi(x), ad1
fdrift

gi(x), . . . , ad2q−1
fdrift

gi(x), ad2q
fdrift

gi(x)])

+
∑

j∈M

det([gi(x), ad1
fdrift

gi(x), . . . , ad2q−1
fdrift

gi(x), [gj , ad2q−1
fdrift

gi](x)])uj = 0, i ∈ M.

(32)

Let us define
[
det(i,j)(x)

]
the |M | × |M | matrix whose (i, j)(∈ M2) entries are

det(i,j)(x) = det([gi(x), ad1
fdrift

gi(x), . . . , ad2q−1
fdrift

gi(x), [gj , ad2q−1
fdrift

gi](x)])

If
[
det(i,j)(x)

]
is non singular, the control is uniquely determined by:

u =
[
det(i,j)(x)

]−1
W (x)

where i − th entry of vector W (x) is given by

Wi(x) = det([gi(x), ad1
fdrift

gi(x), . . . , ad2q−1
fdrift

gi(x), ad2q
fdrift

gi(x)]).

Similarly to the case where m = 1, the following proposition is deduced:

Proposition 21 (Algebraic necessary conditions for singular arcs) Assume p =
q, n = 2(q + 1) and H = 0 (required by MP). If fdrift(x) is linearly indepen-
dent of adk

fdrift
g(x), k = 0, ..., 2q − 1 along the singular extremal (x, λ, u) and

[det(i,j)(x)] is non singular, then the singular control vector u is uniquely deter-
mined by the state feedback

u =
[
det(i,j)(x)

]−1
W (x) (33)
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where
[
det(i,j)(x)

]
is the |M |×|M | matrix whose (i, j)(∈ M2) entries are defined

by

det(i,j)(x) = det([fdrift, g
i(x), ad1

fdrift
gi(x), . . . , ad2q−1

fdrift
gi(x), [gj , ad2q−1

fdrift
gi](x)])

and where the i-th entry of vector W (x) is given by

Wi(x) = det([fdrift, g
i(x), ad1

fdrift
gi(x), . . . , ad2q−1

fdrift
gi(x), ad2q

fdrift
gi(x)]). (34)

Moreover λ is deduced from

λT [fdrift(x), gi(x), ad1
fdrift

gi(x), . . . , ad2q−1
fdrift

gi(x)] = 0. (35)

Opposite to the case of a single control variable m = 1, the assumption p = q
does not usually hold. The most often case is to find q = 1/2 and p = 1 because
the cross terms [gi, gj ](x), for i 6= j do not disappear. Then the following
proposition may be used to try to find a solution:

Proposition 22 (Algebraic necessary conditions for singular arcs) Let (x, u)
be a singular optimal solution to (2) with an arc order p such that 2p > 2q.
Then, the locus described by (x, u) verifies the algebraic equation:

⋂

l

{(x, u) : Sl(x, u) = 0} (36)

where Sl are all the minors of rang n i.e. an indexed sequence of determinants
Sl(x, u) = det([hi1 ...hin

]) whose columns hik
(x, u), 1 ≤ i1 < · · · < ik < · · · <

in ≤ imax = 2(p − q)|M |2 + (2p + 1)|M | are selected from the sets α(x), β(x)
and γ(x, u) with

α(x) = {ad
k
fdrift

g
i(x), i ∈ M, k = 0, ..., 2p − 1}

β(x) = {[gj
, ad

(2q+k−1)
fdrift

g
i](x), i ∈ M, j ∈ M, k = 0, ..., 2p − 2q − 1}

γ(x, u) = {ad
2p

fdrift
g

i(x) +
X

l∈M

[gl
, ad

2p−1
fdrift

g
i](x)ul, i ∈ M}.

If H = 0 is required by the MP, add f(x) in the above list of vectors hk.

Remark 23 The above proposition may fail if all the components of u are not
entirely determined. It means that there exist at least one index l such that
[gl, ad2p−1

fdrift
gi] ≡ 0, i ∈ M .

Our proposal to determine admissible arcs can now be established as follows:

Proposition 24 (Algorithm to obtain singular arcs) The candidate singular
arcs can be obtained through the steps:

1. For all subsets M of control index {1, 2, ..., m}, and fixing to 0 or 1 the
controls which are not in M , determine u(x) following related expressions
in proposition 22 (or 21 if it applies) for all admissible integer values of
p, p ≥ 2q.
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2. Store only solutions which satisfy u(x) ∈ co(U).

3. Determine λ⊥hi, i = 1, ..., imax. Check a-posteriori if the minimum con-
dition of the MP is satisfied (due to the fixed value in the control variables).

4. Store only solutions which satisfy the second order condition given in The-
orem 19.

4 Optimal trajectory synthesis

It is well known that the necessary conditions given by the MP lead to solve a
two-point boundary value problem.

Let us take the following assumption:

Assumption 25 All optimal solutions reach the equilibrium in finite time or
even in infinite time in case of infinite time criteria.

Remark 26 The assumption is obviously satisfied both for time optimal criteria
or for quadratic criteria in infinite time. However, this is not the case for
quadratic criteria in finite time.

Here, due to the equilibrium point’s nature and thanks to Propositions 15
and 24, we will show that final conditions are entirely known. Consequently,
the problem appears as a simple initial condition problem.

The aim is to generate a dense set of trajectories ending at a given equilib-
rium point.

As we mentioned above, the equilibrium point xref belongs to a singular
arc. Indeed, the control uref which holds the state on the equilibrium xref

(f(xref ) + g(xref )uref = 0), is not a vertex of the control set. It means that if
a trajectory reaches in finite time this equilibrium with a regular (ui = 0 or 1,
i = 1, ..., m) control. ui, must switch to uref once x(tr) = xref at a switching
time tr. Then, from Propositions 15 and 24, admissible values λref for λ(tr)
are deduced. Consequently, it is not necessary to use a shooting algorithm to
solve the two-point boundary value problem since final conditions are known.

Using a time backward integration of the Hamiltonian system (4) from the
final state (xref , λref ) and control values ui, i = 1, ..., m, equal to 0, 1 or ui,ref ,
all the trajectories ending at xref can be generated. ui = 0, 1 or uref since
a singular point is potentially a bifurcation point (the switching function van-
ishes).

This is not the best way to proceed for at least two reasons:

• Nonlinear differential equations which determine the singular control val-
ues are ill-conditioned and highly nonlinear.

• Singular arcs may converge asymptotically to the equilibrium point. This
would make the backward arc computations numerically intractable.
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It is really useful to find an algebraic solution of singular arcs and to start
backward integration directly from points on the singular surface (avoiding the
two difficulties pointed out above said above).

Backward integration starts with ad hoc conditions on x and λ, i.e., singular
values obtained in the previous section from Propositions 15 and 24. The control
is chosen such that if the i-th component of u is singular at the given point, two
bifurcations are considered by switching the control ui to 0 or 1. The rest of the
trajectories are generated according to necessary conditions given by the MP.
Hence, using a time backward integration of the Hamiltonian system (4) from
points on singular arcs (ending in the final state xref ), a dense set of optimal
trajectories can be generated (see Figure 1).

It may arise that two trajectories intersect each other in the state space. In
that case, unicity of the extremal does not hold. However, the conflict can be
solved by considering the performance function value. The trajectory branch
which has the higher cost is cut and lost (see Figure 2).

Remark 27 For the following examples, the singular surface is unique and the
equilibrium point lies within it. However, it may occur that an optimal trajectory
has several disconnected singular arcs. This case is more difficult and conditions
concerning the junction between singular and regular arcs are not completely
known. See [Ruxton and Bell(1995)] and [McDanell and Powers(1971)].

For a sufficiently dense set of optimal trajectories computed on a pavement
of R

n, a neural network is then used in order to interpolate optimal solutions.
The resulting state feedback u(x) whose evaluation is a simple limited number
of sums and products is available in real time.

The following proposition summarizes the method presented in this article.

Proposition 28 (Algorithm to compute a state feedback control law). A state
feedback control law u(x) can be obtained through the following steps:

1. Compute all admissible singular arcs following Propositions 15 or 24.

2. Integrate backward in time the Hamiltonian system (4) according the nec-
essary conditions given by the MP. The integrations start with x(0) and
λ(0) given by the points which belong to the singular arcs and changing ui

to ui = 0 or ui = 1, if ui is singular. The end time is chosen sufficiently
large to cover entirely a given state space area.

3. Store all the obtained trajectories.

4. Verify if there exist trajectories which intersect each other with a different
control value.

5. Solve the conflict considering the performance function value. The trajec-
tory with the higher cost is cut and lost from the conflict point.

6. Interpolate all the optimal trajectories with a neural network. The neural
network has as inputs all the optimal trajectories x and as output the
optimal control u.
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Figure 1: Generation of all trajectories: Backward integration from points on
singular arcs.

Figure 2: Conflict case. The square shows a possible conflict in the trajectories.
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Figure 3: Step-down converter in continuous conduction mode. State variables
are the inductance current and the output voltage. Control is the switch posi-
tion.

Remark 29 The success of the method practically implies:

• Low dimensional problems

• Unicity of the singular candidate control u and adjoint λ as function of
the state x.

• Only one singular arc belongs to a trajectory.

5 Examples

In this section, the control method is applied to two power converters.

5.1 Step-down converter

5.1.1 Problem statement

Consider a DC-DC step-down converter in Continuous Conduction Mode (CCM)
whose topology is given in Figure 3 where r0 is a resistive load.

The state variables are the inductance current il and the output voltage v0.
The switch position s gives two different dynamics:

1. When the switch is on, the current goes from the voltage source, vs, to
the load circuit.

2. When the switch is off, the source is not connected to the load.

The state equation is determined by: ż = Az + Bu, u ∈ {0, 1}, z = [il, v0],
A and B take the form

A =

[
− rl

xl
− 1

xl

− rlrcxcro−roxl

xcxl(ro+rc)
− roxcrc+xl

xlxc(ro+rc)

]
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and

B =

[ 1
xl

vs
rcro

xl(ro+rc)
vs

]

with xc := 100µF, xl := 2mH, rc := 0.15 Ω, rl := 1Ω , vs := 50 V and
r0 := 50Ω.

The purpose is to regulate the output voltage v0 around 25 volts despite
load and input step variations. Inductance current is limited at 2.5 A.

For a given reference zref = [ilref
, v0ref

]T = [0.5, 25]T , the criterion to opti-
mize is:

J =
1

2

+∞∫

0

(z − zref )TQ(z − zref )dt

with the weighting matrix Q =

[
1 0
0 1000

]
.

5.1.2 Determination of the singular arcs

For this example, f and g can be written as

f(x) = [(Az)T ,
1

2
(z − zref )TQ(z − zref )]T ,

g(x) = [BT , 0]T .

x = [z, xn]T . Since the problem is in infinite time, the Hamiltonian is identically
zero, H = λT f + λT gu = 0, ∀t. Therefore, the equation λT f = 0 can be added
to the equation given by the switching function φ(t) = λT g = 0. This leads to
the following condition on x (the problem order is q = 1)

S = det(f(x), g(x), [f, g](x)) = 0.

The adjoint variable must satisfy

λ ⊥ {f(x), g(x), [f, g](x)}

and u is deduced from the last equation of (19) (here p = q):

u = −λT ad2
fg(x)/λT [g, ad1

fg](x).

¿From the admissible candidates, optimal arcs are determined applying the
second order condition (18).

Backward time integration gives all the trajectories ending at the equilibrium
point (Figure 4). The control values which belong to a singular arc match
the values in the interval [0, 1]. The dynamics of u is given by the nonlinear
differential equation

u̇ = −
λT (ad3

fg + u([g, [f, [f, g]]] + [f, [g, [f, g]]]) + u2 [g, [g, [f, g]]])

λT [g, [f, g]]

Therefore, singular arcs define an optimal sliding surface.
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Figure 4: Singular arc and regular trajectories for the step-down converter.
All the trajectories converge towards the singular arc and slide towards the
equilibrium point.

5.1.3 State feedback

In order to obtain a feedback control law, a neural network is used with the
optimal state x∗ as input and the optimal control u∗ as output. Once the
learning phase in the neural network is completed, the state space is fractionated
into two control regions. Each region gives the control value.

The upper bound in the current (il < 2.5A) is represented as a border line.
This constraint is introduced after the feedback control law synthesis as an extra
additional constraint. A switch is induced if the constraint is not verified. This
strategy leads to a sliding motion. Nevertheless, the solutions could not be
necessarily optimal in this configuration.

This is also a sliding trajectory at il = 2.5 A. See Figure 5.
The system response from zero initial conditions is shown in Figure 6. The

learning phase of the control is carried out for different load values r0 changing
the reference ( iref is a function of r0 ). Load variations are observed in simula-
tion from state and input measures through a simple gradient based estimator.

For control law robustness test, a step change of the input voltage is applied
from 50 to 35 volts at time t = 3 ms, and at t = 4 ms from 35 to 50 V. Again,
a load step change from 50 to 100 and from 100 to 50 Ω at times t = 5 ms and
t = 6.5 ms is applied. The voltage output is regulated to 25 V.

Remark 30 For this example, the off-line computation time necessary to es-
tablish the control is 10.45 seconds on a PC with 1 GB of RAM memory. The
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Figure 5: State Feedback control map. u(x) is deduced from this map. A
trajectory from start-up condition to the equilibrium point is also shown.

singular arcs computation, the trajectories generation and the solutions learning
with a neural network are included in this time.

Remark 31 The neural network used for this example has two layers with 10
neurons for the hidden layer.

Remark 32 The sliding motion on the singular arcs is obtained with a hystere-
sis around the surface which leads to an asynchronous control. For a numerical
implementation, one can use a synchronous control u(kTe) with respect to a
sampled time Te. See Figure 7.

Finally, the method is applied for an optimal time criterion. Figure 8 shows
the system’s response.

5.2 Multilevel converter

5.2.1 Problem statement

In the case of a few megawatt industrial power applications, the classical power
converters have a very high voltage in the switching components (several kilo-
volts). To compensate this, a new class of power converters called multicellular
converters appeared. A multicellular converter reduces the voltage throughout
the switches. Its structure makes it possible to split the voltage constraints
and to distribute them among several switches. It is composed of serial connec-
tions between semiconductor switching devices and passive storage elements to
achieve the target operating voltage. See Figure 9.
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Figure 6: Transient response and robustness test for charge and source variation.
Supply step from 50 → 35 V at t = 3 ms, at t = 4 ms, 35 → 50 V. Load step
from 50 → 100Ω at t = 5 ms and 100 → 50Ω at t = 6.5 ms is applied. The
voltage output is regulated to 25 V.

Three switching cells can be isolated, each one containing two switches that
operate dually. The behavior of each cell can be described using only one
boolean control variable ui ∈ {0, 1} with i = 1, 2, 3. ui = 1 means that the upper
switch is closed and the lower switch is open whereas ui = 0 means that the up-
per switch is open and the lower switch is closed (Figure 9). There exist a lot of
references concerning this converter design for medium and high voltage appli-
cations. Some of them are [Béthoux and Barbot(2006)], [Meynard et al.(2002)],
[Lai and Peng(1996)], [Chiasson(2003)].

The state equations of the converter have an affine form given by



ż1

ż2

ż3


 =




0
0

−R
L

z3


 +



− z3

C1

z3

C1

0

0 − z3

C2

z3

C2

z1

L
z2−z1

L
E−z2

L






u1

u2

u3


 (37)

= r(z) + [s1(z), s2(z), s3(z)]u (38)

where z1, z2 are the voltage on each capacitor and z3 the load current.
The purpose is to regulate the state around an equilibrium point of the

average state model. In order to improve the wave form, the capacitor voltages
must be maintained in 2E/3 and E/3, while the demanding load current is fixed

to 0.6 A. Then, zref =
[
2E/3 E/3 0.6

]T
.
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Figure 7: Transient response and robustness test for charge and source variation
when the controller is sampled every 100kHz.

The criterion is again a quadratic one:

J =
1

2

∫
∞

0

(z − zref )TQ(z − zref )dt

with a weight matrix fixed to Q =




1 0 0
0 1 0
0 0 1000



 .

5.2.2 Determination of the singular arcs

Here,

x =




x1

x2

x3

x4


 =




z1

z2

z3
1
2

∫ t

0 (z − zref )TQ(z − zref )dτ




and

f(x) =

[
r(z)

1
2 (z − zref )TQ(z − zref )

]
g(x) =

[
g1(x), g2(x), g3(x)

]
=

[
s1(z) s2(z) s3(z)

0 0 0

]

As in the previous example, the Hamiltonian must be zero, H = 0, following
the transversality conditions and J < ∞.
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Figure 8: Optimal time start-up response. A minimum time criterion is consid-
ered.

The switching function is

φ(x, λ) =



φ1(x, λ)
φ2(x, λ)
φ3(x, λ)


 =




−x3

C1

λ1 + x1

L
λ3

x3

C1

λ1 −
x3

C2

λ2 + x2−x1

L
λ3

x3

C2

λ2 + E−x2

L
λ3




First, we must consider the singular solution. Applying Proposition 22, the
following equations set helps to obtain the singular arcs:

S1(x) = det([f(x), g1(x), adfg1(x), adg2g1(x)])

S2(x) = det([f(x), g2(x), adfg2(x), adg1g2(x)])

S3(x) = det([f(x), g1(x), adfg1(x), adg3g1(x)])

S4(x) = det([f(x), g3(x), adfg3(x), adg1g3(x)])

S5(x) = det([f(x), g2(x), adfg2(x), adg3g2(x)])

S6(x) = det([f(x), g3(x), adfg3(x), adg2g3(x)])
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Figure 9: Multilevel converter. The state variables are the capacitor voltages
and the current load. The control is the switch position of U1, U2 and U3.

S7(x) = det([g1(x), adfg1(x), adg3g1(x), ad2
fg1(x) +

∑

j∈M

[gj, adfg1](x)uj ])

S8(x) = det([g2(x), adfg2(x), adg3g2(x), ad2
fg2(x) +

∑

j∈M

[gj, adfg2](x)uj ])

S9(x) = det([g1(x), adfg1(x), adg2g1(x), ad2
fg1(x) +

∑

j∈M

[gj, adfg1](x)uj ])

S10(x) = det([g3(x), adfg3(x), adg2g3(x)ad2
fg3(x) +

∑

j∈M

[gj, adfg3](x)uj ])

S11(x) = det([g2(x), adfg2(x), adg1g2(x), ad2
fg2(x) +

∑

j∈M

[gj, adfg2](x)uj ])

S12(x) = det([g1(x), adfg1(x), adg3g1(x), ad2
fg1(x) +

∑

j∈M

[gj, adfg1](x)uj ])

S13(x) = det([g1(x), adfg1(x), ad2
fg1(x) + [g1, adfg1](x)u1])

S14(x) = det([g2(x), adfg2(x), ad2
fg2(x) + [g2, adfg2](x)u2])

S15(x) = det([g3(x), adfg3(x), ad2
fg3(x) + [g3, adfg3](x)u3])

Table 1 shows how to compute singular arcs. This table is composed by:

• In the first column, the values of the set M .

• In the second column, the drift term including f and terms gi(x)ui, if
i /∈ M. ui is fixed to the values 0 or 1 to compute the solution.

• In the last column, the equations set that gives the solution (x, u).

All solutions in this example are obtained for p = 1. For p ≥ 2, necessary
conditions yield an empty set and so no singular arcs exist.

The admissible λ such that it is orthogonal to the components of {hk(x, u), k = 0, 1, ...}
is a posteriori determined. The minimum condition (5) of the MP is checked as
well as the second order conditions.
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Table 1: Singular surfaces. This table shows all the possibles singular controls
and the equations to obtain them.

M fdrift Singular arc
{1, 2, 3} f(x)

⋂
l{(x, u), Sl(x, u) = 0} l = 1, . . . , 12

{1, 2} f(x) + g3(x)u3 {S1 = 0} ∩ {S2 = 0} ∩ {S7 = 0} ∩ {S8 = 0}
{1, 3} f(x) + g2(x)u2 {S3 = 0} ∩ {S4 = 0} ∩ {S9 = 0} ∩ {S10 = 0}
{2, 3} f(x) + g1(x)u1 {S5 = 0} ∩ {S6 = 0} ∩ {S11 = 0} ∩ {S12 = 0}
{1} f(x) + g2(x)u2 + g3(x)u3 {S13 = 0}
{2} f(x) + g1(x)u1 + g3(x)u3 {S14 = 0}
{3} f(x) + g1(x)u1 + g2(x)u2 {S15 = 0}

5.2.3 State feedback

All the trajectories are generated from the singular arcs. After obtaining regular
and singular arcs numerically following proposition 24, an artificial feed-forward
neural network is used to interpolate the solutions. The network is trained
with 15 neurons in the hidden layer and sigmoid functions. The inputs are
the three errors between each reference and each state variable [x − xref ] =
[vc1− vc1,ref , vc2− vc2,ref , il − il,ref ]T and the outputs are the three controls u1,
u2 and u3. Nominal charge value is used.

The method presented in this article has been validated in simulation with
the following nominal parameter values: C1 = C2 = 45µF , L = 0.5H , R = 30Ω.

Once the optimal state feedback control is determined, it defines a state
space partition. Then, the state space is divided into regions and the borders
of each region may be partially composed by singular arcs.

In this example, control u(x) is updated at a sampling frequency of 1/Te = 40
kHz.

The nominal source voltage is E = 30V. The system modes are listed in
Table 2.

Table 2: System modes.

Mode u1 u2 u3

1 0 0 0
2 0 0 1
3 0 1 1
4 0 1 0
5 1 1 0
6 1 1 1
7 1 0 1
8 1 0 0

A few relevant performance indices were selected for simulation tests:

1. Start-up transient. Figures 10 and 11 show the system’s response with
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nominal parameters. The control law achieves the reference in 0.018 s.

2. Line transient. The supply voltage is subject to variations during opera-
tion. Figures 12 through 13 and Figures 14-15 show the transient when a
supply variation is applied: From E = 45 V to E = 30 V at t = 0.025 s
and back again at t = 0.03 s.

The figures show that the control law can compensate the different supply
changes. Despite the variation (E = 30 → 45 V), the modes generating
the limit cycle do not change. However, the duration of each mode is
modified by the control law.

3. Load transient. The load is subject to variations during operation. The
control law is only computed for the nominal value R = 30Ω. Figures
16 and 17 show the transient when a change of R = 35Ω to R = 20Ω
occurs at t = 0.025 s. Figures 18 and 19 show the response for R = 20Ω
to R = 35Ω at t = 0.03 s. The results show that the regulation, even
when the load varies, is achieved. It can be seen that the cycle is different
(modes and its duration change).

6 Conclusions

In this article, a methodology to compute an optimal state feedback control law
for low-order switched affine systems has been proposed. A large class of power
converters is included into this class of systems.

As it has been shown, our approach consists in extending the discrete controls
set to its convex hull. The bang- bang solutions in this formulation are also the
original problem’s solutions. Otherwise, there exist singular arcs corresponding
to Fillipov solutions which are not admissible for the switched system.

Nevertheless, as density theorems have proven, these Fillipov solutions can
be approximated by chattering control on the optimal surface when either a
maximum switched frequency is fixed or a hysteresis band is imposed.

The key contribution shows that singular surfaces can be algebraically ob-
tained by finding the roots of a determinants set. Second order conditions are
jointly used to reduce the potential candidates’ number.

For infinite time quadratic or time optimal criteria, it is shown that the opti-
mal trajectory synthesis can be numerically computed by integrating backward
in time the Hamiltonian system as a single initial value problem. This avoids
the classical two-points boundary value problem.

Once all the solutions are generated, a neural network learns them as a simple
input-output function which is easy to implement in real time. The procedure
yields a state feedback control law with a very few level approximation due to
the discrete nature of the control values.

The application on two converter examples shows the method’s applicability
and its efficiency. This synthesis can be extended to take into account the
changes in parameters.
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Figure 10: Start up transient response (voltages).

Figure 11: Start up transient response (current).

30



0.023 0.024 0.025 0.026 0.027 0.028
8

10

12

14

16

Time (s)

V
ol

ta
ge

 V
c 1

0.023 0.024 0.025 0.026 0.027 0.028
15

20

25

30

35

Time (s)

V
ol

ta
ge

 V
c 2

Figure 12: Transient response to a step in the source voltage from E = 30V to
E = 45V at t = 0.025 s (voltage).

Figure 13: Transient response to a step in the source voltage from E = 30V to
E = 45V at t = 0.025 s (current).
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Figure 14: Transient response to a step in the source voltage from E = 45V to
E = 30V at t = 0.03 s (voltage).

Figure 15: Transient response to a step in the source voltage from E = 45V to
E = 30V at t = 0.03 s (current).
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Figure 16: Transient response to a step in the load resistance from R = 30Ω to
R = 20Ω at t = 0.025 s (voltage).
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Figure 17: Transient response to a step in the load resistance from R = 30Ω to
R = 20Ω at t = 0.025 s (current).
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Figure 18: Transient response to a step in the load resistance from R = 20Ω to
R = 35Ω at t = 0.03 s (voltage).
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Figure 19: Transient response to a step in the load resistance from R = 20Ω to
R = 35Ω at t = 0.03 s (current).
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(2000), “Out of Control Because of Harmonics - An Analysis of the Har-
monic Response of an Inverter Locomotive,” IEEE Control Systems Mag-
azine, 20(4), 70–81.

[Mahabir et al.(1990)] Mahabir, K., Verghese, G., and et. al., (1990), “Lin-
ear Averaged and Sampled Data Models for Large signal control of high
power factor converter,” in Proceedings of IEEE Power Electronics Special-
ists Conference, San Antonio, Texas, pp. 372 – 381.

[Huliehel and Ben-Yaakov(1991)] Huliehel, F., and Ben-Yaakov, S. (1991),
“Low frequency sampled data models of switched mode DC-DC convert-
ers,” IEEE Transactions on Power Electronics, 6(1), 55–61.

[Rantzer et al.(2000)] Rantzer, A., Johansson, M., and Arzen, K. (2000),
“Piecewise linear quadratic control,” IEEE Transactions on Fuzzy Systems,
45, 629–637.

[Daafouz et al.(2002)] Daafouz, J., Riedinger, P., and Iung, C. (2002), “Sta-
bility Analysis and Control Synthesis for Switched Systems: A Switched
Lyapunov Function Approach,” IEEE Transactions on Automatic Control,
47(11), 1883–1887.

35



[Decarlo et al.(2000)] Decarlo, R.A., Branicky, M., Pettersson, S., and Lennart-
son, B. (2000), “Perspectives and Results on the Stability and Stabilizabil-
ity of Hybrid Systems,” Proceedings of the IEEE, 88(7), 1069–1082.

[Hespanha(2004)] Hespanha, J.P. (2004), “Uniform stability of switched linear
systems: extensions of LaSalle’s Invariance Principle,” IEEE Trans. on
Automatic Control, 49(4), 470–482.

[Flieller et al.(2006)] Flieller, D., Riedinger, P., and Louis, J.P. (2006), “Com-
putation and stability of limit cycles in hybrid systems,” Nonlinear Anal-
ysis, 64(2), 352–367.

[Rubensson(2000)] , M.; LennartsonRubensson, B. (2000), “Stability of limit
cycles in hybrid systems using discrete-timeLyapunov techniques,” in 39th
IEEE Conference on Decision and Control, Vol. 2, pp. 1397–1402.

[Goncalves(2004)] Goncalves, J.M. (2004), “Regions of stability for limit cycles
of piecewise linear systems,” in Proceedings of the 42nd IEEE Conference
on Decision and Control, Vol. 1, Hawaii, USA, pp. 651–656.

[Perry et al.(2005)] Perry, A., Feng, G., Liu, Y., and Sen, P. (2005), “A New
sliding mode like control method for buck converter,” in Proceeding of
35th Annual IEEE Power Electronics Specialist Conference, Vol. 5, Poz-
nan, Poland, pp. 3688– 3693.

[Richard et al.(2006)] Richard, P., Cormerais, H., and Buisson, J. (2006), “A
generic design methodology for sliding mode control of switched systems,”
Nonlinear Analysis, 65(9), 1751–1772.

[Sira-Ramirez et al.(2002)] Sira-Ramirez, H., Marquez-Contreras, R., and
Fliess, M. (2002), “Sliding mode control of DC-to-DC power converters
using integral reconstructors,” International Journal of Robust and Non-
linear Control, 12, 1173 – 1186.

[Ahmed et al.(2003)] Ahmed, M., Kuisma, M., Tolsa, K., and Silventoinen, P.
(2003), “Implementing sliding mode control for buck converter,” in Pro-
ceedings of IEEE 34th Annual Conference on Power Electronics Specialist,
Vol. 2, Acapulco, Mexico, pp. 634–637.

[Bemporad et al.(2002)] Bemporad, A., Giua, A., and C.Seatzu, (2002), “A
master-slave algorithm for the optimal control of continuous-time switched
affine systems,” in Proceedings of 41th IEEE Conf. On Decision and Con-
trol, Vol. 2, Las Vegas, Nevada, pp. 1976 – 1981.

[Mehta and Egerstedt(2006)] Mehta, T., and Egerstedt, M. (2006), “An Opti-
mal Control Approach to Mode Generation in Hybrid Systems.,” Nonlinear
Analysis: Theory, Methods and Applications, 65, 963–983.

36



[Shaikh and Caines(2003)] Shaikh, M., and Caines, P. (2003), “On the opti-
mal control of hybrid systems: Analysis and algorithms for trajectory and
schedule optimization,” in Proceedings of the IEEE Conference on Decision
and Control, Vol. 3, Acapulco, Mexico, pp. 2144– 2149.

[Joh(2007)] (2007), “L Q optimal control for a class of pulse width modulated
systems,” Automatica, 43(6), 1009–1020.
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