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Abstract—Classical control laws for power converters are
based on the average model. Usually, they have a good perfor-
mance in the transient. Nevertheless, the steady state behavior is
not well-controlled (waveform, subharmonics, etc.). This article
shows a predictive approach that reaches an optimal periodic
cycle from a set-point of the average model. The method uses
the sensitivity functions and a Newton algorithm which allows to
track an optimal trajectory based on a cost function.

Index terms— Cycle, sensitivity function, Gauss-Newton algo-

rithm, non-linear programming.

I. INTRODUCTION

Power converters are devices that ensure a supply to the

electric machines by the conversion of an electrical signal

(voltage, current, frecuency). This is obtained by switches
operating (open or closed) at high frequencies. They allow

“to trim” a current or a voltage. Thus, it is necessary to

design a control law for deciding the position of the switches.
Usually, classical analysis and control laws lie on average

models approaches [1], [2]. However, they are low frequency
approaches and do not take into account the discontinuous

aspect of the switches. Therefore, resulting waveform can

create subharmonics or inter-harmonics of the cutting fre-
quency. There are also approaches based on sampling linear

models. From the non-linear sampling model, a linearized

model around the desired operation point is used [3]. The
non-linear recurrence is not easily obtained and oscillations

between switching instants appear. Other emerging strategies

consist in directly controlling the different switches without
using an average model. There exist already some of these

control laws that have been tested by industrial companies.

They show an improvement of 50% in response time compared
to the techniques traditionally used [4].

In this work, we are concerned with the problem of con-

trolling systems, with a cyclic behaviour in steady state and
whose inputs can be described with binary values (0 or 1). This

situation gives us a good source of interesting applications, not

only for power converters, but also for other systems. There
are already some other strategies applied to these systems

based on sliding modes [5], predictive control [6] and passivity

control [7].All these methods do not take into account the
cyclic behavior of the system.

The model predictive control has already been applied to

power systems. However, the different approaches are focused

in particular examples. See [8] for a full bridge DC/DC
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converter application or [9] for an active front-end rectifier.

The approach presented in this article is formulated from a

switched system point of view. This allows to establish a
general method which does not depend on the application

The method presented in this paper provides the theoretical

background to a new predictive control approach based on
sensitivity function and a Newton algorithm. First, this ap-

proach establishes an optimal limit cycle which is a reference

cycle. Second, a predictive control is created in order to reach
a reference cycle in steady state. Some simulation results can

be seen in [10] without providing a theoretical basis.

Since the method solves several optimization problems,
the on-line implementation cannot be ensured for complex

converters. However, the optimal solutions can be interpolated

by the off-line training of a neural network (NN). This
network interpolates the trajectories and allows to satisfy time

contraints in real time between two sampled time.

The present article is organized as follows: In Section 2,
we present the general problem. Section 3 is devoted to the

open loop analysis and the limit cycle research. Section 4

shows how to obtain optimal switching times from a Newton
algorithm and sensitivity functions. Section 5 is concerned by

the construction of the control law in closed loop by predictive

control. Section 6 shows simulation and experimental results
in a buck-boost and a multilevel converter. In section 7, some

conclusions and future work are presented.

II. PROBLEM FORMULATION

Since the power converters are switched systems, they can

be described by a piecewise differencial equation:

ẋ(t) = Aσi
x(t) (1)

where x(t) ∈ R
n is the state of the system, σi is the active

mode of the system It is determined by the switches positions.

σi ∈ {1, . . . , 2r} where r is the number of switches in the
power converter. Aσi

∈ R
n×n. It has been proven in [11] that

an equivalent model for the power converters is a control affine

model written as:

ẋ(t) = f (x( t)) + g (x(t)) u(t) (2)

where u(t) is a boolean vector. f(x(t)) ∈ R
n, g(x(t)) =

[g1(x(t)), . . . , gr(x(t))] ∈ R
n×r, gk(t) ∈ R

r, k ∈ −→r ,

{1, . . . , r}. Indeed, each mode σi produce different values

of the boolean vector u(t). The control problem is to find
a switching law such that the system in closed loop is stable.
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x must be regulated around an average reference value x̄∞.

Let us assume that all the states of (2) are measurable.

Definition 1: A switching sequence is a finite sequence

represented by (T , I, s) where:

• s is the (finite) length of the sequence.
• T = {ti}

s
i=0 is a strictly increasing time sequence

composed by the instant values when a mode is switched

on.
• Ω = {σi}

s−1
i=0 is a map set called mode sequence. A mode

σi is switched on at time ti, i = 0, . . . , s− 1.

A switching sequence is shown in Fig. 1.

t0 t1 t2 t3

σ 0

σ
1

σ 2

ts−2 ts−1 ts

σ
s−

2

σ s−
1

Fig. 1. The switching sequence (T ,I, s). Each mode σi is switched on at
t = ti

Usually, the power converters has a steady state depicted

by a limit cycle around an equilibrium point of the average
model. Several cycles with the same average value may exist.

However with the method presented here, it is possible to
select one of the cycles and use it as a reference for the steady

state. This selection can be carried out with a cost function for

reducing the quadratic norm, optimizing the harmonic content,
etc. After finding an optimal limit cycle, a tracking problem

appears. Techniques based on predictive methods can be used.

Then, the design control can be divided in two parts:

1) Near the optimal limit cycle determined by the switching

sequence (T ∞, Ω∞, s∞) where T ∞ = {t∞i }
s
i=0,Ω

∞ =
{σ∞

i }
s−1
i=0 . In this step, the predictive control computes

only the switching times T . Ω and s are fixed to the

values Ω∞ and s∞.

2) Far from the limit cycle: T and Ω are optimized and the
length of the sequence is fixed to s∞.

In the next section, we describe how to obtain the limit

cycle and its switching sequence (T ∞, Ω∞, s∞).

III. DETERMINATION OF A CYCLIC STEADY STATE

In this part, an optimal limit cycle is determined. The

goal is to obtain the best time sequence T ∞, the modes

sequence Ω∞ and its length s∞ (1 < s∞ < smax). These
values must produce a specific waveform. In order to minimize

the oscillations around a desired operation point, an integral

quadratic criterion is chosen around the average reference
value x∞:

J(T ∞, Ω∞, s∞) = min
T ,Ω,s

∫ Tp

0

[x(t) − x∞]TQ[x(t)− x∞]dt

(3)

where Q = QT > 0 and Tp is the period of the cycle. Tp is
not a-priori known, but it is bounded by a constant Tp,max.

It means:

Tp < Tp,max (4)

The cyclic behavior is imposed by the constraint:

x(0) = x(Tp) (5)

A duration between switches has to be verified. In DC/DC
converters, the switches have a minimum time tmin between

two states (dwell time - closed to open or open to closed).

Thus, the following additional constraints must be considered:

δk(ti) ≥ tmin|uk(ti)− uk(ti−1)| ∀i = 1, . . . , s

δ̇k(ti) = 1 ∀k = 1, . . . , r

δk(ti+1) = 0 if |uk(ti)− uk(ti−1)| 6= 0
(6)

Eq. (6) is a condition on minimal duration of the mode σj

where tmin is a constant. δk is the elapsed time from the last

activation of the switch.
Remark 2: Other criteria can be also considered. e.g., in

order to minimize the harmonics, the function (3) uses a
filtered state variable instead of the state variable [6]. .
Solution of (3) subject to constraints (4), (5) and (6) give

the reference trajectory x∞. More exactly, fixing a modes
sequence Ω and a value of s, the problem is reduced to

determine the switching instants. The following algorithm can

be used:
Algorithm 3: The values of T , Ω and s can be obtained

through three steps:

1) For s and Ω fixed, the cost function J(T , Ω, s) described
by equation (3) is optimized.

2) The point 1 is taken again with a new couple Ω and s
until all possible sequences are analysed.

3) The modes sequence producing the minimum value of

J(T , Ω, s) is chosen.

The algorithm finishes because Ω is finite and s is bounded

Usually, analytic solution of the optimization problem (3) with

constraints (4), (5), and (6) is hardly obtained. That is why
optimization methods must be applied. The solution defines

an execution (T ∞, Ω∞,X∞) and the modes number s∞.
Remark 4: The method can be numerically very long be-

cause the optimization problem must be solved
∑smax

s=1 rs

times. This optimization is carried out off-line.
From this section and section II, it is observed that the

optimization of switching time is needed. The next section
is devoted to this topic.

IV. SWITCHING TIME OPTIMIZATION

Through this section, a method for optimizing the switching
times is presented. The modes sequence is supposed to be

fixed. The method is used for any of the considered strategy
(near or far from the limit cycle). The research of T is

formalized as another optimization problem with a quadratic

error between the trajectory x and the reference steady state
x∞. However, the interesting values are only located at the

switching instant. Therefore, switching time control problem

can be written as:

min J(T ) =

s
∑

i=1

(x(ti)− x∗
i )

TQ(x(ti)− x∗
i )

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t)

x(0) = x0 (Given initial condition)

ts = T∞
p (Condition on the period).

(7)
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where T∞
p ∈ R is the period of the reference cycle and

x∗
i =

{

x(t∞i ) if steady state

x∞ if transient state
(8)

A method based on the Gauss-Newton algorithm and the
knowledge of sensitivity functions is proposed. This algorithm

yields the optimal time sequence T which satisfies (7). Let us
write the state evolution as a function of switching instants:

x(ti) = Φi(ti, ti−1)x(ti−1), ∀i = 1, . . . , s (9)

where Φi(., .) is the transition matrix of the linear system (1):

Φi(ti, ti−1) = eAσi
(ti−ti−1) ∀i = 1, . . . , s (10)

Error ∆x between the trajectory and the reference cycle at
instants T is given by:

∆x(ti) = x(ti)− x∗
i , ∀i = 1, . . . , s (11)

with x∗
i is defined in (8). Since the period of the cycle has

a value T∞
p , time value ts = T∞

p . Replacing (11) in (7), a

minimization without constraints is obtained:

min
T

J(T ) = min
T \ts

∆x(T∞
p )TQ∆x(T∞

p )+

s−1
∑

i=1

∆x(ti)
TQ∆x(ti)

(12)
This last equation can be also written in a matricial form:

min
T

J(T ) = min
T \ts

∆X(T )TQ∆X(T ) (13)

where ∆X(T ) : R
s → R

ns is a vector that contains all state

errors at each switching instant:

∆X(T )=[∆x(t1)
T ,∆x(t2)

T ,...∆x(ts−1)
T ,∆x(T∞

p )T ]T (14)

Q : R
ns×ns is a diagonal constant matrix composed by the

matrix Q, repeated s times.

Q =









Q 0n×n . . . 0n×n

0n×n Q . . . 0n×n

...
...

. . . 0n×n

0n×n 0n×n . . . Q









(15)

Denote τ as the time sequence T without the value ts (T \
ts). (13) is a quadratic minimization. Thus, a Gauss - Newton
algorithm can be used.

Algorithm 5: (Determining switching instants).
Inputs:

• Values x0, s, Ω, initial values of switching time sequence

τin.
• Period of the cycle T∞

p

• Stop parameter ν ≈ 0 (Constant).

Algorithm is decomposed into the following steps:

1) Initialize h← 0, τ0 ← τin

2) Gauss-Newton iteration:

τh+1 = τh +H−1(τ)
∂J(τ)

∂τ
, (16)

3) Constraint validation: ∀i = 1, . . . , s, if (ti − ti−1) < 0,
ti ← ti−1

4) ∀i = 1, . . . , s, if (ti − ti−1) > T∞
p , ti ← T∞

p

5) Stop test: If ‖τh+1 − τh‖ < ν, go to step 7.
6) h← h + 1 and go back to step 2.

7) End

Remark 6: One of the algorithm assumptions is that the
period of the cycle is T∞

p . Steps 3 and 4 are particular cases.

If ti−1 > ti, then mode σi−1 is part of the modes sequence

with a zero duration. Step 4 is the case when a time sequence
has a duration greater than the cycle duration. This case (ti >
T∞

p + ti−1) for ti−1 > 0 cannot occur.
∂J(τ)

∂τ
is the sensitivity function of J with respect to

switching instants.

From the chain rule of derivation:

∂J(τ)

∂τ
= J T (τ)

∂J(τ)

∂∆X(τ)
= J T (τ)Q∆X(τ) (17)

where J (τ) : R
s → R

(ns)×(s−1) is the Jacobian of the errors
with respect to each switching instant,

J (τ) =













∂∆x(t1)
∂t1

∂∆x(t1)
∂t2

· · · ∂∆x(t1)
∂ts−1

∂∆x(t2)
∂t1

∂∆x(t2)
∂t2

· · · ∂∆x(t2)
∂ts−1

...
...

...
∂∆x(ts)

∂t1

∂∆x(ts)
∂t2

· · · ∂∆x(ts)
∂ts−1













(18)

and H(τ) is an approximation of the non-singular Hessian
matrix defined by H(τ) = J T (τ)QJ (τ). Thus, we must

compute the sensitivity function of the state errors with

respect to each switching instant. The next Proposition yields
analytical expressions for the sensitivity functions.

Proposition 7: Sensibility functions of ∆x(τ) with respect

to switching times are given by:

∀j = 1, . . . , s− 1, and ∀i = 1, . . . , s

∂∆x(ti)

∂tj
=











0 if j>i

Aσi
Π(ti, 0)x(0) if j=i

Π(ti, tj)∆Pjx(0) if j<i

(19)

where Π(ti, tj) is the product of transition matrices from t =
tj to t = ti:

Π(ti, tj) = Φi(ti, ti−1)Φi−1(ti−1, ti−2) . . . Φj+1(tj+1, tj)
(20)

∆Pj is a function given by

∆Pj = (Aσj
−Aσj+1

)Π(tj , 0) (21)

Proof: Although x∞(t) is a time variable reference,

x∞(ti) is constant for a given ti. From (11)
∂∆x(ti)

∂tj
= ∂x(ti)

∂tj
.

In order to compute
∂x(ti)

∂tj
, it is necessary to distinguish three

cases:

1) j > i: Terms tj do not appear in the functions x(ti),

then
∂x(ti)

∂tj
= 0.

2) j = i: Consider the left derivative of the state x(t) with

respect to switching instants tj :

∂x(t−j )

∂tj
= lim

t→t
−

j

∂x(t)

∂tj

System evolution is computed between tj − ǫ and tj as,

x(tj) = x(tj − ǫ) +

∫ tj

tj−ǫ

Aσj
x(p)dp.
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Its derivative gives:
∂x(t−

j
)

∂tj
= Aσj

x(tj) Since j = i,
further switches are not considered, and:

∂x(tj)

∂tj
=

∂x(t−j )

∂tj
= Aσj

x(tj) (22)

3) j < i: Contrary to the case j = i, further switches must
be taken into account. Let us consider the right derivative

of the state x(t) with respect to switching instant tj :

∂x(t+j )

∂tj
= lim

t→t
+

j

∂x(t)

∂tj

State evolution x(t) is computed once again as x(t) =
x(t+j )+

∫ t

tj
Aσj+1

x(p)dp. Since x(t+j ) = x(t−j ) = x(tj)

and from (22), the limit t→ t+j becomes:

∂x(t+j )

∂tj
= (Aσj

−Aσj+1
)x(tj) (23)

From (9), x(tj) is a function of the initial state:

x(tj) = Π(tj , 0)x(0).

Using again the chain rule: sensitivity funcion of x(ti)
with respect to x(ti−1) can be computed from (9),

∂x(ti)

∂x(ti−1)
= Φi(ti, ti−1).

Therefore,

∂x(ti)

∂tj
= Π(ti, tj)(Aσj

−Aσj+1
)x(tj) (24)

V. CLOSED LOOP CONSTRUCTION

Algorithm 5 has as input parameters x0 (State measure),
Ω (modes sequence) and s (modes number). If the last two

variables are a-priori known, the closed loop control is directly
built. Although it is a particular case, it is the case of the most

used DC/DC converters (e.g., buck, boost and buck-boost)

because their models are not complex and Ω can be easily
determined. On the other hand, when Ω and s are not known,

two possible solutions are:

1) Test algorithm 5 with all modes sequences with size s.
s also varies between 1 and smax (1 ≤ s ≤ smax).
Take the sequence which gives the minimum value of

J(T ). Numerically speaking, solution becomes a very

expensive process to apply it on-line. Thus, control is
hardly available in real time. Nevertheless, this process

can be carried out off-line.

2) Use different values of x0. For each x0, compute T ,
Ω and s as it is indicated in the point 1, but off-line. A

table is then created. This table has as inputs the different

values of x0 and as outputs the employed mode σ0 and
its duration t1−t0. Then, an interpolation method is used

to establish an input-output function. This function is

applied on-line. One of the approaches which has shown
good performances concerning robustness and computa-

tion time is the NN. Since all solutions for a whole initial

conditions set are obtained, NN may interpolate them.
Indeed, it can imitate the controller behavior. NN are

considered as universal approximators because they can

learn the behavior of a non-linear function. Hence, they

can compute on-line the control value. In [12], a NN is
used for implementing a predictive control.

VI. EXAMPLES

Two examples are considered: The buck-boost converter and

the multilevel converter. The first converter is presented only
for claryfing the method in a very simple system. The second

converter is a real converter for which the control law has been
tested in simulation and in a real platform.

A. Buck-boost converter

Consider a Buck-Boost converter in a Continuous Conduc-
tion Mode (CCM) whose topology is shown in figure 2.

E L C

Du

R

Fig. 2. Buck-Boost converter

The state variables are the the capacitor voltage vc and the

inductor current iL. Its dynamics is given by the equation:

ẋ =

{

A1x + B1 for u = 1 (closed switch - Mode 1)

A2x + B2 for u = 0 (open switch - Mode 2)

where

A1 =

[

0 0
0 − 1

RC

]

A2 =

[

0 1
L

− 1
C
− 1

RC

]

B1 = [
E

L
, 0]T B2 = [0, 0]T

where R = L = C = E = 1. DCM is not taken into

account. Thus, the diode do not influence the system response.
It is really not hard to extend this method to DCM as it

has been shown in [13] for a SEPIC converter. The criterion
is to minimize oscillations with respect to an average value

xref = [vc,ref , il,ref ]T = [2,−1]T . The weight matrix is

Q = diag[1, 1], Tp,max = 1s. and the maximum modes num-
ber smax = 2. The switch has a dwell time tmin = 0.25s. For
this example r = 1. Hence, there are only 4 modes sequences.

After finding the solution of the optimization problem, the
optimal switching sequence is T ∞ = {0, 0.2509, 0.5}, Ω∞ =
{1, 2}. In order to write the system in an autonomous form,

another state variable xn+1 is added with xn+1(0) = 1. Thus,
matrices become:

Aσi
=

[

Aσi
Bσi

0 0

]

(25)

The system is now an autonomous system with ẋ(t) =
Aσi

x(t). The values of the reference cycle at the switching

instants are:

x∞(t2) ∈ Ker









1 0 0
0 1 0
0 0 0



− eA2(t
∞

2 −t∞1 )eA1t∞1





x∞(t1) = eA1(t
∞

2 −t∞1 )x∞(t2)

(26)



5

The function to minimize is eq. (13) where

∆x(t2) = eA2(Tp−t1)x(t1)− x∞(t2)

∆x(t1) = eA1(t1)x(0)− x∞(t1)
(27)

Q = diag[Q,Q], with Q = diag[100, 1, 0]. ∂J(τ)
∂τ

is computed

as J (τ)T Q∆X(τ) where J (T ) =
[

∂∆x(t1)
T

∂t1
, ∂∆x(t2)

T

∂t1

]T

and from Proposition 7, sensitivity functions are:

∂∆x(t1)

∂t1
= A1Π(t1, 0)x(0)

∂∆x(t2)

∂t1
= Π(t2, t1)∆P1x(0)

(28)

where Π(t1, 0) = eA1t1 , Π(t2, t1) = eA2(Tp−t1) and ∆P1 =
(A1 −A2)Π(t1, 0).

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

temps [s]

x
1

Fig. 3. x1(t): Capacitor voltage.
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−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

temps [s]

x
2

Fig. 4. x2(t): Inductor current.
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−0.4

−0.3
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x
1

x
2

Reference cycle

Trajectory

Fig. 5. Reference cycle and trajec-
tory (x1, x2) near this cycle.

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

time [s]

t 1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

time [s]

T
p
−

t 1

Fig. 6. Duration of each mode in
function of the period Tp = 0.5s.

The evolution of x1 and x2 are shown in Figs. 3 and 4. In

figure 5, the reference cycle is observed. The duration τ1 = t1
and τ2 = Tp − t1 are presented in Fig.6 Note that in this

example, the system reaches the reference cycle. Since Buck-

Boost converter has only two modes, the modes sequence Ω is
known for the transient state and algorithm 5 easily converges

to the desired steady state in only one iteration.

B. Multilevel converter

Increasing the power of converters is generally obtained
by increasing the voltage. The studies and development car-

ried out on the capacitor converters over the past ten years

have revealed excellent characteristics with respect to other
DC/DC converters [14], [15], [16]. Fig.7 shows a four-level

three-cells converter. Its function is to supply energy to a

passive R-L load. The state vector of the converter in Fig.
7 is composed by the circuit voltages and currents. Thus,

E

u1u2u3

1− u11− u21− u3

L

R

C1C2

Fig. 7. Four-level three-cell converter

x(t) = [vc1
(t), vc2

(t), iL(t)]T . The differential equation which
describes this system is:

"

ẋ1(t)
ẋ2(t)
ẋ3(t)

#

=

2

6

4

−

x3(t)
C1

x3(t)
C1

0

0 −

x3(t)
C2

x3(t)
C2

x1(t)
L

x2(t)−x1(t)
L

E−x2(t)
L

3

7

5

"

u1(t)
u2(t)
u3(t)

#

+

"

0
0

−

R

L
x3(t)

#

(29)

where x1(t), x2(t) are the voltages in each capacitor and x3(t)
is the load current. This model is affine to the control u. ui(t),
i ∈ {1, 2, 3} represents the switches position dually operating.

It means that if ui(t) is equal to 1, upper switch is closed and
lower switch is open. If ui(t) = 0, lower switch is closed and

upper switch is open. The goal of the converter is to obtain a

constant average current value. In order to balance the voltages
in the switches, the reference for the capacitor voltages are

given by vc2,ref = 2
3E, vc1,ref = 1

3E. Thus, the reference

vector is x̄∞ = [vc1,ref , vc2,ref , iL,ref ]T . Simulation and
experimental parameters are C1 = C2 = 40µF , L = 10mH.
and R = 10Ω. The nominal input supply is E = 30 V
and iL,ref = 1A.. Table I shows all the possible operation

modes. Using the algorithm to determine de steady state,

Tp,max = 0.4ms, smax = 12, tmin = 1/45kHz = 0.022ms
and Q = diag[10, 5, 20000]. This matrix yields less oscilla-

tion in the load current compared to voltages. The optimal

switching sequence is:

Ω∞ ={0, 1, 3, 7, 2, 0, 4, 7, 4}

T ∞ ={0, 0.066ms, 0.088ms, 0.11ms, 0.132ms, 0.154ms,

0.22ms, 0.242ms, 0.264ms, 0.286ms}
(30)

with an initial condition x(0) = [9.9247, 19.2928, 0.9823]T .
For this example, the modes sequence is not a-priori known.

Thus a NN must be used. For this example, a grid of 1000
points has been employed in each state variable. For each

point, the predictive control was computed as the solution of

the tracking problem. A NN interpolates the mode with respect

Mode u1 u2 u3

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

TABLE I
EQUIVALENCE BETWEEN MODES AND THE VALUE OF EACH ui

to the error. This network has 50 neurons at the hidden layer.

Learning algorithm is a back-propagation. The performance
tests are:
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Fig. 8. Start-up test. Comparaison between the simulated results and the
experimental results.
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Fig. 9. Input supply variation. Comparaison between the simulated results
and the experimental results. An input supply variation changes from E = 30
to E = 15 V.

1) Start-up test. Fig. 8 shows the system response with
nominal parameters in simulation and in a real prototype.

The control law reaches the reference in ≈ 3 ms. The

sampling frecuency is 45 kHz.
2) Line variation test. Input supply instantaneously changes

during operation. Fig. 9 show the steady state when a

voltage variation is applied: From E = 30 V to E = 15
V and back again. Figs. also show that control law can

compensate the different input supplies variation. The

sampling frecuency is 45 kHz.

The system reaches a cycle in steady state even if an input

supply variation is applied.

VII. CONCLUSIONS

In this article, a solution is proposed to control DC/DC

power converters. The proposed method is composed by
three parts: i) Computing of an optimal cycle in open loop.

ii) Tracking a trajectory with a control strategy which is

function of the distance with respect to the cycle. iii) If

necessary, the implementation uses a NN to verify the real-
time constraints. A Buck-Boost and a multilevel converter is

used as example. They show the good performance of the

method. One conclusion is that even if method requires the
resolution of many optimization algorithms, they are used off-

line (if necessary). With interpolation, a state feedback control

law can be established. Control method allows to follow a
known cycle and to control the waveform. Although it does

not exist proof concerning stability, the method is flexible

and easy to implement. Simulations and experimental results
show robustness with respect to input supply disturbances.

However, there exist several points to study in the future: i)
Take into account the DCM in DC/DC converters. ii) Variate

the prediction horizon. iii) Study a predictive-adaptive control.
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